
 

 
Multivariate consistency of resting-state fMRI connectivity maps acquired on a 

single individual over 2.5 years, 13 sites and 3 vendors 
 
AmanPreet Badhwar, MSc, PhD1,2, Yannik Collin-Verreault, BSc1, Pierre Orban, PhD 3,2, 
Sebastian Urchs, MSc1,4, Isabelle Chouinard, MRT5, Jacob Vogel, BSc4, Olivier Potvin, 

PhD 5, Simon Duchesne, PhD5,6, Pierre Bellec, PhD1,2 

 
 

1 Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), 
Montréal, Canada; 2 Université de Montréal, Montréal, Canada; 3 Centre de recherche 

de l'Institut universitaire en santé mentale de Montréal, Montréal, Canada; 4 McGill 
University, Montréal, Canada; 5Centre CERVO, Quebec City Mental Health Institute, 
Quebec, Canada; 6 Department of Radiology, Faculty of Medicine, Université Laval, 

Quebec, Canada 
 

 
Corresponding Author 
 
Dr. AmanPreet Badhwar 
Centre de Recherche, Institut Universitaire de Gériatrie de Montréal 
Université de Montréal 
Montréal, QC, Canada H3W 1W5 
Tel: 514-340-3540 ext. 3367 
Fax: 514-340-2802 
Email: amanpreet.badhwar@criugm.qc.ca 
 
 
Running title: Multivariate consistency of long-term multisite resting-state fMRI 
  

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/497743doi: bioRxiv preprint 

https://doi.org/10.1101/497743
http://creativecommons.org/licenses/by-nc-nd/4.0/


CDIP rsfMRI manuscript Badhwar et al. 

Abstract 
Studies using resting-state functional magnetic resonance imaging (rsfMRI) are         
increasingly collecting data at multiple sites in order to speed up recruitment or increase              
sample size. Multisite studies potentially introduce systematic biases in connectivity          
measures across sites, which may negatively impact the detection of clinical effects.            
Long-term multisite biases (i.e. over several years) are still poorly understood. The main             
objective of this study was to assess the long-term consistency of rsfMRI multisite             
connectivity measures derived from the Canadian Dementia Imaging Protocol (CDIP,          
www.cdip-pcid.ca). 
 
Nine to ten minutes of functional BOLD images were acquired from an adult cognitively              
healthy volunteer scanned repeatedly at 13 Canadian sites on three scanner makes            
(General Electric, Philips and Siemens) over the course of 2.5 years. RsfMRI            
connectivity maps were extracted for each session in seven canonical functional           
networks. The reliability (spatial Pearson’s correlation) of maps was about 0.6, with            
moderate effects (up to 0.2) of scanner makes and sites. The time elapsed between              
scans had a negligible effect on the consistency of connectivity maps. To assess the              
utility of such measures in machine learning models, we pooled the long-term            
longitudinal data with a single-site, short-term (1 month) data sample acquired on 26             
subjects (10 scans per subject), called HNU1. Using randomly selected pairs of scans             
from each subject, we quantified the ability of a data-driven unsupervised cluster            
analysis to match the two scans. In this “fingerprinting” experiment, we found that scans              
from the Canadian subject could be matched with high accuracy (>85% for some             
networks), and fell in the range of accuracies observed for the HNU1 subjects. 
 
Overall, these results support the feasibility of multivariate, machine learning analysis of            
rsfMRI measures in a multisite study that extends for several years, even with fairly              
short (approximately ten minutes) time series. 
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HIGHLIGHTS 
 

● Assessed the long-term (2.5 yrs) consistency of multisite rsfMRI connectivity maps 
● Time elapsed between scans had negligible effect on consistency of connectivity 

maps 
● Consistency of intra-subject long-term multisite maps was greater than 

inter-subject 
● Individual connectivity fingerprint is preserved across sites, vendors and time 
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Graphical Abstract 
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1. INTRODUCTION 

Paradigm-free (“resting-state”) functional MRI (rsfMRI) can be used to detect spatially           

distributed functional connectivity networks in health and their alterations in disease           

(Badhwar et al. 2017; Matthews and Hampshire 2016). Neuroimaging phenotypes,          

however, typically exhibit considerable heterogeneity between patients (Dong et al.          

2017; Drysdale et al. 2017) and large datasets are needed to achieve sufficient             

statistical power for reliable detection (Button et al. 2013). Such large patient cohorts             

frequently surpass the recruitment capacity of single clinical centres. A number of            

initiatives have pooled multisite data on normal or patient cohorts, such as attention             

deficit hyperactivity disorder (Brown et al. 2012), autism spectrum disorder (Di Martino            

et al. 2017; Nielsen et al. 2013), diabetes (Saggar et al. 2017), depression (Drysdale et               

al. 2017), schizophrenia (Skåtun et al. 2017; Cheng et al. 2015), Alzheimer’s disease             

(Alzheimer’s Disease Neuroimaging Initiative ), population imaging genetics (UK        1

Biobank ) and normal brain development (Adolescent Brain Cognitive Development         2

Study or ABCD ). However, it is still unclear to what degree the use of multiple scanners                3

introduces additional variance in neuroimaging measures, especially for studies that will           

collect data for several years. Here we report on the multisite fMRI protocol of a large                

multisite initiative, lead by the Canadian Consortium for Neurodegeneration in Aging           

(CCNA ), which is recruiting 1600 individuals on the spectrum of age-related dementias            4

1 http://adni.loni.usc.edu/about/ 
2 http://www.ukbiobank.ac.uk/ 
3 https://addictionresearch.nih.gov/abcd-study 
4 http://ccna-ccnv.ca/ 
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over the course of 4 years, as well as 660 cognitively normal individuals, at over 30                

sites. The CCNA initiative relies on harmonized acquisition parameters set forth in the             

Canadian Dementia Imaging Protocol (CDIP ), implementing a series of site          5

qualification, quality control, and assurance procedures. 

The main objectives of the present study were to assess the inter-site and             

longitudinal consistency of rsfMRI measures derived from a single traveling Canadian           

subject (Csub) scanned repeatedly at several CCNA sites using CDIP. An additional            

objective was to assess whether the inter-site variance would interfere with a simple             

machine learning task. We concentrated on fingerprinting (Finn et al. 2015), i.e.            

identifying paired scans from the same subject in a large multisubject dataset. For this              

purpose, we pooled the Csub scans with a public dataset featuring multiple retest scans              

per individual. 

