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Abstract—Most applications of flow cytometry or cell sort-1

ing rely on the conjugation of fluorescent dyes to specific2

biomarkers. However, labeled biomarkers are not always3

available, they can be costly, and they may disrupt natural4

cell behavior. Label-free quantification based upon machine5

learning approaches could help correct these issues, but6

label replacement strategies can be very difficult to discover7

when applied labels or other modifications in measurements8

inadvertently modify intrinsic cell properties. Here we demon-9

strate a new, but simple approach based upon feature se-10

lection and linear regression analyses to integrate statistical11

information collected from both labeled and unlabeled cell12

populations and to identify models for accurate label-free13

single-cell quantification. We verify the method’s accuracy to14

predict lipid content in algal cells (Picochlorum soloecismus)15

during a nitrogen starvation and lipid accumulation time16

course. Our general approach is expected to improve label-17

free single-cell analysis for other organisms or pathways,18

where biomarkers are inconvenient, expensive, or disruptive19

to downstream cellular processes.20

Keywords—Single cell, flow cytometry, machine learning,21

label-free quantification, microalgae22

I. INTRODUCTION23

There are many biological research tasks for which it is24

important to measure single-cell behavior [1]. These tasks,25

which include cell counting, cell sorting, and biomarker26

detection, are widely conducted using flow cytometry27

(FCM) [1–3]. Flow cytometry is a high throughput anal-28

ysis technique that performs rapid multiparametric anal-29

yses to inspect and quantify large cell populations and30

subpopulations [2–9]. FCM analysis is usually conducted31

by first fluorescently labeling cells, and then quantify-32

ing fluorescence intensity of individual cells within large33

populations. Each cell passes through a laser beam to34

excite fluorophores, and each cell’s data is recorded by35

measuring emitted fluorescence intensity at longer wave-36

lengths [5,7,9]. FCM also provides indirect measurements37

of cell phenotypes through measurements of intrinsic cel-38

lular properties, such as cell size and shape by forward-39

angle light scatter (FSC), and information about cellular40

granularity and morphology by side-scattered light intensity41

(SSC) [8,10]. In addition to quantifying cell populations,42
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the related technique of fluorescence-activated cell sorting 43

(FACS) allows researchers to separate cell populations into 44

different subpopulations with respect to their individual 45

properties [8]. As the name implies, sorting decisions are 46

primarily based upon fluorescent labels [1,11]. 47

Despite broad application of fluorescent labels in flow 48

cytometry measurements [10], application of labels can 49

be costly and may require unnecessary effort [12–14]. 50

Labeling can also alter cell behavior and interfere with 51

cellular processes and downstream analyses by causing 52

activating/inhibitory signal transduction [13,15–19]. Addi- 53

tionally, some stains require cellular fixation or are toxic, 54

which limits downstream processing when sorting [18,20]. 55

A label-free quantification strategy could help prevent 56

these adverse consequences by reducing operation costs 57

and efforts, as well as avoiding side effects of using 58

labels on cells [12,15]. In label-free quantification of FCM 59

measurements, computational methods are used to quantify 60

targeted cellular information based on measurements from 61

other channels, i.e., from features. 62

Current label-free quantification strategies employ var- 63

ious methods of machine learning within their anal- 64

yses to make use of large flow cytometry datasets 65

[12,13,15,17,21,22]. However, in these strategies, the best 66

intrinsic cellular features have been selected based solely 67

on information collected from fluorescently labeled cells 68

(for instance, see [12,21]). For some biological processes, 69

if labels indirectly affect intrinsic cell properties within 70

training populations, then these interactions could result 71

in unexpectedly poor quantification of cell populations 72

when tested on unlabeled cells. We hypothesize that FCM 73

datasets could be used to develop label-free quantification 74

strategies even when signatures are weak and are per- 75

turbed during the training process. In this work, we test 76

our hypothesis by combining supervised machine learning 77

algorithms with analysis of the distributions of single-cell 78

data and their corresponding fluctuation fingerprints [23]. 79

To demonstrate our approach, we conduct feature selec- 80

tion and regression analysis to find optimized label-free 81

feature combinations and quantify lipid accumulation in 82

microalgae cells, that can usually produce lipid content of 83

15% to 35% (potentially up to 80%), depending upon culti- 84

vation conditions, growth media, and algal species [24–26]. 85

For such microalgae to become sources of alternative fuels, 86

it will be necessary to monitor and maximize their ability to 87

accumulate lipids [27]. To enable such quantification, we 88
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Fig. 1. Flow diagram of preliminary regression analysis to quantify lipid
content based using intrinsic (presumably label-free) features. The model
is learned using labeled data and then tested on both labeled and unlabeled
data.

