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Abstract 
Studies using resting-state functional magnetic resonance imaging (rsfMRI) are         
increasingly collecting data at multiple sites in order to speed up recruitment or increase              
sample size. The main objective of this study was to assess the long-term consistency              
of rsfMRI connectivity maps derived at multiple sites and vendors using the Canadian             
Dementia Imaging Protocol (CDIP, www.cdip-pcid.ca). Nine to ten minutes of functional           
BOLD images were acquired from an adult cognitively healthy volunteer scanned           
repeatedly at 13 Canadian sites on three scanner makes (General Electric, Philips and             
Siemens) over the course of 2.5 years. The consistency (spatial Pearson’s correlation)            
of rsfMRI connectivity maps for seven canonical networks ranged from about 0.4-0.8            
(intra-site) to 0.3-0.8 (inter-vendor), with a negligible effect of time. We noted systematic             
differences in data quality across vendors, which may also explain some of these             
results. We also pooled the long-term longitudinal data with a single-site, short-term (1             
month) data sample acquired on 26 subjects (10 scans per subject), called HNU1.             
Using randomly selected pairs of scans from each subject, we quantified the ability of a               
data-driven unsupervised cluster analysis to match two scans of the same subjects. In             
this “fingerprinting” experiment, we found that scans from the Canadian subject (Csub)            
could be matched with high accuracy intra-site (>95% for some networks), but that the              
accuracy decreased substantially for scans drawn from different sites and vendors,           
while still remaining in the range of accuracies observed in HNU1. Overall, our results              
demonstrate good multivariate stability of rsfMRI measures over several years, but           
substantial impact of scanning site and vendors. How detrimental these effects are will             
depend on the application, yet improving methods for harmonizing multisite analysis is            
an important area for future work. 
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HIGHLIGHTS 
 

● Consistency of rsfMRI connectivity over 2.5 years, 13 sites and 3 scanner vendors 
● Time elapsed between scans had negligible effect on consistency  
● Consistency decreased due to site and vendor differences  
● Accuracy of connectivity fingerprints decreased due to site and vendor differences 
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Graphical Abstract 
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1. INTRODUCTION 

Paradigm-free (“resting-state”) functional MRI (rsfMRI) can be used to detect spatially           

distributed functional connectivity networks in health and their alterations in disease           

(Badhwar et al., 2017; Matthews and Hampshire, 2016). Neuroimaging phenotypes,          

however, typically exhibit considerable heterogeneity between patients (Dong et al.,          

2017; Drysdale et al., 2017) and large datasets are needed to achieve sufficient             

statistical power for reliable detection (Button et al., 2013). Such large patient cohorts             

frequently surpass the recruitment capacity of single clinical centres. A number of            

initiatives have pooled multisite data on normal or patient cohorts, such as attention             

deficit hyperactivity disorder (Brown et al., 2012), autism spectrum disorder (Di Martino            

et al., 2017; Nielsen et al., 2013), diabetes (Saggar et al., 2017), depression (Drysdale              

et al., 2017) , schizophrenia (Cheng et al., 2015; Skåtun et al., 2017), Alzheimer’s             

disease (Alzheimer’s Disease Neuroimaging Initiative ), population imaging genetics        1

(UK Biobank ) and normal brain development (Adolescent Brain Cognitive Development          2

Study or ABCD ). However, it is still unclear to what degree the use of multiple scanners                3

introduces additional variance in neuroimaging measures, especially for studies that will           

collect data for several years. Here we report on the multisite fMRI protocol of a large                

multisite initiative, lead by the Canadian Consortium for Neurodegeneration in Aging           

(CCNA ), which is recruiting 1600 individuals on the spectrum of age-related dementias            4

1 http://adni.loni.usc.edu/about/ 
2 http://www.ukbiobank.ac.uk/ 
3 https://addictionresearch.nih.gov/abcd-study 
4 http://ccna-ccnv.ca/ 
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over the course of 4 plus years, as well as 660 cognitively normal individuals, at over 30                 

sites. The CCNA initiative relies on harmonized acquisition parameters set forth in the             

Canadian Dementia Imaging Protocol (CDIP ), implementing a series of site          5

qualification, quality control, and assurance procedures. 

The main objectives of the present study were to assess the inter-site and             

longitudinal consistency of rsfMRI measures derived from a single traveling Canadian           

subject (Csub) scanned repeatedly at several CCNA sites using CDIP. An additional            

objective was to assess whether the inter-site variance would interfere with a simple             

machine learning task. We concentrated on fingerprinting (Finn et al., 2015), i.e.            

identifying paired scans from the same subject in a large multisubject dataset. For this              

purpose, we pooled the Csub scans with a public dataset featuring multiple retest scans              

per individual. 

The impact of multisite acquisition on rsfMRI connectivity has recently gained           

attention in a series of studies. Using retrospective rsfMRI data, Yan and colleagues             

first demonstrated the existence of systematic variations in resting-state connectivity          

across 18 sites, by contrasting average connectivity patterns of independent groups           

composed of (mostly) young healthy subjects (Yan et al., 2013). Dansereau et al.             

further extended this analysis on a subset of eight sites with 3T scanners, showing that               

average group resting-state network maps could be consistently observed using          

parcel-based functional connectomes (Dansereau et al., 2017). The authors also          

5 www.cdip-pcid.ca 
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reported widespread site effects, present across all resting-state networks, with some           

sites associated with larger bias than others.  

One major limitation of both analyses (Dansereau et al., 2017; Yan et al., 2013)              

was the reliance on retrospective data, which was a mix of different acquisition             

parameters (e.g. voxel size, repetition time) as well as scanner make and field strength,              

all of which may exaggerate the amplitude of site differences. This limitation was             

addressed by Jovicich and colleagues (Jovicich et al., 2016), who investigated rsfMRI            

data collected across 13 sites using a harmonized acquisition protocol at 3T on three              

scanner platforms: Siemens Medical Systems (Siemens), Philips Healthcare (Philips)         

and General Electric Healthcare (GE). Even with a harmonized protocol, the authors            

observed significant differences across sites using cross-sectional human volunteer         

data comprised of independent groups of five participants scanned at each site. This             

result may partly reflect significant inter-site differences in temporal signal-to-noise ratio           

(tSNR) maps, observed both on geometric phantoms and volunteer data. This study            

also scanned each cohort twice over two weeks (median), and demonstrated that retest             

reliability of connectivity maps was comparable across sites for the major resting-state            

networks. 