The impact of multisite acquisition on rsfMRI connectivity has recently gained           

attention in a series of studies. Using retrospective rsfMRI data, Yan and colleagues             

first demonstrated the existence of systematic variations in resting-state connectivity          

across 18 sites, by contrasting average connectivity patterns of independent groups           

composed of (mostly) young healthy subjects (Yan et al. 2013). Dansereau et al. further              

extended this analysis on a subset of eight sites with 3T scanners, showing that              

average group resting-state network maps could be consistently observed using          

parcel-based functional connectomes (Dansereau et al. 2017). The authors also          

5 www.cdip-pcid.ca 
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reported widespread site effects, present across all resting-state networks, with some           

sites associated with larger bias than others.  

One major limitation of both analyses (Dansereau et al. 2017; Yan et al. 2013)              

was the reliance on retrospective data, which was a mix of different acquisition             

parameters (e.g. voxel size, repetition time) as well as scanner make and field strength,              

all of which may exaggerate the amplitude of site differences. This limitation was             

addressed by Jovicich and colleagues (Jovicich et al. 2016), who investigated rsfMRI            

data collected across 13 sites using a harmonized acquisition protocol at 3T on three              

scanner platforms: Siemens Medical Systems (Siemens), Philips Healthcare (Philips)         

and General Electric Healthcare (GE). Even with a harmonized protocol, the authors            

observed significant differences across sites using cross-sectional human volunteer         

data comprised of independent groups of five participants scanned at each site. This             

result may partly reflect significant inter-site differences in temporal signal-to-noise ratio           

(tSNR) maps, observed both on geometric phantoms and volunteer data. This study            

also scanned each cohort twice over two weeks (median), and demonstrated that retest             

reliability of connectivity maps was comparable across sites for the major resting-state            

networks. 

A second limitation shared by the multisite rsfMRI studies reviewed thus far was             

that different participants were recruited at each site, thereby keeping open the            

possibility that site effects simply reflected differences in participant characteristics. Only           

a single cohort experiment can unambiguously capture inter-site differences, with the           

same individual(s) being scanned repeatedly at each site. Two recent studies           
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implemented such an approach. First, Noble and colleagues (Noble et al. 2017)            

acquired rsfMRI data on eight participants in two scan sessions separated by 24 hours,              

and repeated this experiment at eight different sites (all 3T; Siemens and GE scanners)              

with the same participant cohort and a harmonized protocol. They found that inter-site             

differences in connectivity measures were substantially explained by the variability of           

individual within-site measures, especially for short (5 min) acquisition times (Noble et            

al. 2017). This conclusion applied to individual region-to-region connectivity, yet          

multivariate reliability measures from whole-brain connectivity maps were more reliable          

both within and across sites. In a second, independent study, An and colleagues (An et               

al. 2017) acquired rsfMRI data on 10 traveling participants in two sessions separated by              

30 mins on three scanners, also using a harmonized protocol. Unlike Noble and             

colleagues, they collected data on Philips scanners in addition to Siemens and GE, but              

only had one scanner per vendor. Short-term reliability was shown to be better on GE,               

relative to Siemens and Philips scanners. Unlike Jovicich and colleagues (Jovicich et al.             

2016), the authors did not find differences in tSNR ratio across scanner vendors, and              

there was good reliability of whole brain connectivity maps between scanner vendors.  

A major question left open in the literature is how multisite acquisitions impact             

rsfMRI over the long periods of time (years) needed to complete enrolment in large              

studies such as CCNA. To address this question, we wanted to move beyond traditional              

measures of consistency for repeated measures (such as intra-class correlation (Fleiss           

and Cohen 1973)) because fMRI connectivity maps are high dimensional, multivariate           

measures, and their primary use case in many instances (e.g. CCNA), will be to serve               
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as features for machine learning prognostic models. Categorical guidelines for          

interpretation of consistency measures may not translate well in this multivariate           

predictive context (Koo and Li 2016; Cicchetti and Sparrow 1981). Moreover, since            

functional connectivity maps can act as a ‘fingerprint’ for accurately identifying subjects            

within a large group (Finn et al. 2015), we selected the accuracy of fingerprinting as a                

benchmark to assess the consistency of longitudinal fMRI scans. The specific aims and             

hypotheses of this study were as follows:  

a) Evaluate the effect of scanning site, scanner vendor and time elapsed between            

scans (up to 2.5 years) on the consistency of connectivity maps. Based on the              

previous literature reviewed above, we hypothesized moderate vendor and site          

effects. We also hypothesized only a small effect of time: although age effects             

are detectable in adults, 2 years remain within the error margin of age prediction              

based on fMRI connectivity (Li, Satterthwaite, and Fan 2018). 

b) Contrast intra-subject consistency of connectivity maps in a multisite, longitudinal          

data against intra-subject and inter-subject consistency for a short-term, single          

site data. Our hypothesis was that site effects would reduce intra-subject           

consistency (inter-site), but that it would remain higher than inter-subject          

consistency (intra-site). The rationale for this hypothesis is that the inter-subject           

differences in brain connectivity are large compared to longitudinal intra-subject          

differences (Gratton et al. 2018) . 

c) Evaluate whether the identity of a subject can be reliably identified in the context              

of multisite, long-term longitudinal data, when pooled with within-site, short-term          
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longitudinal data (fingerprint experiment). In the absence of prior literature, we           

did not have a specific hypothesis for this aim. 

We implemented three experiments to address these aims. We first tested the effect of              

time, vendor and site using a linear regression analysis of network connectivity maps             

generated from fMRI data collected on Csub, scanned over 2.5 years at 13 sites using               

CDIP implemented on one of 3 scanner vendors (Sections 3.1 and 3.2 , aim a). We then                

compared the intra-subject consistency in the Csub data with both intra-subject and            

inter-subject consistency in a public sample released as part of the Consortium On             6

Resting-state Reproducibility (CORR) (Zuo et al. 2014) and comprised of 30 healthy            

adults scanned 10 times each over one month (Section 3.3 , aim b). Finally, we              

performed a fingerprinting experiment using scans from the pooled dataset (Section 3.4 ,            

aim c), i.e. attempting to match the identity of participants based on pairs of              

resting-state connectivity maps. 