collect and examine FCM measurements of Picochlorum89

soloecismus under nitrogen replete conditions, and nitrogen90

deplete conditions that will stress cells and induce them91

to accumulate lipids. To measure lipid accumulation, we92

started with a traditional label-based strategy using BOD-93

IPY 505/515 fluorescent dye. We measured cell properties94

with and without the BODIPY stain, and we sought to95

find signatures in the latter preparation that are capable96

of reproducing quantities of the former preparation. Using97

these labeled and unlabeled data, we applied linear and98

nonlinear supervised machine learning algorithms to select99

the most informative features and predict lipid content. As100

opposed to current methods [12,13,15,17,21,22], we show101

that accurate label-free cell quantification requires rigorous102

incorporation of statistical information from biological ex-103

periments using both labeled and label-free measurements.104

II. RESULTS105

Figure 1 depicts our initial strategy for label-free quan-106

tification. We monitored P. soloecismus microalgae for a107

total of 46 days following nitrogen starvation, and measured108

data using FCM at 23 different time points. At each time109

point, we created two identical subsamples as depicted110

at the top of Fig. 1. To obtain ground truth values for111

lipid accumulations, we labeled cells in one subsample112

using BODIPY, and we left the other one unlabeled. We113

measured the BODIPY signal in the labeled sample using114

a BD Accuri™ C6 flow cytometer for 10,000 labeled115

cells per sample. We also collected another set of FCM116

measurements for 60,000 to 136,000 unlabeled cells. Our117

FCM analyses recorded 13 features per cell, including the118

488 nm excitation, 530/30 nm collection channel (FL1)119

corresponding to the BODIPY dye. We sought to predict the120

BODIPY signal intensities using other measured features121

– flow cytometry measurements of forward scatter (FSC),122

side scatter (SSC) and other fluorescence wavelengths (FL2 123

488 nm excitation, 585/40 nm collection, FL3 488 nm 124

excitation, 670LP (long pass) collection, and FL4 640 nm 125

excitation, 675/25 nm collection). 126

As described in the methods section, we sought to 127

identify label-free quantification through several iterative 128

training-validation strategies. First, we conducted a linear 129

regression analysis on FCM measurements of labeled cells 130

(the training step), and then the model was used to predict 131

the lipid content of unlabeled P. soloecismus cells. The 132

model was then applied to a different dataset gathered from 133

labeled and unlabeled cells, and we evaluated the prediction 134

accuracy using the Kolmogorov-Smirnov distance. 135

We performed training on three time points of our data. 136

Time points corresponded to days 1, 14, and 46, which 137

were were selected based on the lowest, the middle, and 138

the highest BODIPY signal intensities. We then validated 139

our model on another three time points corresponding to 140

the second lowest, another middle, and the second highest 141

BODIPY signal intensities (days 0, 15, and 37). 142

Figure 2 shows the results of applying the simple linear 143

regression analysis using labeled data only. Figure 2(a) 144

shows that at each time point the predicted labeled training 145

data has a strong correlation with the measured data. 146

Figure 2(b) suggests that a preliminary regression analysis 147

provides a strong classification for the labeled training data, 148

which was consistent in Fig. 2(c) for validation on labeled 149

cells (KS distances between predictions and measurements 150

for labeled cells were 0.0480, 0.0527, and 0.0190 for the 151

three validation time points). However, the same regression 152

model failed drastically when it was used to estimate the 153

lipid content in the absence of labels, and Fig. 2(d) shows 154

that the difference between predicted and measured values 155

of the lipid content for unlabeled cells is extreme (KS 156

distances were 0.9737, 0.9460 and 0.9233 for the same 157

validation time points as above). Extended results for the 158

linear regression are provided in supplementary Fig. S1. 159

To address the possibilities that we were overfitting the 160