A second limitation shared by the multisite rsfMRI studies reviewed thus far was             

that different participants were recruited at each site, thereby keeping open the            

possibility that site effects simply reflected differences in participant characteristics. Only           

a single cohort experiment can unambiguously capture inter-site differences, with the           

same individual(s) being scanned repeatedly at each site. Three recent studies           
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implemented such an approach. First, Noble and colleagues (Noble et al., 2017a)            

acquired rsfMRI data on eight participants in two scan sessions separated by 24 hours,              

and repeated this experiment at eight different sites (all 3T; Siemens and GE scanners)              

with the same participant cohort and a harmonized protocol. They found that inter-site             

differences in connectivity measures were substantially explained by the variability of           

individual within-site measures, especially for short (5 min) acquisition times (Noble et            

al., 2017a) . This conclusion applied to individual region-to-region connectivity, yet          

multivariate reliability measures from whole-brain connectivity maps were more reliable          

both within and across sites. In a second, independent study, An and colleagues (An et               

al., 2017) acquired rsfMRI data on 10 traveling participants in two sessions separated             

by 30 mins on three scanners, also using a harmonized protocol. Unlike Noble and              

colleagues, they collected data on Philips scanners in addition to Siemens and GE, but              

only had one scanner per vendor. Short-term reliability was shown to be better on GE,               

relative to Siemens and Philips scanners. Unlike Jovicich and colleagues (Jovicich et            

al., 2016) , the authors did not find differences in tSNR ratio across scanner vendors,              

and there was good reliability of whole brain connectivity maps between scanner            

vendors. Hawco and colleagues (Hawco et al., 2018) demonstrated that hierarchical           

clustering can reliably identify functional scans (7 min acquisition times) from four            

different participants imaged on different scanners across time. Specifically, the authors           

acquired rsfMRI data on four participants on five different scanners at three sites (all 3T;               

Siemens and GE scanners), with two subjects scanned long-term (nine scan sessions            

in 3 years) on one scanner. 

7 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2019. ; https://doi.org/10.1101/497743doi: bioRxiv preprint 

https://paperpile.com/c/YOm55R/PPPAf
https://paperpile.com/c/YOm55R/PPPAf
https://paperpile.com/c/YOm55R/PPPAf
https://paperpile.com/c/YOm55R/pSavD
https://paperpile.com/c/YOm55R/pSavD
https://paperpile.com/c/YOm55R/VT0SV
https://paperpile.com/c/YOm55R/VT0SV
https://paperpile.com/c/YOm55R/sTXB
https://doi.org/10.1101/497743
http://creativecommons.org/licenses/by-nc-nd/4.0/


CDIP rsfMRI manuscript Badhwar et al. 

A major question left open in the literature is how multisite (>10 sites)              

acquisitions impact rsfMRI over the long periods of time (years) needed to complete             

enrolment in large studies such as CCNA. To address this question, we wanted to move               

beyond traditional measures of consistency for repeated measures (such as intra-class           

correlation (Fleiss and Cohen, 1973)) because fMRI connectivity maps are high           

dimensional, multivariate measures, and their primary use case in many instances (e.g.            

CCNA), will be to serve as features for machine learning prognostic models. Categorical             

guidelines for interpretation of consistency measures may not translate well in this            

multivariate predictive context (Cicchetti and Sparrow, 1981; Koo and Li, 2016).           

Moreover, since functional connectivity maps can act as a ‘fingerprint’ for accurately            

identifying subjects within a large group (Finn et al., 2015), we selected the accuracy of               

fingerprinting as a benchmark to assess the consistency of longitudinal fMRI scans. The             

specific aims and hypotheses of this study were as follows:  

a) Evaluate the effect of scanning site, scanner vendor and time elapsed between            

scans (up to 2.5 years) on the consistency of connectivity maps. Based on the              

previous literature reviewed above, we hypothesized moderate vendor and site          

effects. We also hypothesized only a small effect of time: although age effects             

are detectable in adults, 2 years remain within the error margin of age prediction              

based on fMRI connectivity (Li et al., 2018) . 

b) Contrast intra-subject consistency of connectivity maps in a multisite, longitudinal          

data against intra-subject and inter-subject consistency for a short-term, single          

site data. Our hypothesis was that site effects would reduce intra-subject           
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consistency (inter-site), but that it would remain higher than inter-subject          

consistency (intra-site). The rationale for this hypothesis is that the inter-subject           

differences in brain connectivity are large compared to longitudinal intra-subject          

differences (Gratton et al., 2018) . 

c) Evaluate whether the identity of a subject can be reliably identified in the context              

of multisite, long-term longitudinal data, when pooled with within-site, short-term          

longitudinal data (fingerprint experiment). In the absence of prior literature, we           

did not have a specific hypothesis for this aim. 

We implemented three experiments to address these aims. We first tested the effect of              

(a) time, vendor and site, as well as (b) time, vendor, site, tSNR, frame displacement               

after scrubbing, and volumes remaining after scrubbing using a linear regression           

analysis of network connectivity maps generated from fMRI data collected on Csub,            

scanned over 2.5 years at 13 sites using CDIP implemented on one of 3 scanner               

vendors (results Sections 3.1, 3.2, 3.3 and Supplementary Material, aim a). We then             

compared the intra-subject consistency in the Csub data with both intra-subject and            

inter-subject consistency in a public sample released as part of the Consortium On             6

Resting-state Reproducibility (CORR) (Zuo et al., 2014) and comprised of 30 healthy            

adults scanned 10 times each over one month (Section 3.4, aim b). Finally, we              

performed a fingerprinting experiment using scans from the pooled dataset (Section 3.5,            

aim c), i.e. attempting to match the identity of participants based on pairs of              

resting-state connectivity maps. 

6 http://fcon_1000.projects.nitrc.org/indi/CoRR/html/hnu_1.html 
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2. METHODS 

2.1 Canadian subject dataset (Csub) 

All brain imaging data were acquired from a volunteer Csub: a healthy male with no               

history of (a) psychiatric and/or neurological illnesses; (b) psychoactive drug usage; or            

(c) contraindications to MRI. Csub was 42 years old at the start of data collection               

(2014). In total, the participant underwent 25 scanning sessions at 13 CCNA imaging             

sites; using scanners from three manufacturers (Philips, Siemens and GE), see Table 1. 

Center Abbr. Scanner Vendor 2014 2015 2016 2017
Centre Hospitalier de l'Université de 
Montréal CHUM Philips, Achieva x x 

Centre Hospitalier Universitaire de 
Sherbrooke CHUS Philips, Ingenia x x x 

Le Consortium d'Imagerie en 
Neurosciences et Santé Mentale de 
Québec 

CINQ Philips, Achieva x x x 

University of British Columbia UBC Philips, Intera x 
Institut Universitaire en Santé Mentale 
Douglas ISMD Siemens, Magnetom 

TIM Trio x x x 

Institut Universitaire de Gériatrie de 
Montréal, Montréal IUGM Siemens, Magnetom 

TIM Trio x x x 

Montreal Neurological Institute MNI Siemens, Magnetom 
TIM Trio x xx x 

Peter S. Allen MR Research Centre EDM Siemens, Prisma x 
Robarts Research Institute RRI Siemens, Prisma x 
Royal University Hospital SASK Siemens, Skyra x 
Sunnybrook Health Sciences 
Center/Sunnybrook Research Institute SUN Siemens, Prisma x 

Toronto Western Hospital TWH GE, HDxt x 
West Coast Medical Imaging VIC GE, SIGNA Pioneer x 
 
Table 1: Demographics  

The letter “x” in columns 2014-2017 indicate acquisition of rsfMRI and structural scans at the               

corresponding year. 
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The data was acquired as part of an ongoing effort to monitor the quality and               

comparability of MRI data collected across the CCNA imaging network. The schedule of             

visits did not follow a strict design, with an approximate goal of one visit a year, starting                 

at site qualification. Informed consent was obtained from the subject for the overall             

study and before every scan session. Due to the multisite nature of the study, ethics               

approval was obtained from the institutional review board of each participating institution            

prior to scanning. 

