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 24 

Abstract 25 

Foundational theories in plant-animal interactions are being updated with input from modern 26 

metabolomic approaches that offer more comprehensive phytochemical profiles than were previously 27 

available.  Here we use a recently-formed plant-insect interaction, the colonization of alfalfa (Medicago 28 

sativa) by the Melissa blue butterfly (Lycaeides melissa), to describe the landscape of primary and 29 

secondary plant metabolites and the performance of caterpillars as affected by both individual compounds 30 

and suites of covarying phytochemicals.  We find that survival, development time and adult weight are all 31 

affected by a large number of compounds, including biomolecules associated with plant cell function and 32 

putative anti-herbivore action.  The dimensionality of the plant-insect interface is high, with clusters of 33 

covarying compounds in many cases encompassing divergent effects on different aspects of caterpillar 34 

performance.  The sapogenic glycosides are represented by more than 20 individual compounds with 35 

some of the strongest beneficial and detrimental effects on caterpillars, which highlights the value of 36 

metabolomic data as opposed to previous approaches that relied on total concentrations within defensive 37 

classes.  Considering positive and negative effects of both secondary compounds and primary metabolites 38 

(possibly associated with nutritional imbalance), theories of the evolution of plant defense based on a 39 

simple dichotomy between investment in defense or primary metabolism appear to be overly simplistic.  40 

Results are also discussed in light of previous work on local adaptation to alfalfa by the focal herbivore.  41 

 42 
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1. Introduction 47 

One of the conceptual pillars of trophic ecology is the idea that herbivores must overcome the barrier of 48 

plant secondary chemistry before extracting the nutrients necessary for growth and reproduction [1].  The 49 

success of this idea is reflected in areas of research that include coevolution [2], ecological specialization 50 

[3], and nutrient flow in ecosystems [4].  In most cases, progress has been made by chemical ecologists 51 

focusing on tiny subsets of the secondary metabolites produced by plants and consumed by herbivores.  52 

The focus on a few charismatic molecules or classes of compounds, such as furanocoumarins [5] or 53 

cardiac glycosides [6], was at least in part necessitated by early methods in natural products chemistry 54 

that were targeted and not easily optimized for the discovery of large suites of co-occurring primary and 55 

secondary metabolites [7,8].  As technological limitations have dissipated, the opportunity now exists for 56 

a deeper understanding of the challenges faced by herbivores, with the possibility of discovering, among 57 

other things, novel compounds and synergistic interactions among compounds [9–11].  More generally, 58 

an important task is to quantify the phytochemical dimensionality of the antagonistic interaction between 59 

plants and herbivores, with an eye towards understanding constraints on the evolution of both players 60 

[12,13] and predicting the formation of new plant-herbivore interactions [14].  Here we use the example 61 

of a specialized herbivore and a novel host plant to investigate the phytochemical landscape from the 62 

perspective of developing caterpillars. 63 

 The Melissa blue butterfly, Lycaeides melissa, specializes on larval host plants in the pea family 64 

(Fabaceae), primarily in the genera Astragalus and Lupinus.  Within the last 200 years, L. melissa has 65 

colonized introduced alfalfa, Medicago sativa (Fabaceae), at least twice and probably multiple times [15], 66 

forming a heterogeneous patchwork of association throughout the range of the butterfly in western North 67 

America.  M. sativa is a suboptimal host, relative to native hosts that have been examined, and 68 

populations of the butterfly that persist on M. sativa show evidence of loss of preference for native hosts 69 

[16], reduced caterpillar performance on native hosts, and a slight increase in ability to develop on the 70 

suboptimal novel host [17].  The genetic architecture of host use in this system is known to be polygenic 71 

and characterized by loci with conditionally neutral (host-specific) effects [17], but what is needed next is 72 
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an understanding of how many independent or covarying phytochemical compounds have consequential 73 

effects on caterpillars eating the novel host.  For example, will the trajectory of further local adaptation by 74 

L. melissa to M. sativa be a matter of evolving the ability to detoxify one or a large number of 75 

compounds?  We would also like to know how key compounds covary among individual plants, which 76 

should help us understand the puzzle faced by ovipositing females facing an array of co-occurring M. 77 

sativa chemotypes.  Here we use a common garden approach (to minimize non-genetic phenotypic 78 

variation among plants) and caterpillars individually reared in a controlled environment to address these 79 

questions while describing the effects of metabolomic variation in M. sativa on L. melissa.   80 

 81 

2. Methods 82 

(a) Plants and caterpillars 83 

Plants used in this project were grown at the University of Nevada, Reno, Main Station experimental 84 

farm.  The common garden was planted in 2016 with seeds collected the previous year from 45 plants 85 