2. METHODS 

2.1 Canadian subject dataset (Csub) 

All brain imaging data were acquired from a volunteer Csub: a healthy male with no               

history of (a) psychiatric and/or neurological illnesses; (b) psychoactive drug usage; or            

(c) contraindications to MRI. Csub was 42 years old at the start of data collection               

(2014). In total, the participant underwent 25 scanning sessions at 13 CCNA imaging             

sites; using scanners from three manufacturers (Philips, Siemens and GE), see Table 1. 

6 http://fcon_1000.projects.nitrc.org/indi/CoRR/html/hnu_1.html 
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Center Abbr. Scanner Vendor 2014 2015 2016 2017
Centre Hospitalier de l'Université de 
Montréal CHUM Philips, Achieva x x 

Centre Hospitalier Universitaire de 
Sherbrooke CHUS Philips, Ingenia x x x 

Le Consortium d'Imagerie en 
Neurosciences et Santé Mentale de 
Québec 

CINQ Philips, Achieva x x x 

University of British Columbia UBC Philips, Intera x 
Institut Universitaire en Santé Mentale 
Douglas ISMD Siemens, Magnetom 

TIM Trio x x x 

Institut Universitaire de Gériatrie de 
Montréal, Montréal IUGM Siemens, Magnetom 

TIM Trio x x x 

Montreal Neurological Institute MNI Siemens, Magnetom 
TIM Trio x xx x 

Peter S. Allen MR Research Centre EDM Siemens, Prisma x 
Robarts Research Institute RRI Siemens, Prisma x 
Royal University Hospital SASK Siemens, Skyra x 
Sunnybrook Health Sciences 
Center/Sunnybrook Research Institute SUN Siemens, Prisma x 

Toronto Western Hospital TWH GE, HDxt x 
West Coast Medical Imaging VIC GE, SIGNA Pioneer x 
 
Table 1: Demographics  

The letter “x” in columns 2014-2017 indicate acquisition of rsfMRI and structural scans at the               

corresponding year. 

 
The data was acquired as part of an ongoing effort to monitor the quality and               

comparability of MRI data collected across the CCNA imaging network. The schedule of             

visits did not follow a strict design, with an approximate goal of one visit a year, starting                 

at site qualification. Informed consent was obtained from the subject for the overall             

study and before every scan session. Due to the multisite nature of the study, ethics               

approval was obtained from the institutional review board of each participating institution            

prior to scanning. 
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Anatomical scans included 3D isotropic T1-weighted (T1w) imaging for assessing          

fine anatomical detail with high resolution (voxel size = 1.0 x 1.0 x 1.0 mm 3) and                

acceleration factor of 2 (Siemens: MP-RAGE; GE: FSPGR; Philips: T1-TFE). Functional           

T2*-weighted images were obtained using a blood-oxygen-level-dependent (BOLD)        

sensitive single-shot echo-planar (EPI) sequence. Additional scan parameters are         

provided in Table 2. During the rsfMRI acquisitions, no specific cognitive tasks were             

performed, and the participant was instructed to keep his eyes open. No camera or              

physiological recordings were captured, as these equipment were not available at every            

site. It should be noted that we excluded the second MNI 2015 intra-session scan              

(Table 1) from our study, since it was the only intra-session scan acquired. Thereby,              

data from the remaining 24 scans was used in the study. 

Bold EPI 
Site Field

Strength 
Voxel
Size

FA Matrix
size 

TE TR Volumes Scan 
Time

Slice Order 

 T mm3 ° ms ms # 
CHUM 3.0 3.5 iso 70 64x64 30 2110 300 10.55sequential ascending 
CHUS 3.0 3.5 iso 70 64x64 30 2110 300 10.55sequential ascending 
CINQ 3.0 3.5 iso 70 64x64 30 2110 300 10.55sequential ascending 
UBC 3.0 3.5 iso 70 64x64 30 2110 300 10.55interleaved ascending 
ISMD 3.0 3.5 iso 70 64x64 30 2110 300 10.55sequential descending 
IUGM 3.0 3.5 iso 70 64x64 30 2110 300 10.55interleaved ascending 
MNI 3.0 3.5 iso 70 64x64 30 2110 300 10.55interleaved ascending 
EDM 3.0 3.5 iso 70 64x64 30 2130 300 10.65interleaved ascending 
RRI 3.0 3.5 iso 70 64x64 30 2130 250 8.88interleaved ascending 
SASK 3.0 3.5 iso 70 64x64 30 2140 250 8.92sequential descending 
SUN 3.0 3.5 iso 70 64x64 30 2130 250 8.88interleaved ascending 
TWH 3.0 3.5 iso 70 64x64 30 2130 278 9.87interleaved ascending 
VIC 3.0 3.5 iso 70 64x64 30 2500 250 10.42interleaved ascending 

 
Table 2: Scan parameters.  
rsfMRI BOLD EPI scan parameters: Scan time is provided in minutes and seconds.             

Abbreviations: FA, flip angle; ms, millisecond; TE, echo time; TR, repetition time; iso, isometric;              
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T, Tesla; Sites: CHUM, Centre Hospitalier Universitaire de Sherbrooke; CHUS, Centre           

Hospitalier Universitaire de Sherbrooke; CINQ, Le Consortium d'Imagerie en Neurosciences et           

Santé Mentale de Québec; ISDM, Institut Universitaire en Santé Mentale Douglas; IUGM,            

Institut Universitaire de Gériatrie de Montréal; MNI, Montreal Neurological Institute; EDM, Peter            

S. Allen MR Research Centre ; SASK, Royal University Hospital; TWH, Toronto Western            

Hospital ; RRI, Robarts Research Institute ; SUN, Sunnybrook Health Sciences         

Center/Sunnybrook Research Institute ; VIC, West Coast Medical Imaging. 

2.2 Hangzhou Normal University dataset (HNU1) 

The HNU1 dataset includes 30 healthy adults 20-30 years of age (mean age 24.4              7

years), each receiving 10 scans across one month (one scan every three days) on a               

single 3T GE Discovery MR750 scanner (Zuo et al. 2014). Anatomical scans included             

3D isotropic T1w imaging (voxel size = 1.0 x 1.0 x 1.0 mm 3 and acceleration factor of 2).                  