Anatomical scans included 3D isotropic T1-weighted (T1w) imaging for assessing          

fine anatomical detail with high resolution (voxel size = 1.0 x 1.0 x 1.0 mm 3) and                

acceleration factor of 2 (Siemens: MP-RAGE; GE: FSPGR; Philips: T1-TFE). Functional           

T2*-weighted images were obtained using a blood-oxygen-level-dependent (BOLD)        

sensitive single-shot echo-planar (EPI) sequence. Additional scan parameters are         

provided in Table 2. During the rsfMRI acquisitions, no specific cognitive tasks were             

performed, and the participant was instructed to keep his eyes open. No camera or              

physiological recordings were captured, as these equipments were not available at           

every site. It should be noted that we excluded the second MNI 2015 intra-session scan               

(Table 1) from our study, since it was the only intra-session scan acquired. Thereby,              

data from the remaining 24 scans was used in the study. 

Bold EPI 
Site Field

Strength 
Voxel
Size

FA Matrix
size 

TE TR Volumes Scan 
Time

Slice Order 

 T mm3 ° ms ms # min:s  
CHUM 3.0 3.5 iso 70 64x64 30 2110 300 10:33sequential ascending 
CHUS 3.0 3.5 iso 70 64x64 30 2110 300 10:33sequential ascending 
CINQ 3.0 3.5 iso 70 64x64 30 2110 300 10:33sequential ascending 
UBC 3.0 3.5 iso 70 64x64 30 2110 300 10:33interleaved ascending 
ISMD 3.0 3.5 iso 70 64x64 30 2110 300 10:33sequential descending 
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IUGM 3.0 3.5 iso 70 64x64 30 2110 300 10:33interleaved ascending 
MNI 3.0 3.5 iso 70 64x64 30 2110 299-300 10:33interleaved ascending 
EDM 3.0 3.5 iso 70 64x64 30 2130 300 10:39interleaved ascending 
RRI 3.0 3.5 iso 70 64x64 30 2130 250 8:53interleaved ascending 
SASK 3.0 3.5 iso 70 64x64 30 2140 250 8:55sequential descending 
SUN 3.0 3.5 iso 70 64x64 30 2130 250 8:53interleaved ascending 
TWH 3.0 3.5 iso 70 64x64 30 2130 278 9:52interleaved ascending 
VIC 3.0 3.5 iso 70 64x64 30 2500 250 10:25interleaved ascending 
HNU1 3.0 3.4 iso 90 64x64 30 2000 300 10:00interleaved ascending 

 
Table 2: Scan parameters  

rsfMRI BOLD EPI scan parameters: Abbreviations: FA, flip angle; ms, millisecond; min:s,            

minutes and seconds; TE, echo time; TR, repetition time; iso, isometric; T, Tesla; Sites: Full               

definitions of all the sites have been provided in Table 1. 

2.2 Hangzhou Normal University dataset (HNU1) 

The HNU1 dataset includes 30 healthy adults 20-30 years of age (mean age 24.4              7

years), each receiving 10 scans across one month (one scan every three days) on a               

single 3T GE Discovery MR750 scanner (Zuo et al., 2014). Anatomical scans included             

3D isotropic T1w imaging (voxel size = 1.0 x 1.0 x 1.0 mm 3 and acceleration factor of 2).                  

Functional T2*-weighted images were obtained using a 10 min BOLD-sensitive          

single-shot EPI sequence . Additional scan parameters are provided in Table 2. During            8

rsfMRI scanning, subjects were presented with a fixation cross and were instructed to             

keep their eyes open, relax and move as little as possible while observing the fixation               

cross. Subjects were also instructed not to engage in breath counting or meditation. 

7 http://fcon_1000.projects.nitrc.org/indi/CoRR/html/hnu_1.html 
8 http://fcon_1000.projects.nitrc.org/indi/CoRR/html/_static/scan_parameters/HNU_1_scantable.pdf 
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2.3 Computational environment 

The datasets were preprocessed and analyzed using the NeuroImaging Analysis Kit,           

version 1.1.3 (NIAK-COG , (Bellec et al., 2011)), executed within an Ubuntu 16.0.4            9

Singularity container , running GNU Octave version 4.2.1, and the MINC toolkit            10 11 12

version 1.9.15. We also used four Jupyter notebooks that can be executed online via              

the binder platform , and run in a docker container built from a public configuration              13 14

file. Python packages used in the Jupyter notebooks include Numpy (Oliphant, 2006),            

Pandas (McKinney and Others, 2010), Matplotlib (Hunter, 2007), Scikit-learn         

(Pedregosa et al., 2011), SciPy (Jones et al., 2016), Seaborn and StatsModel            15

(Seabold and Perktold, 2010). Interactive plots were generated using Plotly . 16

2.4 Pre-processing of MRI data  

With the exception of the T1w scan from UBC, which failed quality control, we averaged               

all T1w scans ( n=23) from Csub, following iterative alignment using rigid-body           

registration. Initially, a brain mask was extracted from a single arbitrary T1w scan             

(CHUM 2014) using the CIVET pipeline (Ad-Dab’bagh et al., 2006). Remaining T1w            

scans were then aligned to this reference scan, followed by an averaging of the aligned               

T1w scans. The averaged image served as the reference scan for the second iteration              

9 https://hub.docker.com/r/simexp/niak-cog/ 
10 https://github.com/SIMEXP/niak/releases/download/v1.1.3/niak_singularity.tgz 
11 http://www.gnu.org/software/octave/ 
12 http://www.bic.mni.mcgill.ca/ServicesSoftware/ServicesSoft-wareMincToolKit 
13 http://mybinder.org 
14 https://mybinder.org/v2/gh/SIMEXP/cdip_human_phantom/master 
15 https://zenodo.org/record/1313201#.XAGdbVZK 
16 https://plot.ly/ 

13 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2019. ; https://doi.org/10.1101/497743doi: bioRxiv preprint 

https://paperpile.com/c/YOm55R/pi1TN
https://paperpile.com/c/YOm55R/I2vaR
https://paperpile.com/c/YOm55R/6oh4W
https://paperpile.com/c/YOm55R/5ch7N
https://paperpile.com/c/YOm55R/USouR
https://paperpile.com/c/YOm55R/nDT4S
https://paperpile.com/c/YOm55R/54Ila
https://paperpile.com/c/YOm55R/z4QdM
https://hub.docker.com/r/simexp/niak-cog/
http://www.gnu.org/software/octave/
http://www.bic.mni.mcgill.ca/ServicesSoftware/ServicesSoft-wareMincToolKit
https://doi.org/10.1101/497743
http://creativecommons.org/licenses/by-nc-nd/4.0/


CDIP rsfMRI manuscript Badhwar et al. 

of alignment and averaging. We performed three such iterations to obtain our final T1w              

average. 