(previously studied by Harrison et al. [18]) growing in a fallow field in north-western Nevada on the 86 

western edge of the Great Basin Desert.  The focal butterfly, L. melissa, was present in the source field 87 

but has not yet colonized the university farm where experimental plants were grown.  The 45 maternal 88 

plants each contributed 15 offspring to a randomized grid design in the common garden, irrigated with 89 

broadcast sprayers in 2016 and drip in 2017, without supplemental fertilization.  Out of each maternal 90 

family, a single plant was randomly selected for use in the rearing experiment reported here as a way to 91 

capture as much genetic and phenotypic variation as possible.   92 

 On 17 and 18 July 2017, a total of 45 L. melissa females were collected from an alfalfa-associated 93 

population near Verdi, NV, and confined to oviposition arenas (500 mL plastic cups) in groups of three 94 

with host plant leaves and supplied with Gatorade on mesh lids.  After three days, eggs were removed 95 

from leaves, pooled, and kept at room temperature until hatching, at which time caterpillars were placed 96 

individually in Petri dishes (100 x 25 mm) with leaves of a particular M. sativa individual (which became 97 

the only plant from which they were fed throughout the experiment).  Ten caterpillars were assigned to 98 
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each of the 45 experimental M. sativa plants (for a total of 450 independently-reared caterpillars) and kept 99 

in a growth chamber set to 25 C and a 12 hour light / 12 hour dark cycle.  From each caterpillar we 100 

recorded survival to adult, date of eclosion (if successful) and adult weight to the nearest 0.01 mg on a 101 

Mettler Toledo XP26 microbalance. 102 

 103 

(b) Phytochemistry and plant traits 104 

Metabolomic variation among individual plants was characterized with liquid chromatography–mass 105 

spectrometry (LC-MS, [19]) using leaves collected on a single day at the start of the rearing experiment.  106 

Dried, ground leaves (10 mg) were extracted in 2 mL of 70% aqueous ethanol and injected into an 107 

Agilent 1200 analytical high performance liquid chromatograph paired with an Agilent 6230 Time-of-108 

Flight mass spectrometer via an electrospray ionization source.  Resulting chromatograms were analyzed 109 

using MassHunter Quantitative Analysis (v.B.06.00, Agilent, Santa Clara, CA); see electronic 110 

supplementary material for additional phytochemical protocols.  Major classes of compounds were 111 

identified using characteristic relative mass defects [20].  Leaf protein content was quantified with three 112 

replicates (~2 mg each) per plant using the Bicinchoninic acid assay (Pierce Biotechnology, Waltham, 113 

MA).  Before grinding, five dried leaflets from each sample were weighed to the nearest 0.1 mg, scanned, 114 

and area was measured using ImageJ (v.1.52a); specific leaf area (SLA) was calculated as leaf area 115 

divided by dry mass.  Finally, leaf toughness was measured on fresh material in the common garden, at 116 

the start of the experiment (mid-July, when leaves were also sampled for chemistry and protein) and at the 117 

end of the experiment (mid-August), from three leaves per plant at each date, with a penetrometer 118 

(Chatillon 516 Series) through the center of the middle leaflet (as in [18]); the three leaves were selected 119 

haphazardly, avoiding the oldest and youngest leaves.  The six leaf toughness measurements per plant 120 

were averaged for a single toughness measure used in analyses. 121 

 122 

(c) Analyses of plant traits and caterpillar performance 123 

(i) Overview 124 
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Our analytical strategy to understand the association between phytochemical variation and caterpillar 125 

performance followed two complementary paths, one focusing on dimension reduction and feature 126 

selection to produce relatively simple models, and the other on the estimation of effects of all individual 127 

compounds.  For the first path, involving dimension reduction and feature selection, we utilized an 128 

approach developed for gene transcription studies that identifies groups or modules of correlated variables 129 

with hierarchical clustering [21]; after clustering, we reduced the number of independent variables by 130 

selecting among modules and other plant traits (specific leaf area, protein and leaf toughness) using lasso 131 

regression [22].  Selected modules (and other plant traits) were analyzed in Bayesian linear models that 132 

are useful in this context because they allowed us to quantify our confidence in the sign of effects 133 

(positive or negative) as continuous probabilities (as opposed to relying on arbitrary significance cutoffs).  134 

For the second analytical path, we utilized ridge regression [22] to estimate effects for all compounds 135 

simultaneously, which allowed us to investigate the distribution of effects among compounds and classes 136 

of compounds.  Both analytical paths incorporated cross-validation during the lasso and ridge regressions, 137 

and as a means of evaluating the predictive success of the Bayesian models.  We also used randomization 138 

tests to compare the performance of modules and individual compounds with randomly-chosen suites of 139 

compounds.   140 

 141 

(ii) Dimension reduction and feature selection 142 

We chose an approach that reduces the number of independent variables while allowing us to learn 143 

something about the correlational structure of the data, specifically unsupervised hierarchical clustering as 144 

implemented in the blockwiseModules function of the WGCNA package [21] in R [23].  Among the 145 

options in the pipeline, we used positive correlations among variables (“signed” network type), merge cut 146 

height at 0.25, and correlations raised to the power of five (which is where the scale free topology index 147 

reached a plateau).  Through experimentation, we found that our results with LC-MS data were robust to 148 

variation in these choices, including the choice of signed or unsigned networks.  After an initial round of 149 

clustering, we took a remaining 19 unassigned compounds and put them through a second round of 150 
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clustering (although the majority of consequential compounds were identified in the first round). One 151 

output of the WGCNA procedure is the first eigenvector from each cluster of compounds, which reduced 152 

our number of predictor variables by a factor of ten.  The resulting eigenvectors plus protein, SLA 153 