Functional T2*-weighted images were obtained using a 10 min BOLD-sensitive          

single-shot EPI sequence: 3.4 mm isotropic voxels, 90 deg flip angle, 64 x 64 matrix               

size, 30 ms TE, 2000 ms TR, 300 time points, interleaved ascending slice acquisition              

order . During rsfMRI scanning, subjects were presented with a fixation cross and were             8

instructed to keep their eyes open, relax and move as little as possible while observing               

the fixation cross. Subjects were also instructed not to engage in breath counting or              

meditation. 

2.3 Computational environment 

The datasets were preprocessed and analyzed using the NeuroImaging Analysis Kit,           

version 1.1.3 (NIAK-COG , (Bellec et al. 2011)), executed within an Ubuntu 16.0.4            9

7 http://fcon_1000.projects.nitrc.org/indi/CoRR/html/hnu_1.html 
8 http://fcon_1000.projects.nitrc.org/indi/CoRR/html/_static/scan_parameters/HNU_1_scantable.pdf 
9 https://hub.docker.com/r/simexp/niak-cog/ 
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Singularity container , running GNU Octave version 4.2.1, and the MINC toolkit            10 11 12

version 1.9.15. We also used three Jupyter notebooks that can be executed online via              

the binder platform , and run in a docker container built from a public configuration              13 14

file. Python packages used in the Jupyter notebooks include Numpy (Oliphant 2006),            

Pandas (McKinney and Others 2010), Matplotlib (Hunter 2007), Scikit-learn (Pedregosa          

et al. 2011), SciPy (Jones, Oliphant, and Peterson 2016), Seaborn and StatsModel            15

(Seabold and Perktold 2010). Interactive plots were generated using Plotly . 16

2.4 Pre-processing of MRI data  

With the exception of the T1w scan from UBC, which failed quality control, we averaged               

all T1w scans ( n=23) from Csub, following iterative alignment using rigid-body           

registration. Initially, a brain mask was extracted from a single arbitrary T1w scan             

(CHUM 2014) using the CIVET pipeline (Ad-Dab’bagh et al. 2006). Remaining T1w            

scans were then aligned to this reference scan, followed by an averaging of the aligned               

T1w scans. The averaged image served as the reference scan for the second iteration              

of alignment and averaging. We performed three such iterations to obtain our final T1w              

average. 

Data from each fMRI scan was corrected for slice timing by linear temporal             

interpolation. The first three volumes of each fMRI run were discarded to allow the              

magnetization to reach steady-state. Rigid-body motion was estimated for each time           

10 https://github.com/SIMEXP/niak/releases/download/v1.1.3/niak_singularity.tgz 
11 http://www.gnu.org/software/octave/ 
12 http://www.bic.mni.mcgill.ca/ServicesSoftware/ServicesSoft-wareMincToolKit 
13 http://mybinder.org 
14 https://mybinder.org/v2/gh/SIMEXP/cdip_human_phantom/master 
15 https://zenodo.org/record/1313201#.XAGdbVZKgWo 
16 https://plot.ly/ 
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frame, intra-run and inter-run, using CHUM 2014 as an arbitrary reference. Each            

session was comprised of one fMRI run (see Table 1). 

The rigid-body, fMRI-to-T1w and T1w-to-stereotaxic transformations were all        

combined and used to transform the fMRI images into MNI space at a 3 mm isotropic                

sampling. The following nuisance covariates were regressed out from the fMRI time            

series: slow time drifts (basis of discrete cosines with a 0.01 Hz high-pass cut-off),              

average signals in conservative masks of the white matter and the lateral ventricles, as              

well as the first principal components (accounting for 95% variance) of the six rigid-body              

motion parameters and their squares (Giove et al. 2009). The fMRI volumes were finally              

spatially smoothed with a 6 mm isotropic Gaussian blurring kernel. A more detailed             

description of the preprocessing pipeline can be found on the NIAK website . 17

The HNU1 dataset was preprocessed using the NIAK pipeline (Bellec et al.            

2011), using the first available structural scan as reference for alignment in stereotaxic             

space. Four individuals demonstrated subpar alignment of the brain around the           

meninges. These individuals were excluded from the dataset, and all additional analysis            

were carried out on the remaining 26 individuals. 

2.4 Quality control 

To minimize artifacts due to excessive motion, all time frames showing a displacement             

> 0.5 mm were removed (Power et al. 2012). The number of censored volumes ranged               

from 0 to 118 time frames, with at least 179 volumes left to generate a connectivity map                 

17 http://niak.simexp-lab.org/pipe_preprocessing.html 
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(see Supplementary Material Table S1). No scan was excluded due to excessive            

motion.  

2.5 Connectivity maps  

Using NIAK’s connectome pipeline , for each rsfMRI scan (from both Csub and HNU1             18

datasets), we computed voxel-wise connectivity maps associated with each of the           

seven network templates extracted from a group-level functional brain atlas. The atlas,            

the Multiresolution Intrinsic Segmentation Template (MIST), was generated from 200          

healthy subjects (Urchs et al. 2017). The MIST atlas consists of nine functional             

parcellations capturing successively finer levels of spatial detail, of which we used            

parcellations from resolution seven, consisting of seven commonly used large-scale          

network: cerebellar (CER), default-mode (DMN), frontoparietal (FPN), limbic (LIM),         

motor (MOT), salience (SAL), and visual (VIS). A network connectivity map was            

obtained per network by computing the Pearson's correlations between the average           

time course within the network template and the time course of every voxel in the brain.  