Data from each fMRI scan was corrected for slice timing by linear temporal             

interpolation. The first three volumes of each fMRI run were discarded to allow the              

magnetization to reach steady-state. Rigid-body motion was estimated for each time           

frame, intra-run and inter-run, using CHUM 2014 as an arbitrary reference. Each            

session was comprised of one fMRI run (see Table 1). 

The rigid-body, fMRI-to-T1w and T1w-to-stereotaxic transformations were all        

combined and used to transform the fMRI images into MNI space at a 3 mm isotropic                

sampling. The following nuisance covariates were regressed out from the fMRI time            

series: slow time drifts (basis of discrete cosines with a 0.01 Hz high-pass cut-off),              

average signals in conservative masks of the white matter and the lateral ventricles, as              

well as the first principal components (accounting for 95% variance) of the six rigid-body              

motion parameters and their squares (Giove et al., 2009). The fMRI volumes were             

finally spatially smoothed with a 6 mm isotropic Gaussian blurring kernel. A more             

detailed description of the preprocessing pipeline can be found on the NIAK website . 17

The HNU1 dataset was preprocessed using the NIAK pipeline (Bellec et al.,            

2011), using the first available structural scan as reference for alignment in stereotaxic             

space. Four individuals demonstrated subpar alignment of the brain around the           

meninges. These individuals were excluded from the dataset, and all additional           

analyses were carried out on the remaining 26 individuals. 

17 http://niak.simexp-lab.org/pipe_preprocessing.html 
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2.4 Quality control 

To minimize artifacts due to excessive motion (Van Dijk et al., 2012), all time frames               

showing a displacement > 0.5 mm were removed (Power et al., 2012). No scan was               

excluded due to excessive motion. The number of censored volumes ranged from 0 to              

118 time frames, with number of volumes remaining after censoring/scrubbing (n_vols)           

for generation of connectivity map, ranging from 179 to 297 (std: ±35 volumes, or ±72               

seconds taking TR into account). We considered n_vols to be a measure of total              

available low-motion scan time, a variable known to impact the consistency of            

connectivity maps (Gordon et al., 2017; Laumann et al., 2015). Frame displacement            

(FD, scrubbed) values ranged from 0.08 to 0.25. FD is a measure that indexes the               

movement of the head from one volume to the next. Temporal signal-to-noise ratio             

(tSNR, raw) values ranged from 58.4 to 108.8. tSNR is an important metric for              

sensitivity in a given fMRI acquisition protocol and can modulate image intensity over             

time. Variability in tSNR values are due to both thermal image noise and physiological              

fluctuations. 

Since head motion, scan time, and tSNR are all well known sources of variability,              

we assessed their relationship with time and scanner vendors. A series of explanatory             

variables were assembled for a general linear model (GLM) analysis: (1) time between             

scans, expressed in years and corrected to a zero mean; (2) dummy variables encoding              

scanner vendors (three covariates: Philips, Siemens minus Philips, and GE minus           

Philips). A linear mixture of the explanatory variables were adjusted using FD, n_vols             

and tSNR as dependent variables, separately. We adjusted the significance level of p             
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values for multiple comparisons across networks using a Bonferroni correction          

(family-wise error 0.05, 3 tests, significance threshold p <0.05/3, i.e. 0.02). Interpretation            

of the effect size of FD, n_vols, or tSNR is as follows: the unit of the association is                  

change in consistency (measured by a spatial correlation between maps <= 1) per             

standard deviation of the specific variable within our sample. 

2.5 Connectivity maps  

Using NIAK’s connectome pipeline , for each rsfMRI scan (from both Csub and HNU1             18

datasets), we computed voxel-wise connectivity maps associated with each of the           

seven network templates extracted from a group-level functional brain atlas. Image           

distortion and signal loss related to magnetic susceptibility artefacts disproportionately          

impact the frontal cortex, in particular ventrally, as well as temporal cortices, in particular              

ventromedially. Because of this factor, and possibly other causes, the major brain            

networks outlined by Yeo-Krienen (Yeo et al., 2011) and others vary substantially by             

their reliability (Noble et al., 2017b), and their association with disease (Seeley et al.,              

2009). The networks we used came from the Multiresolution Intrinsic Segmentation           

Template ( MIST) parcellation, which overlaps substantially at this resolution with the           

Yeo-Krienen atlas (Urchs et al., 2017). The MIST atlas was generated from 200 healthy              

subjects and consists of nine functional parcellations capturing successively finer levels           

of spatial detail, of which we used parcellations from resolution seven, consisting of             

seven commonly used large-scale networks: cerebellar (CER), default-mode (DMN),         

frontoparietal (FPN), limbic (LIM), motor (MOT), salience (SAL), and visual (VIS). A            

18 http://niak.simexp-lab.org/pipe_connectome.html 
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network connectivity map was obtained per network by computing the Pearson's           

correlations between the average time course within the network template and the time             

course of every voxel in the brain.  

2.6 Consistency of individual rsfMRI measures within/between sites 

For each of the seven rsfMRI networks, a scan by scan similarity (Pearson's correlation)              

matrix was generated to summarize the consistency of connectivity maps across the 24             

scans in the Csub dataset. A series of explanatory variables were assembled for a              

general linear model (GLM) analysis: (1) time between scans, expressed in years and             

corrected to a zero mean; (2) dummy variables encoding intra-vendor comparisons           

(three covariates: GE, Siemens and Philips); (3) dummy variables encoding intra-site           

comparisons (six covariates: CHUM, CHUS, CINQ, ISDM, IUGM, MNI; the other sites            

did not have multiple retest data available). An intercept was also added to the model,               

which, in combination with the other covariates of the model, captured the average             

consistency for comparisons across sites from different vendors. A linear mixture of the             

explanatory variables were adjusted on the inter-scan consistency measures         

(dependent variable) using ordinary least squares, for each network separately. For           

each network, we tested the significance of the effect of inter-vendor (t-test),            

intra-vendor ( F test testing the combined effect of the three intra-vendor covariates),            

intra-site ( F test testing the combined effect of the six intra-site covariates) and time              

( t-test). We adjusted the significance level of p values for multiple comparisons across             

networks using a Bonferroni correction (family-wise error 0.05, 7 networks x 3 tests =              

21 total tests; significance threshold p <0.05/21, i.e. 0.002). We also examined the             
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effects of each individual variable to assess which vendors and sites drove the             

significance of tests. 

We also performed a second analysis that included the initial explanatory           

variables plus three additional variables: FD as a metric of head motion; n_vols as a               

metric of total available low-motion scan time; and tSNR as a metric of fMRI data               

quality. We tested the impact of these additional variables using t-tests, and adjusted             

the significance level of p values for multiple comparisons across networks using a             

Bonferroni correction (family-wise error 0.05, 7 networks x 6 tests = 42 total tests;              

significance threshold p <0.05/42, i.e.  0.001). 

