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Abstract 
Simulated data are invaluable for assessing a computational method’s ability to distinguish 
signal from noise. Although many biological systems show rhythmicity, there is no 
general-purpose tool to simulate large-scale, rhythmic data. Here we present Simphony, an R 
package for simulating data from experiments in which the abundances of rhythmic and 
non-rhythmic features (e.g., genes) are measured at multiple time points in multiple conditions. 
Simphony has parameters for specifying experimental design and each feature's rhythmic 
properties (e.g., shape, amplitude, and phase). In addition, Simphony can sample 
measurements from Gaussian and negative binomial distributions, the latter of which 
approximates read counts from next-generation sequencing data. We show an example of using 
Simphony to benchmark a method for detecting rhythms. Our results suggest that Simphony 
can aid experimental design and computational method development. Simphony is thoroughly 
documented and freely available at https://github.com/hugheylab/simphony. 

Introduction 
Rhythms are ubiquitous across domains of life and across timescales, from hourly division of 
bacteria (Cooper & Helmstetter, 1968) to seasonal growth of trees (Kramer, 1936). These 
biological rhythms are often driven by systems of genes and proteins. Prominent examples are 
the systems underlying circadian rhythms, which have a period of approximately 24 hours and 
have been observed in species across the biosphere (Young & Kay, 2001). 
 
To interrogate these rhythmic biological systems, researchers are increasingly using 
technologies that measure the abundance of thousands of molecules in parallel, e.g., the 
transcriptome or proteome. The critical decisions then become how to design the experiments 
and how to analyze the data. For example, there are now numerous methods for detecting 
rhythms in high-dimensional data (Wu et al., 2016). A valuable aid to such decisions is 
simulation. In simulated data, unlike in experimental data, the ground truth (e.g., whether a gene 
is rhythmic) is known. Consequently, as long as the simulated data recapitulate the essential 
features of experimental data, they enable one to fairly estimate a method's performance in a 
given experimental design (Love, Hogenesch & Irizarry, 2016). Simulated data are also faster 
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and less expensive to generate than experimental data, especially omics data from 
high-resolution time courses.  
 
Unfortunately, there is a shortage of publicly available tools for simulating rhythmic data. This 
forces researchers (both data generators and method developers) to create their own simulation 
framework from scratch or to forgo simulations altogether. Recently, a tool called CircaInSilico 
was developed to begin to fill this gap (Hughes et al., 2017). Although CircaInSilico has a 
convenient user interface, it has several limitations. For example, the simulated rhythms can 
only be sinusoidal. In addition, even though read counts from next-generation sequencing data 
are often modeled using a negative binomial distribution (Robinson & Smyth, 2007), 
CircaInSilico can only simulate Gaussian noise. A more general tool for simulating RNA-seq 
reads is Polyester (Frazee et al., 2015). Although Polyester can simulate reads from multiple 
conditions or time points, it is not specifically designed to simulate rhythms. Furthermore, 
Polyester models many aspects of the sequencing process, which introduces considerable 
computational costs and may not be directly relevant for designing experiments to collect 
rhythmic data or evaluating methods to analyze such data. Thus, there is still a need for a 
flexible, easy-to-use tool to simulate large-scale, rhythmic data. 
 
To address this need, we developed a simulation package called Simphony. Simphony has 
adjustable parameters for specifying experimental design and modeling rhythms, including the 
ability to sample from Gaussian and negative binomial distributions. Simphony is implemented 
in R, thoroughly documented, and freely available at https://github.com/hugheylab/simphony. 

Materials and Methods 
All data and code to reproduce this study are available at 
https://figshare.com/s/549da44928b243df47d5 . 

Simulating rhythmic data using Simphony 
Simphony simulates experiments in which the abundances of rhythmic and non-rhythmic 
features (e.g., genes) are measured at multiple time points in one or more conditions. Within a 
given simulated experiment (i.e., a simulation), the expected abundance  of feature  inm i  
condition  at time  is modeled ask t  

, f ( )  mik (t) = aik ik τ
2π · (t )+ φik +  bik  

where  is the amplitude,  is a periodic function with period  (by default, ),  isa f π2 in(θ)f (θ) = s τ  
the period of rhythmic changes in abundance (by default, 24),  is the phase, and  is theφ b  
baseline abundance. Non-rhythmicity is defined by . Given , Simphony samplesa = 0 mik (t)  
measurements from one of two families of distributions: Gaussian and negative binomial. The 
former represents an idealized experimental scenario, whereas the latter approximates read 
counts from next-generation sequencing. For Gaussian sampling, the abundance of feature  ini  
sample  belonging to condition  followsj k  
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,(m (t ), σ )Y ij ~ N ik j  2
ik  

where  is the variance (by default, 1). For negative binomial sampling, we follow a similarσ2  
strategy to DESeq2 (Love, Huber & Anders, 2014) and Polyester (Frazee et al., 2015), such that 