data or that linear regression was too simple an analysis to 161

extract the informative label-free features, we also applied 162

three more advanced machine learning approaches to learn 163

lipid content from the intrinsic features: (i) quadratic, 164

which corresponds to linear regression applied to linear and 165

second order products of the original features (Methods 166

and Fig. S2); (ii) gradient boosting machine learning 167

(GBML) as utilized for label-free classification in Blasi et 168

al. [12] (Fig. S3); and finally a multilayer perceptron neural 169

network (MLPNN) [28] as shown in Fig. S4. To reduce 170

effects of over-fitting, the latter two approaches (GBML and 171

MLPNN) both employ cross-validation analysis on random 172

partitions of the labeled training data. However, as shown in 173

Figs. S2-S4, each of these advanced approaches appeared 174

to work very well on the labeled training and validation 175

data, but all were insufficient to predict the lipid content 176

for unlabeled data. 177

To explain the failure of the labeled-cell-trained regres- 178

sion model on unlabeled cells, we suspected that some 179
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Fig. 2. Preliminary regression analysis. (a) Correlations between measured and predicted values of lipid content for labeled training data. Pearson’s
correlation coefficients are shown for each time point. (b) Histograms of lipid content for labeled training data. Measured in blue and predicted in red.
Kolmogorov-Smirnov distances between the distributions are shown. (c) Histograms of the lipid content for labeled validation data. (d) Histograms of
the lipid content for unlabeled validation data. Training data corresponds to days 1, 14, and 46; validation data corresponds to days 0, 15, and 37. All
lipid content measurements are in arbitrary units of concentration (AUC). Bin sizes vary logarithmically.

channels in the flow cytometer might be adversely affected180

by application of the BODIPY stain. Indeed, Fig. 3 shows181

that some intrinsic features (FL2-A and FL2-H, correspond-182

ing to the second channel of the flow cytometer) change183

substantially when BODIPY is added to the cells. This184

channel is the closest to the FL1 channel that measures185

the lipid content, where the BODIPY fluorescent dye is186

added. Moreover, it is conceivable that the level of this187

disruption could be correlated with the amount of lipid in188

the cells, which means that it could be equally present in189

both training and validation data for the labeled cells. As a190

result, these changes could disrupt the training and cross-191

validation procedures and account for prediction failure192

when tested on unlabeled cells.193

To mitigate this effect, we removed features FL2-A and194

FL2-H from the regression analysis and then repeated195

the linear regression. Figure 4(a-b) shows quantification 196

results when the above two features are removed. We 197

found that removing corrupted features led to substantial 198

improvement for the quantification of unlabeled data (KS 199

improved from 0.92-0.97 in Fig. 2(d) to 0.11-0.38 in Fig. 200

4(b)). The supplementary Fig. S5 provides extended plots 201

of the outcomes of regression analyses upon removal of 202

corrupted features. It is interesting to note that removal of 203

disrupted features reduces accuracy of lipid prediction for 204

labeled cells. This occurs because the labeling inadvertently 205

modulates some “intrinsic” features in the labeled cells 206

and introduces extraneous feature-target correlations that 207

are actually detrimental to predictions for unlabeled cells. 208

A troublesome consequence of these correlations between 209

labels and intrinsic features is that these disrupted features 210

are immune to removal when cross-validation analysis is 211
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Fig. 3. Comparison of the features with and without BODIPY stain. (a) Kernel densities of features for labeled and unlabeled cells, averaged over all
times. Labeled cells are shown in blue, and unlabeled cells are in red. (b) KS distance between labeled and unlabeled features distributions. FL2-A
and FL2-H features show clear dependence on the BODIPY stain. Horizontal line denotes threshold used to remove corrupted features.