2.7 Consistency of rsfMRI measures within/between subjects 

For each HNU1 subject and each network, we computed the average (and standard             

deviation) for the intra-subject consistency for all pairs with the 10 available scans. We              

also computed the average inter-subject consistency across all scans from different           

subjects, both within HNU1, and between HNU1 and Csub. To further statistically            

compare these consistency values, we implemented a single GLM analysis, in which            

the dependent variable was the measures of inter-scan consistency, and the           

explanatory variables included a series of dummy variables encoding separately the           

intra-subject comparisons (Csub and 26 HNU1 subjects), one dummy variable encoding           

comparisons between Csub and HNU1 subjects, and one dummy variable encoding           

inter-subject comparisons in HNU1. A series of t-test were derived from the following             

contrasts: intra-subject in Csub vs intra-subject in HNU1, intra-subject in Csub vs            
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inter-subject in HNU1, inter-subject Csub/HNU1 vs inter-subject HNU1, and         

intra-subject HNU1 vs inter-subject HNU1.  

2.8 Fingerprinting of HNU1 participants and Csub 

We assessed the ability of a simple data-driven cluster analysis to recover the identity of               

subjects based on connectivity maps of a single network, mixing the Csub single subject              

with the HNU1 subjects. A fingerprinting experiment consisted of the following steps: (i)             

for each subject, randomly select two scans out of all available scans (at least 10); (ii)                

assemble an inter-scan similarity matrix, using only the selected scans for all subjects;             

(iii) apply a hierarchical clustering on this similarity matrix (Ward’s criterion); (iv) group             

the scans into as many clusters as there are subjects, based on the hierarchy; (v) for                

each subject, the fingerprinting experiment is considered successful if the two scans of             

this subject constitute a cluster. 

The fingerprinting procedure was repeated B =10000 times using random scan          

selections, and independently for each network. The average accuracy of fingerprinting           

for a given subject and network was derived as the proportion of successful             

fingerprinting repetitions. In addition, we ran three different types of experiments. First,            

the pair of scans for Csub were drawn from the same site (intra-site fingerprinting              

experiment), second, the pair of scans for Csub were drawn from different sites, but the               

same vendor (intra-vendor fingerprinting experiment), and third, the pair of scans for            

Csub were drawn from different sites and different vendors (inter-vendor fingerprinting           

experiment).  
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2.9 Data Records 

Scripts used in this study are available on Github , as well as archived on zenodo .                19 20

The four Jupyter notebooks used in this study (graphs, stats_repro,          

stats_tsnr_time_motion and stats_fingerprinting) can be executed online via the binder          

platform . We have also made available on Github and zenodo two interactive            21

dashboards containing (1) connectivity maps used to assess long-term consistency in           

Csub rsfMRI measures, and (2) connectivity maps from Csub and HNU1 datasets.            

Provided in each dashboard is the individual connectivity map per network, the average             

connectivity map per network, and the MIST parcellation at scale 7.  

3. RESULTS 

3.1. Relationship of head motion, scan-time and tSNR with time and           

scanner vendors 

There was no significant (p<0.02) impact of time on either FD (scrubbed), n_vols or              

tSNR (Table 3). 

 Relationship with
FD

Relationship with
n_vols 

Relationship with
tSNR 

 coef std err p value coef std err p value coef std err p value 
Philips 1.1398 0.186 *0.000 -0.6790 0.292 0.031 0.7339 0.309 0.028 
time 0.2195 0.106 0.052 -0.1404 0.167 0.411 0.1359 0.177 0.451 
Siemens 
minus Philips 

-1.8427 0.240 *0.000 1.2311 0.377 *0.004 -1.1898 0.398 *0.007 

GE 
minus Philips -1.7000 0.473 *0.002 0.1456 0.744 0.847 -1.0733 0.787 0.188

 

19 https://github.com/SIMEXP/cdip_human_phantom 
20 https://doi.org/10.5281/zenodo.3350885 
21 https://mybinder.org/v2/gh/SIMEXP/cdip_human_phantom/master 
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Table 3: Relationship of head motion, scan time, and tSNR with time and scanner              
vendors. (*) indicates family-wise error < 0.05 (Bonferroni corrected for multiple comparisons,            
adjusted threshold p <0.02). 
 
There was however significant (p<0.02) differences in average FD between all three            

scanner vendors (Table 3). Philips and Siemens demonstrated a significant difference in            

average n_vols and tSNR (Table 3). Specifically, Philips scans had higher motion levels             

than Siemens scans, which resulted in lower number of volumes after scrubbing. Philips             

scans also had higher tSNR than Siemens scans. 

3.2 Connectivity maps  

The key regions of all 7 networks were clearly identifiable at every session, as illustrated               

for DMN connectivity (Figure 1). Random fluctuations were also apparent, sometimes           

with strong shifts in global connectivity values (see for example IUGM vs EDM in Figure               

1) . 
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Figure 1: Default-mode network connectivity. The connectivity map for the DMN of each site              

is included. For sites with multiple sessions, only the most recent is shown. Brighter colours               

(orange-yellow) in the connectivity maps indicate stronger connectivity strength (higher Pearson           

r correlation). Maps are superimposed onto the anatomic International Consortium for Brain            
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Mapping (ICBM) 152 template. Top left map is a DMN average of the MIST parcellation dataset.                

Top right map is a DMN average of all 13 sites from the Csub dataset. Full names of all the sites                     

have been provided in Table 1. 

 

We then quantified the consistency of rsfMRI maps generated at different sessions            

using the Pearson’s correlation coefficient as a measure of spatial similarity. We            

selected this measure as it is invariant to the shifts in mean and variance we noted                

above 

3.3 Consistency of individual fMRI measures within/between sites 

The consistency of maps generated with rsfMRI data acquired on scanners from            

different vendors ranged from 0.57 ± 0.01 (limbic network) to 0.64 ± 0.01 (visual              

network), see Table 4. There was no substantial (or significant) effect of time between              

scanning sessions on consistency between maps. The estimated yearly rate of change            

in consistency (measured on a spatial correlation scale from -1 to 1) ranged from              

4.22e-4, p = 0.26 (limbic network) to -3.98e-3, p = 0.28 (visual network), see Table 4,                

Figure 2. 

There was a significant effect of vendors in one network (frontoparietal), with            

trends (p<0.05 uncorrected) in four others (cerebellar, limbic, salience and visual), see            

Table 4 and Figure 3. This suggests that, for this network, inter-site, intra-vendor             

consistency was significantly different from inter-site, inter-vendor consistency. The         

effect was driven by Siemens scanners, with markedly higher consistency in all seven             

networks (see Supplementary Material Table S1). 
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Intra-site consistency was not significantly higher than inter-site, inter-vendor         

consistency in any of the seven networks, see Table 4, though trends (p<0.05             

uncorrected) were observed in five networks (cerebellar, frontoparietal, motor, salience          

and visual). The intra-site effects on consistency were highly heterogeneous, with some            

sites showing very small effects (e.g. cerebellar network: CINQ, difference in           

consistency 0.0037, p=0.942), while others were markedly different (e.g. cerebellar          

network: MNI, difference in consistency 0.1536, p=0.002), see Supplementary Material          

Table S1. 