2.6 Consistency of individual rsfMRI measures within/between sites 

For each of the seven rsfMRI networks, a scan by scan similarity (Pearson's correlation)              

matrix was generated to summarize the consistency of connectivity maps across the 24             

scans in the Csub dataset. A series of explanatory variables were assembled for a              

general linear model (GLM) analysis: (1) time between scans, expressed in years and             

corrected to a zero mean; (2) dummy variables encoding intra-vendor comparisons           

(three covariates: GE, Siemens and Philips); (3) dummy variables encoding intra-site           

18 http://niak.simexp-lab.org/pipe_connectome.html 
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comparisons (six covariates: CHUM, CHUS, CINQ, ISDM, IUGM, MNI; the other sites            

did not have multiple retest data available). An intercept was also added to the model,               

which, in combination with the other covariates of the model, captured the average             

consistency for comparisons across sites from different vendors. A linear mixture of the             

explanatory variables were adjusted on the inter-scan consistency measures         

(dependent variable) using ordinary least squares, for each network separately. For           

each network, we tested the significance of the effect of inter-vendor (t-test),            

intra-vendor ( F test testing the combined effect of the three intra-vendor covariates),            

intra-site ( F test testing the combined effect of the six intra-site covariates) and time              

( t-test). We adjusted the significance level of p values for multiple comparisons across             

networks using a Bonferroni correction (family-wise error 0.05, significance threshold p           

< 0.0071). We also examined the effects of each individual variable to assess which              

vendors and sites drove the significance of tests. 

2.7 Consistency of rsfMRI measures within/between subjects 

For each HNU1 subject and each network, we computed the average (and standard             

deviation) for the intra-subject consistency for all pairs with the 10 available scans. We              

also computed the average inter-subject consistency across all scans from different           

subjects, both within HNU1, and between HNU1 and Csub. To further statistically            

compare these consistency values, we implemented a single GLM analysis, in which            

the dependent variable was the measures of inter-scan consistency, and the           

explanatory variables included a series of dummy variables encoding separately the           

intra-subject comparisons (Csub and 26 HNU1 subjects), one dummy variable encoding           
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comparisons between Csub and HNU1 subjects, and one dummy variable encoding           

inter-subject comparisons in HNU1. A series of t-test were derived from the following             

contrasts: intra-subject in Csub vs intra-subject in HNU1, intra-subject in Csub vs            

inter-subject in HNU1, inter-subject Csub/HNU1 vs inter-subject HNU1, and         

intra-subject HNU1 vs inter-subject HNU1.  

2.8 Fingerprinting of HNU1 participants and Csub 

We assessed the ability of a simple data-driven cluster analysis to recover the identity of               

subjects based on connectivity maps of a single network, mixing the Csub single subject              

with the HNU1 subjects. A fingerprinting experiment consisted of the following steps: (i)             

for each subject, randomly select two scans out of all available scans (at least 10); (ii)                

assemble an inter-scan similarity matrix, using only the selected scans for all subjects;             

(iii) apply a hierarchical clustering on this similarity matrix (Ward’s criterion); (iv) group             

the scans into as many clusters as there are subjects, based on the hierarchy; (v) for                

each subject, the fingerprinting experiment is considered successful if the two scans of             

this subject constitute a cluster. 

The fingerprinting experiment was repeated B=1000 times using random scan          

selections, and independently for each network. The average accuracy of the           

fingerprinting for a given subject and network was derived as the proportion of             

successful fingerprinting experiments.  
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2.9 Data Records 

Scripts used in this study are available on Github , as well as archived on zenodo .                19 20

The three Jupyter notebooks used in this study (graphs, stats_repro and           

stats-fingerprinting) can be executed online via the binder platform . We have also            21

made available on Github and zenodo two interactive dashboards containing (1)           

connectivity maps used to assess long-term consistency in Csub rsfMRI measures, and            

(2) connectivity maps from Csub and HNU1 datasets. Provided in each dashboard is             

the individual connectivity map per network, the average connectivity map per network,            

and the MIST parcellation at scale 7.  

3. RESULTS 

3.1. Connectivity maps  

The key regions of all 7 networks were clearly identifiable at every session, as illustrated               

for DMN connectivity (Figure 1). Random fluctuations were also apparent, sometimes           

with strong shifts in global connectivity values (see for example IUGM vs EDM in Figure               

1). We then quantified the consistency of rsfMRI maps generated at different sessions             

using the Pearson’s correlation coefficient as a measure of spatial similarity. We            

selected this measure as it is invariant to the shifts in mean and variance we noted                

above. 

19 https://github.com/SIMEXP/cdip_human_phantom 
20 https://doi.org/10.5281/zenodo.1979984 
21 https://mybinder.org/v2/gh/SIMEXP/cdip_human_phantom/master 
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Figure 1: Default-mode network connectivity. The connectivity map for the DMN of each site              

is included. For sites with multiple sessions, only the most recent is shown. Brighter colours               

(orange-yellow) in the connectivity maps indicate stronger connectivity strength (higher Pearson           
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r correlation). Maps are superimposed onto the anatomic International Consortium for Brain            

Mapping (ICBM) 152 template. Top left map is a DMN average of the MIST parcellation dataset.                

Top right map is a DMN average of all 13 sites from the Csub dataset. Abbreviations: CHUM,                 

Centre Hospitalier Universitaire de Sherbrooke; CHUS, Centre Hospitalier Universitaire de          

Sherbrooke; CINQ, Le Consortium d'Imagerie en Neurosciences et Santé Mentale de Québec;            

ISDM, Institut Universitaire en Santé Mentale Douglas; IUGM, Institut Universitaire de Gériatrie            

de Montréal; MNI, Montreal Neurological Institute; EDM, Peter S. Allen MR Research Centre ;             

SASK, Royal University Hospital; TWH, Toronto Western Hospital ; RRI, Robarts Research           

Institute ; SUN, Sunnybrook Health Sciences Center/Sunnybrook Research Institute ; VIC, West          

Coast Medical Imaging. 

3.2 Consistency of individual fMRI measures within/between sites 

The consistency of maps generated with rsfMRI data acquired on scanners from            

different vendors ranged from 0.57 ± 0.01 (limbic network) to 0.64 ± 0.01 (visual              

network), see Table 3. There was no substantial (or significant) effect of time between              

scanning sessions on consistency between maps. The estimated yearly rate of change            

in consistency (measured on a spatial correlation scale from -1 to 1) ranged from              

4.22e-4, p = 0.26 (limbic network) to -3.98e-3, p = 0.28 (visual network), see Table 3,                

Figure 2. 