applied exclusively to labeled cells.212

Next, we used the genetic algorithm on combinations of213

labeled and completely unlabeled data to explore if further214

feature reduction could enhance label-free classification.215

Figure 4(c-d) shows the results following the application of216

the genetic algorithm, which automatically selected FSC-217

A, SSC-A, FL3-A, FSC-H, and the width of the signal218

as the most informative features. Down-selecting to these219

most informative features resulted in a slightly smaller KS220

distance (0.10 - 0.35) between measured and predicted221

values of the lipid content for unlabeled cells. Extended222

results are provided in supplementary Fig. S6.223

During automated feature selection for linear regres-224

sion (Fig. 4(c-d)), we did not incorporate higher order225

effects (e.g., “interactions”) between predictor variables.226

To enhance our modeling and potentially extract more227

information from the data, we added an expanded set 228

of products of feature values to the input. As shown in 229

Fig. 4(e,f), expansion of the input matrix of features to 230

include quadratic and first order interaction terms, followed 231

by label-free feature selection via the genetic algorithm, 232

resulted in a slight improvement to label-free predictions 233

for the lipid content. For more detailed results after in- 234

troducing the quadratic features and application of the 235

genetic algorithm on higher order effects, see Fig. S7 in 236

the supplementary information. In this case, the genetic 237

algorithm identified the product of FSC-A and FL4-H, the 238

square of FSC-H, and the product of FL4-H and signal 239

width as the most informative attributes. Selected features 240

by the genetic algorithm on linear and quadratic features 241

are presented in more detail in supplementary Table S1. 242

Finally, we introduced a new strategy based on weighted 243
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Fig. 4. Regression results after various approaches to feature selection. (a) Training on reduced features. (b) Validation of the model in (a) on unlabeled
cells. (c) Training based on the features selected by the GA. (d) Validation of the model in (c) on unlabeled cells. (e) Training based on the features
selected by the GA on quadratic features and interactions. (f) Validation of the model in (e) on unlabeled cells. For all cases, measured values are
shown in blue and predicted in red. Kolmogorov-Smirnov distances between distributions are shown. Training data corresponds to days 1, 14, and 46;
validation data corresponds to days 0, 15, and 37.
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Fig. 5. Results of analysis. Distributions of lipid content for (a) labeled training data. and (b) unlabeled validation data. KS distances between
distributions are shown. (c-f) Testing the final strategy on four unlabeled testing time points: Days 7, 16, 20, and 34. See Fig. S8 for corresponding
results for all 17 testing time points. “KS data” is the average KS distance between measured lipid distributions. (g) Average lipid content at each day
after nitrogen starvation. The blue and red shaded areas show the standard deviation as measured and predicted, respectively.

models (see Methods section). Our weighted model was244

formed by a linear combination of three models, each245

learned from labeled and unlabeled data at three training246

time points. The weights applied to these three models were247

estimated (using a secondary regression analysis) from248

measured statistics of the unlabeled features. Importantly,249

the re-weighting of the models allows incorporation of the250

530/30 nm FCM channel, which was previously discarded251

due to the fact that it was needed for the measurement of252

BODIPY in the labeled cells.253

Figure 5 shows the results of our new label-free quantifi- 254

cation strategy for labeled cells (Fig. 5(a)) and unlabeled 255

cells (Fig. 5(b-g)). It can be seen here that using a weighted 256

modeling strategy based on statistics of unlabeled features 257

enables the model to predict the BODIPY signal with a 258

remarkably high accuracy. The expanded weighted model 259

analysis allows for a substantially improved ability to 260

quantify lipid content for both labeled and unlabeled cells. 261

The very small KS distance (0.14, 0.09, and 0.09) on 262

the three validation time points represent an exceptional 263
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success in predicting the BODIPY signals based on label-264