Network Average
Inter-site 

Inter-vendor 
consistency

Additional 
Intra-vendor 

effect

Additional 
Intra-site 

effect

Additional 
effect

of time

 mean p 
value 

F
value 

dof P
value 

F
value 

dof p 
value 

delta
corr/yr

p 
value 

CER 0.60 *<1e-15 7.41 265 6.93 
e-3 7.72 265 5.85 

e-3 
-7.87

e-4 
8.77 
e-1 

DMN 0.62 *<1e-15 2.75 265 9.82 
e-2 1.81 265 1.79 

e-1 
-1.24

e-3 
7.98 
e-1 

FPN 0.62 *<1e-15 9.92 265 *1.82
e-3 5.53 265 1.95 

e-2 
-2.81

e-3 
5.44 
e-1 

LIM 0.57 *<1e-15 6.65 265 1.04
e-2 2.61 265 1.08

e-1 
4.22
e-4 

9.36
e-1 

MOT 0.63 *<1e-15 1.60 265 2.07
e-1 4.55 265 3.38

e-2 
-3.34 

e-3 
4.86
e-1 

SAL 0.63 *<1e-15 5.73 265 1.74
e-2 5.82 265 1.66 

e-2 
-3.31 

e-3 
4.26
e-1 

VIS 0.64 *<1e-15 5.26 265 2.26
e-2 7.74 265 5.80

e-3 
-3.98 

e-3 
2.87
e-1 

Table 4: Effect of vendor, site and time on consistency of rsfMRI connectivity measures 
(*) indicates family-wise error < 0.05 (Bonferroni corrected for multiple comparisons across            

networks, adjusted threshold p<0.002). Abbreviations: Networks: CER, cerebellar; DMN, default          

mode; FPN, frontoparietal; LIM, limbic; MOT, motor; SAL, salience; VIS, visual. 
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Figure 2: Intra-site consistency over time 
Per network, the intra-site consistency (Pearson’s correlation r) over time (range: 0 to 917 days)               

for the six sites. Longitudinal data are presented as line plots on the left, and the average                 
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connectivity map is provided on the right. Brighter colours (orange-yellow) in the connectivity             

maps indicate stronger connectivity strength. Maps are superimposed onto the anatomic           

International Consortium for Brain Mapping (ICBM) 152 template and the SPM2_MNI aligned            

cerebellum surface (Van Essen et al. 2004). The average consistency across all networks are              

also shown. Abbreviations: Networks: CER, cerebellar; DMN, default mode; FPN, frontoparietal;           

LIM, limbic; MOT, motor; SAL, salience; VIS, visual. Sites: Full names of all the sites have been                 

provided in Table 1 . Note: Interactive graphs are provided in the “graphs” Jupyter notebook. 

 

 

Figure 3: Intra-vendor and inter-vendor consistency over time 
Per network, the intra- and inter-vendor consistency over time (ranging from 0 to 1240 days) for                

GE, Philips and Siemens are presented as scatter plots. Intra- and inter-vendor average             

consistency across all networks are also shown. Abbreviations: Networks: CER, cerebellar;           

DMN, default mode; FPN, frontoparietal; LIM, limbic; MOT, motor; SAL, salience; VIS, visual.             

Note: Interactive graphs are provided in the “graphs” Jupyter notebook. 
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The second consistency analysis that also included tSNR, FD and n_vols as dummy             

variables was more challenging to interpret since the three variables are related to the              

inter-vendor variables. Therefore, the additional impact of inter-vendor effects on          

consistency was now distributed over these three variables (See Supplementary          

Material Tables S2 and S3). 

3.4 Consistency of fMRI measures within/between subjects 

We evaluated both intra- and inter-subject consistency in HNU1 subjects for all seven             

networks (Table 5 and Supplementary Material Figure S1).  

 HNU1 HNU1 Csub  Csub vs HNU1 

Network intra-subject  inter-subject intra-subject inter-subject 

CER 0.64 ± 0.10 0.42 ± 0.08 0.59 ± 0.09 0.37 ± 0.07 

DMN 0.73 ± 0.13 0.48 ± 0.10 0.56 ± 0.10 0.33 ± 0.07 
FPN 0.68 ± 0.12 0.39 ± 0.09 0.53 ± 0.11 0.26 ± 0.09 
LIM 0.60 ± 0.12 0.37 ± 0.09 0.53 ± 0.12 0.30 ± 0.07 
MOT 0.72 ± 0.10 0.50 ± 0.09 0.63 ± 0.10 0.43 ± 0.10 
SAL 0.73 ± 0.11 0.47 ± 0.08 0.57 ± 0.09 0.35 ± 0.07 
VIS 0.75 ± 0.10 0.56 ± 0.09 0.65 ± 0.09 0.48 ± 0.07 

  
Table 5: Consistency of intra-subject and inter-subject connectivity measures 

Abbreviations: Networks: CER, cerebellar; DMN, default mode; FPN, frontoparietal; LIM, limbic;           

MOT, motor; SAL, salience; VIS, visual. 

 

Average intra-subject consistency ranged from 0.60 ± 0.12 (limbic network) to 0.75 ±             

0.10 (visual network). Intra-subject consistency in HNU1 was higher than the average            

intra-Csub consistency across all networks (e.g. 0.73 ± 0.13 in HNU1 vs 0.56 ± 0.10 in                

Csub, for the DMN, all tests p <10^-15). Inter-subject consistency in HNU1 was lower             

than intra-subject consistency, both HNU1 and Csub (e.g. inter-subject of 0.48 ± 0.10 in              
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HNU1, versus intra-subject of 0.73 ± 0.13 in HNU1 and intra-subject of 0.56 ± 0.10 in                

Csub, for the DMN, all tests p <10^-15). The consistency between HNU1 participants            

and Csub was also lower than the consistency between HNU1 participants across all             

networks (e.g. inter-subject of 0.48 ± 0.10 in HNU1 vs 0.33 ± 0.0 for Csub vs HNU1, in                  

the DMN, all tests p<10^-15). Overall, the site effects present in Csub scans seemed to               

decrease both the intra- and inter-subject consistency, compared to monosite HNU1           

data. Yet, intra-subject Csub consistency remained higher than inter-subject HNU1          

consistency. 

3.5 Fingerprinting of HNU1 participants and Csub  

We ran fingerprinting experiments by mixing 2 random scans of Csub with 2 random              

scans for each of the HNU1 participants, and using an unsupervised cluster analysis to              

determine whether the two scans of a subject would be clustered together. Experiments             

were replicated using pairs of scan selected either intra-site, intra-vendor or inter-vendor            

for Csub. For all three experiments, the highest fingerprinting accuracy was reached for             

the salience and frontoparietal networks, with about 90+% successful identification on           

median across HNU1 subjects (Figure 4). Some networks reached lower median           

accuracy (<80%), but still much higher than chance level (1/26 subjects ~ 4%).  
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Figure 4: Fingerprinting accuracy 
Distribution of the correct identification rate per network for the 26 HNU1 subjects. The red circle                

indicates the average identification accuracy of Csub per network in the intra-site, intra-vendor,             

and inter-vendor experiments. 