There was a significant effect of vendors in two networks (cerebellar and            

frontoparietal), with trends (p<0.05 uncorrected) in three others (limbic, salience and           

visual), see Table 3 and Figure 3. This suggests that, for these networks, inter-site,              

intra-vendor consistency was significantly different from inter-site, inter-vendor        

consistency. The effect was driven by Siemens scanners, with markedly higher           

consistency in all seven networks (See Supplementary Material Table S2). 
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Intra-site consistency was also significantly higher than inter-site, inter-vendor         

consistency in two networks (cerebellar and visual), see Table 3, with trends (p<0.05             

uncorrected) in three others (frontoparietal, motor and salience). The intra-site effects           

on consistency were highly heterogeneous, with some sites showing very small effects            

(e.g. cerebellar network: CINQ, difference in consistency 0.0037, p=0.942), while others           

were markedly different (e.g. cerebellar network: MNI, difference in consistency 0.1536,           

p=0.002), see Supplementary Material Table S2. 

Network Average
Inter-site 

Inter-vendor 
consistency

Additional 
Intra-vendor 

effect

Additional 
Intra-site 

effect

Additional 
Effect 

of time

 mean p 
value 

F
value 

dof P
value 

F
value 

dof p 
value 

delta
corr/yr

p 
value 

CER 0.60 *<1e-15 7.41 265 *6.93
e-3 7.72 265 *5.85

e-3 
-7.87

e-4 
8.77 
e-1 

DMN 0.62 *<1e-15 2.75 265 9.82 
e-2 1.81 265 1.79 

e-1 
-1.24

e-3 
7.98 
e-1 

FPN 0.62 *<1e-15 9.92 265 *1.82
e-3 5.53 265 1.95 

e-2 
-2.81

e-3 
5.53 
e-1 

LIM 0.57 *<1e-15 6.65 265 1.04
e-2 2.63 265 1.08

e-1 
4.22
e-4 

2.61
e-1 

MOT 0.63 *<1e-15 1.60 265 2.07
e-1 4.55 265 3.38

e-2 
-3.34 

e-3 
4.86
e-1 

SAL 0.63 *<1e-15 5.73 265 1.74
e-2 5.82 265 1.66 

e-2 
-3.31 

e-3 
4.26
e-1 

VIS 0.64 *<1e-15 5.26 265 2.26
e-2 7.74 265 *5.80 

e-3 
-3.98 

e-3 
2.87
e-1 

Table 3: Consistency of rsfMRI connectivity measures 
(*) indicates family-wise error < 0.05 (Bonferroni corrected for multiple comparisons across            

networks, adjusted threshold p<0.0071). Abbreviations: Networks: CER, cerebellar; DMN,         

default mode; FPN, frontoparietal; LIM, limbic; MOT, motor; SAL, salience; VIS, visual. Sites:             

CHUM, Centre Hospitalier Universitaire de Sherbrooke; CHUS, Centre Hospitalier Universitaire          

de Sherbrooke; CINQ, Le Consortium d'Imagerie en Neurosciences et Santé Mentale de            

Québec; ISDM, Institut Universitaire en Santé Mentale Douglas; IUGM, Institut Universitaire de            

Gériatrie de Montréal; MNI, Montreal Neurological Institute .  
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Figure 2: Intra-site consistency over time 
Per network, the intra-site consistency (Pearson’s correlation r) over time (range: 0 to 917 days)               

for the six sites. Longitudinal data are presented as line plots on the left, and the average                 
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connectivity map is provided on the right. Brighter colours (orange-yellow) in the connectivity             

maps indicate stronger connectivity strength. Maps are superimposed onto the anatomic           

International Consortium for Brain Mapping (ICBM) 152 template and the SPM2_MNI aligned            

cerebellum surface (Van Essen et al. 2004). The average consistency across all networks are              

also shown. Abbreviations: Networks: CER, cerebellar; DMN, default mode; FPN, frontoparietal;           

LIM, limbic; MOT, motor; SAL, salience; VIS, visual. Sites: CHUM, Centre Hospitalier            

Universitaire de Sherbrooke; CHUS, Centre Hospitalier Universitaire de Sherbrooke; CINQ, Le           

Consortium d'Imagerie en Neurosciences et Santé Mentale de Québec; ISDM, Institut           

Universitaire en Santé Mentale Douglas; IUGM,Institut Universitaire de Gériatrie de Montréal;           

MNI, Montreal Neurological Institute. Note: Interactive graphs are provided in the “graphs”            

Jupyter notebook. 

 

 

Figure 3: Inter-site, intra-vendor and inter-vendor consistency over time 
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Per network, the intra- and inter-vendor consistency over time (ranging from 0 to 1240 days) for                

GE, Philips and Siemens are presented as scatter plots. Intra- and inter-vendor average             

consistency across all networks are also shown. Abbreviations: Networks: CER, cerebellar;           

DMN, default mode; FPN, frontoparietal; LIM, limbic; MOT, motor; SAL, salience; VIS, visual.             

Note: Interactive graphs are provided in the “graphs” Jupyter notebook. 

3.3 Consistency of fMRI measures within/between subjects 

We evaluated both intra- and inter-subject consistency in HNU1 subjects for all seven             

networks (Table 4 and Supplementary Material Figure S1).  

 HNU1 HNU1 Csub  Csub vs HNU1 

Network intra-subject  inter-subject intra-subject inter-subject 

CER 0.64 ± 0.10 0.42 ± 0.08 0.59 ± 0.09 0.37 ± 0.07 

DMN 0.73 ± 0.13 0.48 ± 0.10 0.56 ± 0.10 0.33 ± 0.07 
FPN 0.68 ± 0.12 0.39 ± 0.07 0.53 ± 0.11 0.26 ± 0.09 
LIM 0.60 ± 0.12 0.37 ± 0.09 0.53 ± 0.12 0.30 ± 0.07 
MOT 0.72 ± 0.10 0.50 ± 0.09 0.63 ± 0.10 0.43 ± 0.10 
SAL 0.73 ± 0.11 0.47 ± 0.08 0.57 ± 0.09 0.35 ± 0.07 
VIS 0.75 ± 0.10 0.56 ± 0.09 0.65 ± 0.09 0.48 ± 0.07 

  
Table 4: Consistency of intra-subject and inter-subject connectivity measures 

Abbreviations: Networks: CER, cerebellar; DMN, default mode; FPN, frontoparietal; LIM, limbic;           

MOT, motor; SAL, salience; VIS, visual. 