,B(μ , α (2 ))Y ij ~ N = 2m (t )ik j  = gik
m tik( j)  

where  is the expected counts, 𝛼 is the dispersion (the variance of a negative binomialμ  
distribution is ), and  is a function that maps expected counts to dispersion.ar μV (Y ) = μ + α 2 g  
The default  was estimated from RNA-seq data from mouse liver (see the next section forg  
details). 
 
Experimental design in Simphony is specified in one of three ways: (1) interval between time 
points and number of samples per time point per condition, (2) exact time points and number of 
samples per time point per condition, or (3) time points from a uniform distribution (between 0 
and ) and total number of samples per condition.τ  
 
The Simphony R package has three dependencies: data.table (Dowle & Srinivasan, 2018), 
foreach (Microsoft & Weston, 2017), and locfit (Loader, 2013). 

Estimating statistical properties of experimental RNA-seq data 
To estimate the relationship between expected counts and dispersion in real RNA-seq data, we 
used PRJNA297287 (Atger et al., 2015). We used the samples that were collected in 
quadruplicate from livers of wild-type, ad libitum-fed mice every 2 hours for 24 hours in LD 12:12 
(48 samples total). We downloaded the raw reads, then quantified gene-level counts using 
Salmon v0.11.3 (Patro et al., 2017) and tximport v1.8.0 (Soneson, Love & Robinson, 2015). We 
kept the 15,069 genes that had at least 10 counts in half of the samples. We used DESeq2 
v1.20.0 to estimate parametric and local regression-based mean-dispersion curves (Love, 
Huber & Anders, 2014) (Fig. S1A). The input to DESeq2 included a design matrix based on 
cosinor regression, so that dispersion estimates were not biased by variation in expression due 
to a daily rhythm. Compared to the parametric mean-dispersion curve, the local 
regression-based curve had a considerably lower root-mean-squared error (0.94 compared to 
1.09, in units of log dispersion), so we set it as the default in Simphony. DESeq2 also provided 
an estimate of the variance of the residual log dispersion (around the curve). Finally, we used 
fitdistrplus (Delignette-Muller & Dutang, 2015) to approximate the distribution of mean 
normalized counts as log-normal. The Simphony documentation includes an example of how to 
sample from the estimated distributions of residual log dispersion and mean normalized counts 
(Fig. S1B). 

Validating statistical properties of simulated data 
We performed multiple simulations to validate the statistical properties of data generated by 
Simphony. Each simulation had time points spaced 0.1 h apart (period of 24 h), 100 samples 
per time point, and one gene for each unique combination of parameter values related to gene 
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expression. Simulations based on negative binomial sampling used the default function for 
calculating dispersion. 
 
To validate mean and standard deviation, we simulated non-rhythmic expression (amplitude of 
0) based on Gaussian and negative binomial sampling. For the simulation using Gaussian 
sampling, we varied the desired mean and standard deviation. For the simulation using negative 
binomial sampling, we varied the desired mean log 2 counts. In both cases, we then calculated 
the empirical mean and standard deviation (Table S1). 
 
To validate amplitude and phase, we simulated rhythmic expression based on Gaussian and 
negative binomial sampling (using the default ) . For both types of sampling, wein(θ)f (θ) = s  
varied the desired amplitude and phase. For the simulation based on Gaussian sampling, we 
used the limma R package v3.36.5  (Smyth, 2004; Ritchie et al., 2015) to fit each gene's 
expression to a linear model that had terms for  and  (cosinor regression). Weos  c t( τ

2π ) in  s t( τ
2π )  

then used the model coefficients to estimate each gene's amplitude and phase according to the 
trigonometric identity , where  andosθ inθ c in(θ )a · c + b · s =  · s + φ  c =  √a2 + b2  

 (Table S2). For the simulation based on negative binomial sampling, we tan2(b, a)φ =  2
π − a   

followed a similar procedure, except we log-transformed the expression counts before passing 
them to limma. 