free measurements.265

For the final machine learning model, the genetic algo-266

rithm selected the product of SSC-A and SSC-H, the square267

of FL3-A, the product of FL4-A and SSC-H, and square of268

FL3-H as the most informative features for the construction269

of the regression analyses at the three training time points.270

Table S1 of the supplementary information presents these271

selected features in detail. For the secondary regression272

analysis used to define the weights of the regression anal-273

yses, the optimum found by the genetic algorithm relied274

on statistical information from all fluorescence channels275

(including the 530/30 nm channels that was previously276

discarded during labeled cells measurements). The selected277

columns of the test statistic are presented in supplementary278

Table S2.279

After we validated the final label-free lipid estimation280

model, we fixed all parameters and sought to test it for281

label-free quantification on a much larger set of time points.282

The final model yielded exceptional prediction accuracy of283

the BODIPY signal for this previously unseen testing data,284

as can be seen in the predicted distribution of lipid content285

at specific time points (Fig. 5(c-f) and supplementary286

Fig. S8). Figure 5(g) also shows that the trained model287

correctly quantified average and standard deviation of lipid288

accumulation (in log scale) at each day following nitrogen289

starvation.290

III. CONCLUSIONS291

Single-cell quantification and classification are crucial292

tasks in many biological and biomedical applications, and293

flow cytometry (FCM) is one of the most common tools294

used for these tasks. Computational strategies have substan-295

tial potential to identify label-free markers and mitigate the296

expense or disruptive effects of traditional FCM analyses.297

In this article, we have demonstrated the use of mathemati-298

cal tools and statistical methods, including regression analy-299

sis and machine learning to extract quantitative information300

from intrinsic properties of unlabeled cell populations. We301

discovered that computational classifiers that are learned302

using intrinsic features measured in labeled cell populations303

may appear to be highly predictive when compared to304

other labeled cells, but these same models may then fail305

dramatically when tested on truly label-free data (Figs.2306

and S2-S4).307

The key to our integrated strategy is careful consid-308

eration of the variations within heterogeneous single-cell309

populations. Drawing inspiration from our past work to310

identify gene regulation models from single-cell distribu-311

tions [23,29,30], we reasoned that distributions of labeled312

and unlabeled cell populations should have shared statistics313

that could help to circumvent the issue of data corruption314

due to label applications. Under that inspiration, we devel-315

oped a multi-stage regression approach that incorporates316

collections of both labeled and unlabeled data in the same317

conditions. From these data sets, we learn which features’318

statistics are conserved, which features vary between dif-319

ferent treatments, and which features are most valuable 320

to predict lipid content in unlabeled cells when trained 321

using labeled cells. Figure 6 depicts a flow diagram of 322

our new approach and its three main components of (i) 323

linear regression applied to features and feature products to 324

discover the correlations between intrinsic features and lipid 325

content within labeled cells; (ii) genetic algorithms to auto- 326

matically select features that contain useful information, but 327

which avoid misleading or distracting artifacts contained 328

within large FCM datasets; and (iii) a new model-weighting 329

strategy to allow application of different statistical models 330

in different situations. 331

The combination of regression analyses, genetic algo- 332

rithms and model weighting approaches yields a final set of 333

models and weights that are uniquely determined from the 334

statistical properties of unlabeled cell population measure- 335

ments. Using this approach, we can then extract sufficient 336

information to provide efficient label-free quantification of 337

lipid content in Picochlorum soloecismus over time during 338

nitrogen starvation. Our final model accurately estimates 339

lipid content distributions over time that span several orders 340

of magnitude (Figs. 5 and S8). Moreover, although direct 341

verification of lipid content for unlabeled single-cells is 342

not possible, our final regression models preserved single- 343

cell prediction accuracy for lipid content in labeled cells, 344

especially at later time points when lipid content is highest 345

(Pearson’s correlation coefficient of R = 0.74-0.87; see Fig. 346

S8). 347

Together, the proposed computational tools could help 348

circumvent the need for biochemical labels to reduce 349

expense and open new avenues for single-cell research. 350

For example, label-free quantification will be instrumental 351

to sort cells into different subpopulations, without the 352