 

Average intra-subject consistency ranged from 0.60 ± 0.12 (limbic network) to 0.75 ±             

0.10 (visual network). Intra-subject consistency in HNU1 was higher than the average            

intra-Csub consistency across all networks (e.g. 0.73 ± 0.13 in HNU1 vs 0.56 ± 0.10 in                

Csub, for the DMN, all tests p <10^-15). Inter-subject consistency in HNU1 was lower             

than intra-subject consistency, both HNU1 and Csub (e.g. inter-subject of 0.48 ± 0.10 in              

HNU1, versus intra-subject of 0.73 ± 0.13 in HNU1 and intra-subject of 0.56 ± 0.10 in                
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Csub, for the DMN, all tests p <10^-15). The consistency between HNU1 participants            

and Csub was also lower than the consistency between HNU1 participants across all             

networks (e.g. inter-subject of 0.48 ± 0.10 in HNU1 vs 0.33 ± 0.0 for Csub vs HNU1, in                  

the DMN, all tests p<10^-15). Overall, the site effects present in Csub scans seemed to               

decrease both the intra- and inter-subject consistency, compared to monosite HNU1           

data. Yet, intra-subject Csub consistency remained higher than inter-subject HNU1          

consistency. 

3.4 Fingerprinting of HNU1 participants and Csub  

We ran a fingerprinting experiment by mixing 2 random scans of Csub with 2 random               

scans for each of the HNU1 participants, and using an unsupervised cluster analysis to              

determine whether the two scans of a subject would be clustered together. The highest              

fingerprinting accuracy was reached for the salience and frontoparietal networks, with           

about 90+% successful identification on median across subjects (Figure 4).  

 
Figure 4: Fingerprinting accuracy 
Distribution of the correct identification rate per network for the 26 HNU1 subjects. The red circle                

indicates the average identification accuracy of Csub per network. 
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Some networks reached lower median accuracy (~80%), but still much higher than            

chance level (1/27 subjects ~ 4%). For all networks, the accuracy observed for Csub              

was on the lower end of the normal range observed for HNU1 subjects. Overall, the               

observed decrease in intra-subject and inter-subject consistencies on Csub was small           

enough for fingerprinting Csub with resting-state maps at a high level of accuracy.  

4. DISCUSSION 

4.1 Consistency in rsfMRI connectivity measures within/between sites 

In the present study, we assessed the consistency of rsfMRI connectivity measures in a              

single participant, scanned at 13 CDIP-compliant sites. We report consistencies of 0.53            

± 0.11 (frontoparietal network) to 0.65 ± 0.09 (visual network) for connectivity maps             

generated from data obtained at different sites, scanner vendors and time points            

separated by a wide range of durations, from 0 to 1262 days apart. We found significant                

effects of scanner vendors and sites, although only one vendor (Siemens) and two sites              

were associated with substantial effects of higher consistency. The finding that Siemens            

scanners have more consistent maps than Philips scanners is in agreement with the             

report of An and colleagues (An et al. 2017). We did not replicate the excellent               

consistency of GE scanners, but we had only one inter-GE scanner comparison            

available in the Csub sample. Such inter-vendor differences in consistency may be due             

to factors such as scanner drift (Friedman and Glover 2006) and smoothness of the raw               

images produced (Friedman et al. 2006). Our observation that site effects were often             

very small is in line with the observation of Noble and colleagues (Noble et al. 2017).                
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This study found that, especially with short time series (less than 10 min), the              

physiological variability of resting-state measures dominates the scanner variations. Our          

report extends upon this analysis with longer longitudinal follow up (years instead of             

weeks), more sites (13 instead of 8), and more vendors (three instead of two). 

4.2 Consistency within/between subjects  

We found in the HNU1 data that the similarity of maps generated between different              

individuals is much lower (e.g. 0.48 ± 0.10 for DMN) than the similarity observed              

intra-subject (e.g. 0.73 ± 0.13 for DMN) in the same sample, as well as intra-subject in                

our Csub participant (e.g. 0.56 ± 0.10 for DMN). This last consistency value is an               

average across many scan sites, vendors, and inter-scan intervals and, consequently,           

the intra-subject Csub consistency was lower than in HNU1 (on average across            

subjects). The observation suggests that, even with multisite, long-term longitudinal          

data and relatively short scan duration (about 10 minutes for both Csub and HNU1), it               

may be possible to implement reliable “brain fingerprinting”. Potential feasibility of           

fingerprinting was also reinforced by the observation that comparisons between Csub           

and HNU1 participants were lower on average (e.g. 0.33 ± 0.07 for DMN) than              

inter-subject comparisons in HNU1 (e.g. 0.48 ± 0.10 for DMN).  

4.3 Fingerprinting 

We found that it was possible to fingerprint Csub using the connectivity map of a single                

network with a fairly high level of accuracy (>85%), when Csub scans were pooled with               

short-term longitudinal scans from 26 HNU1 participants. This level of accuracy was on             

the lower end, but within the range of the accuracy observed with HNU1 participants.              
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Note that, on average in the frontoparietal and salience networks, the accuracy of the              

fingerprinting was over 95% in HNU1. These accuracy levels are only slightly lower than              

those reported using a connectome-based approach (Finn et al. 2015).  

4.4 Study limitations 

The major drawback of our study was its inclusion of only a single, male participant.               

This limitation is due to feasibility constraints, namely the time span of the study              

(scheduled to last at least five years) and the number of sites involved (set to increase                

to over 30 sites across Canada and other countries as CDIP is being rolled out to                

various recruiting sites in supported studies such as the CCNA). We report here on the               

first wave of data, collected over the initial 3.5 years. In order to assess that this single                 

individual observation may be generalizable to other subjects, we confirmed that the            

intra-subject consistency we observed in Csub was close to what was observed on             

average in many HNU1 subjects (N=26) scanned 10 times over the course of one              

month at a single site. Our findings suggest that the consistency of connectivity maps              

remain of the same magnitude over several years, at least for a middle aged, healthy               

subject. However we also found that Csub was substantially less consistent with            

subjects from HNU1 than inter-subject consistency within HNU1. This observation may           

be due to the fact that HNU1 connectivity maps may be more similar because they were                

scanned at the same site. It also may reflect a difference in ethnicity between Csub               

(Caucasian) and HNU1 participants (a study based in China), and/or a systematic            

difference in age (Csub was older than HNU1 participants). These differences are a             
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limitation of the data sample available for this study, and may have contributed to inflate               

the results of the fingerprinting experiment.  