Detecting rhythmicity in simulated data 
We used limma to calculate gene-wise p-values of rhythmicity. The p-value was based on a 
moderated F-test on the coefficients corresponding to the variables  and os  c t( τ

2π ) in  s t( τ
2π )  

(cosinor regression). Because the expression values were counts sampled from the negative 
binomial family, we first transformed them using log 2(counts+1). We used limma with the default 
settings, except we allowed it to fit a mean-variance trend across genes (limma-trend) (Law et 
al., 2014). We then used the p-values and the precrec R package v0.9.1 (Saito & Rehmsmeier, 
2017) to calculate the area under the receiver operating characteristic (ROC) curve for 
distinguishing non-rhythmic genes from each group of rhythmic genes (specified by rhythm 
amplitude and baseline in log 2 counts). 

Results 
To validate the statistical properties of data generated by Simphony, we simulated data covering 
a range of parameter values for the Gaussian and negative binomial families. To ensure that the 
properties approached their asymptotic values, time points were spaced 0.1 h apart (period of 
24 h), each with 100 samples. For non-rhythmic expression, we verified that the observed mean 
and standard deviation corresponded to the expected values (Table S1). For rhythmic 
expression, we verified that the observed amplitude and phase corresponded to the expected 
values (Materials and Methods; Table S2). 
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Figure 1. Examples of rhythmic data generated by Simphony. Gene expression values were sampled from the (A) 
Gaussian or (B) negative binomial family. Rhythms followed a sinusoid or a sawtooth wave of period 24 h and 
amplitude 4. For Gaussian sampling, the baseline expression was 0 and the standard deviation was 1. For negative 
binomial sampling, the baseline log2 counts was 7. Time points were spaced 2 h apart, with 1 sample per time point. 
Circles show the sampled gene expression values, black lines show the expected expression over time, and gray 
ribbons show the corresponding 90% prediction intervals. The prediction intervals for negative binomial sampling 
have discontinuities because the sampled values can only be integers greater than or equal to zero. 
 
To highlight Simphony's flexibility, we simulated experiments in which rhythmic gene expression 
followed a sinusoid or a sawtooth wave, with expression values sampled from the Gaussian or 
negative binomial family (Fig. 1). We also simulated an experiment having two conditions, in 
which genes' rhythms had a different amplitude or phase in each condition (Fig. S2). 
 
To illustrate Simphony’s utility, we used it to benchmark cosinor regression, a method for 
detecting rhythms (Halberg, Tong & Johnson, 1967). We simulated experiments having various 
intervals between time points and one sample per time point. Each simulation included 20,000 
genes spanning a range of values for baseline expression and rhythm amplitude (including 
amplitude 0 for non-rhythmic genes) (Fig. S3A). For each simulation, we calculated each gene's 
p-value of rhythmicity using limma (Materials and Methods), then calculated the area under the 
ROC curve for distinguishing non-rhythmic genes from each group of rhythmic genes. As 
expected, rhythm detection improved as rhythm amplitude increased or the interval between 
time points decreased (Fig. 2A). Rhythm detection also improved as baseline expression 
increased (and thus as the standard deviation of log-transformed counts of non-rhythmic genes 
decreased; Fig. 2B and Fig. S3B). 
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Figure 2. Evaluating rhythm detection using data generated by Simphony. Simulations had various values of the 
interval between time points and one replicate per time point. Each simulation included 20,000 genes having various 
values of baseline expression and rhythm amplitude (including amplitude 0). Rhythms followed a sinusoid of period 
24 h. Expression values were sampled from the negative binomial family. We used the gene-wise p-values of 
rhythmicity (calculated using limma) to calculate the area under the ROC curve (AUROC) for distinguishing 
non-rhythmic genes from each group of rhythmic genes. (A) AUROC vs. rhythm amplitude and interval, for genes 
with a baseline log2 counts of 8. (B)  AUROC vs. rhythm amplitude and baseline expression, for the simulation with an 
interval of 2 h. AUROC of 0.5 corresponds to random detection, while AUROC of 1 corresponds to perfect detection. 

Conclusions 
Simphony is a versatile framework for simulating rhythmic data. Although Simphony is 
especially apt for simulating circadian transcriptome data, it is general enough to simulate data 
of various types (e.g., bioluminescence). In the future, we plan to extend Simphony to simulate 
non-stationary trends (e.g., damped rhythms) and to accommodate different periods for different 
genes within a simulation. Altogether, Simphony can guide the design of experiments for 
interrogating rhythmic biological systems and help benchmark methods for analyzing data 
containing rhythmic signals. 
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