 

Accuracy observed for Csub was very high for the intra-site experiments, reaching            

almost perfect accuracy in the cerebellar, frontoparietal and salience networks, and was            

generally on the higher end of the HNU1 distribution, with the exception of the default               

mode network. There was a clear decrease in accuracy (over 0.2 or even 0.3 in some                

networks) when moving from intra-site to intra- and inter-vendor. In particular, Csub fell             

in the lower half of the HNU1 distribution for the default mode, frontoparietal and              

salience networks for the intra-vendor experiment; and then in the lower end of the              

HNU1 distribution for all seven networks for the inter-vendor experiment. Csub actually            

fell outside of the HNU1 distribution only for the VIS network in the inter-vendor              

experiment.  

4. DISCUSSION 

4.1 Consistency in rsfMRI connectivity measures within/between sites 

In the present study, we assessed the consistency of rsfMRI connectivity measures in a              

single participant, scanned at 13 CDIP-compliant sites. We report consistencies of 0.53            

± 0.11 (frontoparietal network) to 0.65 ± 0.09 (visual network) for connectivity maps             

generated from data obtained at different sites, scanner vendors and time points            

separated by a wide range of durations, from 0 to 1262 days apart. We found significant                
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effects of scanner vendors, although only one vendor (Siemens) was associated with            

substantial effect of higher consistency. The finding that Siemens scanners have more            

consistent maps than Philips scanners is in agreement with the report of An and              

colleagues (An et al., 2017). We did not replicate the excellent consistency of GE              

scanners, but we had only one inter-GE scanner comparison available in the Csub             

sample. Such inter-vendor differences in consistency may be due to factors such as             

scanner drift (Friedman and Glover, 2006) and smoothness of the raw images produced             

(Friedman et al., 2006). 

With regards to our intra-site consistency metric, Laumann et al. (Laumann et al.,             

2015) reported a very similar metric to the one used: correlation of connectomes             

between test and retest, as a function of time used to estimate the connectome (while               

we worked on voxel-based maps). Their graph is hard to read precisely for small              

amounts of time, but 10 minutes seems associated with a correlation of at least 0.8,               

which is exactly what we observed in our sample intra-site. Moreover, our observation             

that site effects were often very small is in line with the observation of Noble and                

colleagues (Noble et al., 2017a). This study found that, especially with short time series              

(less than 10 min), the physiological variability of resting-state measures dominates the            

scanner variations. Our report extends upon this analysis with longer longitudinal follow            

up (years instead of weeks), more sites (13 instead of 8), and more vendors (three               

instead of two). 
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4.2 Consistency within/between subjects  

We found in the HNU1 data that the similarity of maps generated between different              

individuals is much lower (e.g. 0.48 ± 0.10 for DMN) than the similarity observed              

intra-subject (e.g. 0.73 ± 0.13 for DMN) in the same sample, as well as intra-subject in                

our Csub participant (e.g. 0.56 ± 0.10 for DMN). This last consistency value is an               

average across many scan sites, vendors, and inter-scan intervals and, consequently,           

the intra-subject Csub consistency was lower than in HNU1 (on average across            

subjects). The observation suggests that, even with multisite, long-term longitudinal          

data and relatively short scan duration (about 10 minutes for both Csub and HNU1), it               

may be possible to implement reliable “brain fingerprinting”. Potential feasibility of           

fingerprinting was also reinforced by the observation that comparisons between Csub           

and HNU1 participants were lower on average (e.g. 0.33 ± 0.07 for DMN) than              

inter-subject comparisons in HNU1 (e.g. 0.48 ± 0.10 for DMN).  

4.3 Fingerprinting 

We found that it was possible to fingerprint Csub using the connectivity map of a single                

network with a fairly high level of accuracy (≥80%), when Csub scans were pooled with               

short-term longitudinal scans from 26 HNU1 participants, and the Csub maps were            

drawn from the same site. In the HNU1 sample, the accuracy of the fingerprinting was               

over 95% on average in the frontoparietal and salience networks, close to what was              

reported using a connectome-based approach (Finn et al., 2015). Finn et al. (Finn and              

Constable, 2016) reported that certain networks comprised of nodes in the frontal,            
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parietal, and temporal association cortices were the most discriminative for          

fingerprinting, which is consistent with our results (FPN and SAL had the highest             

fingerprinting accuracy in HNU1). These networks also exhibit the highest          

inter-individual variations in function (Mueller et al., 2013). When selecting pairs of            

scans from different sites or scanner vendors, fingerprinting accuracy of Csub fell to the              

lower end of the range of HNU1 distribution, with the exception of the visual network,               

where it was below the range. We thus observed a substantial impact of site and vendor                

effects on fingerprinting accuracy. Only one previous study had investigated multisite           

rsfMRI fingerprinting to our knowledge, and Hawco and colleagues (Hawco et al., 2018)             

had only included four subjects, and had not quantified the impact of site effect on               

fingerprinting accuracy, so their results cannot be directly compared to ours. 

4.4 Study limitations 

The major drawback of our study was its inclusion of only a single, male participant.               

This limitation is due to feasibility constraints, namely the time span of the study              

(scheduled to last at least five years) and the number of sites involved (set to increase                

to over 30 sites across Canada and other countries as CDIP is being rolled out to                

various recruiting sites in supported studies such as the CCNA). We report here on the               

first wave of data, collected over the initial 3.5 years. In order to assess that this single                 

individual observation may be generalizable to other subjects, we confirmed that the            

intra-subject consistency we observed in Csub was close to what was observed on             

average in many HNU1 subjects (N=26) scanned 10 times over the course of one              

month at a single site. Our findings suggest that the consistency of connectivity maps              
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remain of the same magnitude over several years, at least for a middle aged, healthy               

subject. 

We also found that average FD differed between all three scanner vendors, and             

average tSNR and n_vols differed between Philips and Siemens scanners. The effect of             

n_vols ranged from 0.025 to -0.014, while the differences in consistency related to             

vendors were as large as 0.158 (Siemens, limbic network). The effect of n_vols             

observed accounted for differences in consistency for a difference of 72 seconds of             

scan time. While we cannot conclude firmly for longer acquisition times (20 minutes or              

more), by extrapolating the values we observe, the effect of n_vols when doubling or              

tripling the acquisition time would be as large as vendors effects. In other words, the               

consistency of 30 mns inter-vendor scans between vendors could get as high as the              

consistency of 10 mns intra-site scans. This conclusion is consistent with the results of              

Lauman et al. (Laumann et al., 2015), which sees a gain of over 0.1 in consistency                

when using 30 minutes of fMRI acquisition, rather than 10 minutes. Noble et al. (Noble               

et al., 2017a) also concluded that acquisition time may be as or even more important               

than site effects for reliability. These results are important to bear in mind when              

interpreting effects of scanner vendors on reproducibility of fMRI connectivity, as they            

appeared to be confounded by other important factors, at least in our sample, namely              

number of time samples, amount of motion and tSNR. Further steps should be taken in               

the future to further harmonize tSNR and motion in CDIP and other multisite protocols. 