4.5 Alternate preprocessing 

We did not evaluate the effects of field-map distortion correction on the consistency of              

rsfMRI measures. Recently, Togo and colleagues (Togo et al. 2017) reported improved            

detection of rsfMRI connectivity following field-map distortion correction on a 240           

volume single-site dataset acquired on a 3T Siemens scanner. Connectivity was           

assessed with and without field-map distortion correction in several networks near the            

paranasal sinuses in the frontal lobe or the mastoid air cells and ear canals in the                

temporal lobe, brain regions most susceptible to distortion caused by magnetic field            

inhomogeneity (Jezzard and Balaban 1995). A significant increase in connectivity          

strength was shown in the default-mode network, a network demonstrating robust           

consistency in our study. However, only a modest improvement in detection of the             

cerebellar network was reported, a network with lower consistency in our study (Togo et              

al. 2017). Moreover, we did not evaluate the effects of physiological noise correction on              

consistency, since the effect of this correction on consistently measures lacks           

consensus (Marchitelli et al. 2016).  

5. CONCLUSIONS 

5.1 Precision medicine  

The larger intra-subject consistency (relative to inter-subject consistency) and accurate          

fingerprinting results in our study suggests that it is possible to extract multivariate             
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biomarkers of brain diseases from multisite harmonized data. This is consistent with            

with recent papers (Orban et al. 2017; Abraham et al. 2016) demonstrating that usage              

of retrospectively pooled multisite rsfMRI data to train machine learning models           

generalized better to subjects from new unseen sites, than models trained on single site              

data. In conclusion, our study supports the feasibility of using standardized rsfMRI            

derivatives for discovery of biomarkers of neurodegeneration, as planned in the CCNA.  
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7. SUPPLEMENTARY MATERIAL 

Provided are Table S1 referred to in Section 2.5 of the manuscript, and Table S2               

referred to in Section 3.2 of the manuscript. 

  

Network Total
volume

Volumes
scrubbed

Volumes
remaining 

% scrubbed % remaining 

CHUM1 297 4 293 1.35 98.65
CHUM2 297 42 255 14.14 85.86
CHUS1 297 8 289 2.69 97.31
CHUS2 297 91 206 30.64 69.36
CHUS3 297 34 263 11.45 88.55
CINQ1 297 86 211 28.96 71.04
CINQ2 297 118 179 39.73 60.27
CINQ3 297 41 256 13.80 86.20
UBC1 297 42 255 14.14 85.86
ISMD1 297 0 297 0 100
ISMD2 297 4 293 1.35 98.65
ISMD3 297 0 297 0 100
IUGM1 297 0 297 0 100
IUGM2 297 0 297 0 100
IUGM3 297 0 297 0 100
MNI1 296 0 296 0 100
MNI2 297 0 297 0 100
MNI3 297 0 297 0 100
EDM 297 0 297 0 100
SASK 247 18 229 7.29 92.71
TWH 247 0 247 0 100
RRI 247 0 247 0 100
SUN 275 0 275 0 100
VIC 247 12 235 4.86 95.14

 
Table S1: Time frames removed due to excessive motion. 
Time frames showing a displacement >0.5 mm were removed. Abbreviations: CHUM, Centre            

Hospitalier Universitaire de Sherbrooke; CHUS, Centre Hospitalier Universitaire de Sherbrooke;          

CINQ, Le Consortium d'Imagerie en Neurosciences et Santé Mentale de Québec; ISDM, Institut             

Universitaire en Santé Mentale Douglas; IUGM, Institut Universitaire de Gériatrie de Montréal;            
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MNI, Montreal Neurological Institute; EDM, Peter S. Allen MR Research Centre ; SASK, Royal             

University Hospital; TWH, Toronto Western Hospital ; RRI, Robarts Research Institute ; SUN,           

Sunnybrook Health Sciences Center/Sunnybrook Research Institute ; VIC, West Coast Medical          

Imaging. 

 

CER DMN FPN LIM MOT SAL VIS
CHUM 0.1210 *0.1822 0.1431 *0.1964 *0.1945 0.0955 *0.1949 
CHUS -0.0298 -0.0257 -0.0131 -0.0665 -0.0557 -0.0246 -0.0259 
CINQ 0.0037 -0.0087 0.0110 -0.0366 -0.0414 -0.0171 0.0218
ISMD *0.1036 -0.0193 -0.0148 0.0617 0.0587 *0.0912 0.0536
IUGM 0.0569 -0.0027 0.0817 0.0218 0.0519 0.0677 0.0400
MNI *0.1536 0.0641 *0.1085 0.0717 0.0887 0.0778 0.0169
GE 0.1412 0.0349 0.1470 0.0563 0.0011 0.0445 0.0099
Philips *0.0418 -0.0048 0.0096 0.0291 0.0134 *0.0458 0.0131
Siemens *0.0553 *0.1091 *0.0955 *0.1507 *0.0901 *0.0811 *0.1249 
 

Table S2: 
Effect of each individual vendor and site for each of the seven rsfMRI networks. * indicated                

p<0.05, uncorrected for multiple comparisons. 
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Figure S1: Intra- and inter-subject consistencies 

Intra- and inter-subject consistency for the 26 individuals in the HNU1 dataset are plotted per               

network. The average consistency across all networks are also provided. To visualize the effect              

of time on intra-subject consistency, we plotted the consistency between connectivity maps at             

scan session 0 with that at scan sessions 1 to 9 (e.g. subject s0025438: scan session 0 vs scan                   

session 1, subject s0025438: scan session 0 vs scan session 2). Per subject, the time interval                

between scan sessions was 3 days, with a total of 10 scans across one month. Abbreviations:                

CER, cerebellar network; DMN, default mode network; FPN, frontoparietal network; LIM, limbic            

network; MOT, motor network; SAL, salience network; VIS, visual network. Note: Interactive            

graphs are provided in the “graphs” Jupyter notebook. 
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