(potentially terminal) cellular disruptions associated with 353

standard biochemical markers. Once trained through several 354

rounds of regression and genetic algorithms, our final model 355

for algal lipid quantification reduces down to a simple 356

linear operation applied to a handful of 7 second-order 357

products of features of the unlabeled cells. Such operations 358

are easily computed in less than a microsecond per cell, 359

making the label-free analysis ideal for use in gating 360

and sorting applications as a stand-in for fluorescence in 361

fluorescence-activated cells sorting (FACS) analyses. Such 362

populations could then be instrumental in future advanced 363

studies such as analysis with subsequent growth assays, 364

application to directed evolution to improve productivity 365

or yield, exploration of additional perturbation responses, 366

and other assays that require live, unmodified cells for 367

subsequent analyses. 368

IV. METHODS 369

A. Cell preparation and flow cytometry measurements 370

P. soloecismus was grown in f/2 media containing half the 371

recipe nitrogen and using Instant Ocean sea salt (Blacksburg, VA) 372

at 38 g/L [31,32]. Cultures were grown at room temperature on 373

a 16 hour light/8 hour dark cycle and mixed by stirring. PH was 374

maintained at 8.25 with on-demand CO2 injection when the pH 375
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Fig. 6. Flow diagram of the final multi-stage label-free quantification strategy.

increased above the set-point. Cells were collected and stored at376

4 °C prior to analysis.377

Stained populations of cells were incubated with 22.6 µM378

BODIPY 505/515 (Thermo Fisher Scientific) with 2.8% DMSO379

in media for 30 minutes at room temperature prior to analysis.380

Analysis was conducted using a BD Accuri™ C6 flow cytometer381

with BD CSampler™ (BD Biosciences). Unstained samples were382

collected with a set volume of 10 µl on a high flow rate (66383

µl/min), for stained samples 10,000 events were collected on a384

low flow rate (14 l/min). Data was exported in .csv format for385

subsequent analysis.386

B. Linear regression analysis387

In an initial attempt to identify label-free signatures of lipid
content, we considered linear regression applied to match intrinsic
features of labeled cells to lipid content (Fig. 1). In regression
analysis, there are two main types of variables: the response
variable (denoted y) and the explanatory variables (the set of
predictors, denoted x) [33]. In this study, the response vector is the
accumulation of the lipid content for each cell (called the target)
and the predictor is a matrix containing the data for intrinsic
cellular properties measured by FSC, SSC, and other fluorescence
wavelengths (called the features). In regression analysis, the
response is approximated as a function of the predictors as

yi = f(xi) + εi (1)

where xi = (x1, . . . , xN )i is the vector of N intrinsic features
for the ith cell, and εi is a random measurement error for that
cell [34]. In linear regression, the response (target) and predictor

(feature) variables are assumed to satisfy the linear relationship
[34]

Y = XM, (2)

where the vector Y = [y1, . . . , yNc ]
T is the vector of targets 388

for Nc training cells; X = [xT
1 , . . . ,x

T
Nc

]T is the corresponding 389

matrix of features for the same cells; and M is the regression 390

parameter or regression coefficient. 391

Linear regression provides a preliminary insight about potential
relationships between the predictor and the response variables.
After defining the features and the target, the regression coefficient
that minimizes the sum of squared difference of |Y −XM|22 can
be calculated as

M = X−LY = (XTX)−1XTY. (3)

To perform a preliminary regression analysis, we first selected 392

three training time points, corresponding to the lowest, the mid- 393

dle, and the highest BODIPY fluorescence intensities (in this 394

experiment, days 1, 14, and 46, respectively). We chose these 395

days to capture the greatest possible range of lipid accumulation 396

phenotypes. For each time point, we considered FCM measure- 397

ments from a random set of 3000 labeled cells. We computed the 398

regression coefficient, M, by Eq. (3) using the labeled data sets 399

X
(train)
L and Y

(train)
L . Next, we selected another three validation 400

time points, corresponding to the second lowest, another middle, 401

and the second highest BODIPY fluorescence intensities (in this 402

experiment, days 0, 15, and 37, respectively). This time, we 403

extracted information for both labeled, X(valid)
L and Y

(valid)
L , and 404

unlabeled cells, X(valid)
U . Using the M computed from training 405

data, we proceeded to predict the lipid content of the labeled 406
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and unlabeled validation data sets by the regression coefficient407

computed previously.408

C. Nonlinear approaches409

To generalize our initial simple linear regression approach, we
then added new features corresponding to all possible products of
the individual features as follows:

yi =f(x1, x2, ..., xN ,

x1
2, x2

2, ..., xN−1
2, xN

2,

x1x2, ..., xN−1xN ) + ε.