We also found that Csub was substantially less consistent with subjects from            

HNU1 than inter-subject consistency within HNU1. This observation may be due to the             
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fact that HNU1 connectivity maps may be more similar because they were scanned at              

the same site. It also may reflect a difference in ethnicity between Csub (Caucasian)              

and HNU1 participants (a study based in China), and/or a systematic difference in age              

(Csub was older than HNU1 participants). These differences are a limitation of the data              

sample available for this study, and may have contributed to inflate the results of the               

fingerprinting experiment, with Csub reaching almost perfect fingerprinting accuracy in          

several networks when employing scans from the same site. 

4.5 Alternate preprocessing 

We did not evaluate the effects of field-map distortion correction on the consistency of              

rsfMRI measures. Recently, Togo and colleagues (Togo et al., 2017) reported improved            

detection of rsfMRI connectivity following field-map distortion correction on a 240           

volume single-site dataset acquired on a 3T Siemens scanner. Connectivity was           

assessed with and without field-map distortion correction in several networks near the            

paranasal sinuses in the frontal lobe or the mastoid air cells and ear canals in the                

temporal lobe, brain regions most susceptible to distortion caused by magnetic field            

inhomogeneity (Jezzard and Balaban, 1995). A significant increase in connectivity          

strength was shown in the default-mode network, a network demonstrating robust           

consistency in our study. However, only a modest improvement in detection of the             

cerebellar network was reported, a network with lower consistency in our study (Togo et              

al., 2017) . Moreover, we did not evaluate the effects of physiological noise correction on              

consistency, since the effect of this correction on consistently measures lacks           

consensus (Marchitelli et al., 2016).  
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5. CONCLUSIONS 

5.1 Precision medicine  

Despite negative effects of site and vendor differences, we still observed a fair level of               

consistency and fingerprinting accuracy of rsfMRI maps in our study, even for            

inter-vendor scans. It may thus be possible to extract multivariate biomarkers of brain             

diseases from such multisite harmonized data, as planned in the CCNA. Recent papers             

(Abraham et al., 2016; Orban et al., 2017) also showed that machine learning models              

trained on multisite rsfMRI data generalize better to subjects from new unseen sites,             

than models trained on single site data. Better approaches for site harmonization, either             

prospective like CDIP, or retrospective, for example (Yan et al., 2013), may still increase              

the precision of rsfMRI biomarkers, and is an important area of future work. 
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7. SUPPLEMENTARY MATERIAL 

Provided are Table S1, S2 and S3 referred to in Section 3.2 of the manuscript. 

 

 CER DMN FPN LIM MOT SAL VIS
CHUM 0.1210 *0.1822 0.1431 *0.1964 *0.1945 0.0955 *0.1949 
CHUS -0.0298 -0.0257 -0.0131 -0.0665 -0.0557 -0.0246 -0.0259 
CINQ 0.0037 -0.0087 0.0110 -0.0366 -0.0414 -0.0171 0.0218
ISMD *0.1036 -0.0193 -0.0148 0.0617 0.0587 *0.0912 0.0536
IUGM 0.0569 -0.0027 0.0817 0.0218 0.0519 0.0677 0.0400
MNI *0.1536 0.0641 *0.1085 0.0717 0.0887 0.0778 0.0169
GE 0.1412 0.0349 0.1470 0.0563 0.0011 0.0445 0.0099
Philips *0.0418 -0.0048 0.0096 0.0291 0.0134 *0.0458 0.0131
Siemens *0.0553 *0.1091 *0.0955 *0.1507 *0.0901 *0.0811 *0.1249 
 

Table S1: Effect of each individual vendor and site for each of the seven rsfMRI networks.                 
In this model vendor, site and time were used as explanatory variables. (*) indicated p<0.05,               

uncorrected for multiple comparisons. 

 

 

 

Table S3: Effect of vendor, site, time, tSNR, FD, and n_vols on consistency of rsfMRI               
connectivity measures. 
The consistency of maps generated with rsfMRI data acquired on scanners from different             

vendors remained unchanged. As before, there was no substantial (or significant) effect of time              

between scanning sessions on consistency between maps. The estimated yearly rate of change             

in consistency ranged from 2.12e-3, p = 0.69 (limbic network) to -3.53e-3, p = 0.40 (salience                
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network). There was a significant effect of vendors in the frontoparietal network, with trends              

(p<0.05 uncorrected) in four others (cerebellar, limbic, salience and visual). Intra-site           

consistency was not significantly higher than inter-site, inter-vendor consistency in any network,            

though trends (p<0.05 uncorrected) were observed in three networks (cerebellar, frontoparietal           

and salience). There was a significant effect of tSNR in the two networks (limbic and visual),                

with the default mode network indicating a trend (p<0.05 uncorrected). For both FD and n_vols,               

we found a significant effect in the visual network, with the limbic network indicating a trend                

(p<0.05 uncorrected). (*) indicates family-wise error < 0.05 (Bonferroni corrected for multiple            

comparisons across networks, adjusted threshold p<0.001). Abbreviations: Networks: CER,         

cerebellar; DMN, default mode; FPN, frontoparietal; LIM, limbic; MOT, motor; SAL, salience;            

VIS, visual. 

 

 CER DMN FPN LIM MOT SAL VIS
CHUM 0.1293 *0.1648 0.1386 0.1690 *0.1845 0.0944 *0.1616 
CHUS -0.0221 -0.0428 -0.0168 -0.0991 -0.0686 -0.0271 -0.0664 
CINQ 0.0038 -0.0088 0.0075 -0.0330 -0.0388 -0.0157 0.0250
ISMD *0.1147 -0.0321 -0.0163 0.0291 0.0463 *0.0898 0.0171
IUGM 0.0648 -0.0044 0.0740 0.0173 0.0540 0.0716 0.0365
MNI *0.1408 0.0514 *0.1050 0.0725 0.0858 0.0727 0.0048
GE 0.1425 0.0231 0.1474 0.0359 -0.0088 0.0409 -0.0172 
Philips 0.0325 -0.0062 0.0344 0.0308 0.0055 *0.0378 0.0211
Siemens *0.0545 *0.1087 *0.0913 *0.1557 *0.0933 *0.0824 *0.1288 
 

Table S3: Effect of each individual vendor and site for each of the seven rsfMRI networks.                

In this model vendor, site, time, FD, n_vols and tSNR were used as explanatory variables. (*)                

indicated p<0.05, uncorrected for multiple comparisons.  
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Figure S1: Intra- and inter-subject consistencies 

Intra- and inter-subject consistency for the 26 individuals in the HNU1 dataset are plotted per               

network. The average consistency across all networks are also provided. To visualize the effect              

of time on intra-subject consistency, we plotted the consistency between connectivity maps at             

scan session 0 with that at scan sessions 1 to 9 (e.g. subject s0025438: scan session 0 vs scan                   

session 1, subject s0025438: scan session 0 vs scan session 2). Per subject, the time interval                

between scan sessions was 3 days, with a total of 10 scans across one month. Abbreviations:                

CER, cerebellar network; DMN, default mode network; FPN, frontoparietal network; LIM, limbic            

network; MOT, motor network; SAL, salience network; VIS, visual network. Note: Interactive            

graphs are provided in the “graphs” Jupyter notebook. 
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