(4)

This expanded linear regression analysis, which uses all possible410

quadratic features, is referred to as the quadratic regression model.411

To further generalize the analysis, we also formulated a multilayer412

perceptron neural network (MLPNN) [28] and also applied the413

gradient boosting machine learning (GBML) method presented414

by Blasi et al. [12] to predict the BODIPY signals in our FCM415

measurements (see Figs. S2-S4 in the supplementary information416

for details).417

D. Feature selection418

To select the optimal features, we applied iterative training-419

validation strategies, in which we applied a fitness function420

based on label-free measurements to select the most informative421

features. To select the best combination of features we employed422

a supervised learning strategy, in which we used linear regression423

analysis with and without quadratic interaction terms to find M424

for a given feature set for training data, and we applied the genetic425

algorithm [35] to the select the best combination of features to426

predict the validation data.427

Direct measurement of lipid content is unavailable for unla-428

beled cells, so direct validation of label-free lipid predictions is429

not possible. However, since the labeled and unlabeled cells were430

sampled from the same original population and at the same time,431

we reasoned that the labeled and unlabeled populations should432

have the same distributions or statistics for their single-cell lipid433

levels. Therefore, to validate label-free predictions, we compare434

label-free distribution predictions to the labeled measurement435

distributions using the Kolmorogorov-Smirnov statistic (KS), [36].436

The genetic algorithm was used to find the set of features that led437

to the smallest KS statistic for the unlabeled validation data.438

We conducted all linear regression and genetic algorithm com-439

putations in MATLAB™ R2017b environment. For the MLPNN,440

computations were performed in Python 2.7 (see supplementary441

information for the MLPNN).442

E. Weighted model443

To further improve predictions of BODIPY signals for un-
labeled cells, we considered a weighted model that could be
learned from all measurement of unlabeled features, including
the fluorescent channel in which BODIPY was measured in the
labeled cells. To achieve this weighted model, we first learned
three separate regression coefficients M1, M2, and M3 based on
the three training time points (days 1, 14, and 46). While these
models were fixed for all subsequent computations, we defined a
combination model that could be formulated as a weighted sum:

M = α1M1 + α2M2 + α3M3. (5)

In the above equation, a = [α1, α2, α3] contains the weights444

applied to their corresponding Mi’s with respect to the measured445

unlabeled features. Hence, at each given time point, there is a446

unique weighted model M based on fixed regression coefficients447

M1, M2, and M3 and unlabeled features.448

We then sought to learn a secondary model to estimate
a from populations of unlabeled data. We defined sr =
[µ

(r)
1 , . . . , µ

(r)
n , σ

(r)
1 , . . . , σ

(r)
n ] as a vector that contains the pop-

ulation means and standard deviations of each feature (including

quadratic features) in any population of unlabeled cells. We
then constructed the population sample statistics matrix S =
[sT1 , . . . , s

T
R] using R different randomly sampled sub-population

from the original training and validation data. For each rth

random population, we also performed a computational search
to find an optimized model scaling factor ar that yields the best
possible comparison between measured and predicted targets in
the training and validation data, and we collected these into the
matrix A = [aT

1 , . . . ,a
T
R]

T . With these definitions, we formulated
a secondary regression analysis for ar as a function of sr with
the assumed linear form

ar = srQ+ ε, (6)

for which we could estimate the weight quotient Q as

Q ≈ S−LA. (7)

In this expression, Q defines a relationship between the unlabeled 449

features (from computing s) and the weights (a). To prevent 450

overfitting in the determination of the weights, we generated 451

another set of random population samples from our training and 452

validation data, and we used the genetic algorithm to down select 453

among the best columns of S (or rows of Q) to utilize for the 454

estimate of a. 455

Once fixed using the training and validation data, the multi- 456

scale regression operators M1, M2, M3 and Q could be applied 457

to any new data sets XU and their summary statistics s to calculate 458

a = sQ, estimate M using Eqn. 5, and predict the lipid content 459

using Eqn. 2. 460
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