(specific leaf area) and leaf toughness were then put through the feature reduction step of lasso regression 154 

[22], a penalized regression that allows beta coefficients to be constrained to zero (thus excluding 155 

variables).  We used the cv.glmnet function of the glmnet package [24] with cross-validation during error 156 

reduction set to leave out one plant (and associated caterpillars) at each iteration.  The variables selected 157 

by the lasso were then put into a Bayesian linear model to estimate coefficients and associated credible 158 

intervals using JAGS (version 3.2.0) run in R with the rjags package [25].  Two Markov chains were run 159 

for 10,000 steps for each analysis (no burn in was required) and chain performance was assessed by 160 

plotting chain histories, and calculating the Gelman and Rubin convergence diagnostic and effective 161 

sample sizes [26,27].  For all models, uninformative priors for the regression coefficients were modeled 162 

as a Normal distribution with a mean of zero and variance of 0.01.  We quantified our confidence in the 163 

sign of coefficients (positive or negative) as the fraction of the posterior samples that were less than zero 164 

(for coefficients with a median negative value) or greater than zero (for coefficients with a median 165 

positive value). 166 

 All analyses were done using the R statistical language [23] on scaled (z-transformed) predictor 167 

variables, and both lasso and Bayesian models used binomial (for survival), Poisson (for development 168 

time) and Gaussian (for adult weight) errors.  The latter two analyses (development time and adult 169 

weight) included sex as a factor.  The analysis of development time also included adult weight as a 170 

covariate; while (reciprocally) the analysis of adult weight included development time as a predictor.  171 

These variables are negatively correlated (at -0.52), and they function as useful covariates of each other, 172 

allowing us to investigate the possibility of unique plant effects on weight gain and development time, 173 

which could not be discovered if, for example, these variables were combined into a single performance 174 

index.   175 
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 The success of models developed with the dimension reduction and feature selection pipeline was 176 

judged in two ways.  We used a cross-validation procedure in which we left out one plant (and associated 177 

caterpillars) in each iteration of the Bayesian model and then used the estimated coefficients (for 178 

phytochemical variables and other plant traits) to predict the performance of the unobserved caterpillars.  179 

After 45 iterations (one for each plant), we calculated a simple correlation coefficient between the 180 

observed and predicted performance of caterpillars across plants.  In addition, we repeatedly resampled 181 

the original LC-MS data to match the structure of the reduced set of predictor variables to ask to what 182 

extent randomly assembled modules could outperform the empirically-derived modules. 183 

 184 

(iii) Individual compound effects 185 

The second path of our two-part analytical strategy involved simultaneous estimation of the effects of all 186 

individual chemical compounds on caterpillar survival, development time and adult weight.  For this 187 

approach, we again used penalized regression (in the glmnet package [24]), but this time with ridge 188 

regression (instead of lasso) which constrains beta coefficients to avoid variance inflation but does not 189 

eliminate variables.  As with the analyses above, ridge regression was done using error structures 190 

appropriate to the specific response variables, and included additional covariates where possible (in 191 

models of development time and adult weight).  The resulting coefficients associated with all individual 192 

compounds were examined as a second perspective on the modules examined in the first set of analyses, 193 

and were used to ask to what extent individual compound effects could be predicted by the degree to 194 

which they vary among individual plants as quantified with the simple coefficient of variation.  To assess 195 

confidence in the results of ridge regressions, we used a bootstrap approach, repeatedly resampling the 196 

data and estimating coefficients 1000 times, noting the compounds whose bootstrap confidence intervals 197 

did or did not overlap zero [28].  We also allowed for the discovery of interactions among compounds 198 

using penalized regression on all individual compounds and all pairwise interactions between compounds.  199 

For ease of interpretation, this final analysis of potential interactions used lasso (not ridge) regression, 200 

letting the coefficients for many of the individual compounds and pairwise interactions go to zero.  201 
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 202 

3. Results 203 

Of the 450 caterpillars that started the experiment, 261 were reared to eclosion as adults (a mortality rate 204 

similar to previous work with this system [17]) on leaves from 45 individual alfalfa plants that were 205 

characterized for protein, leaf toughness, specific leaf area and 163 individual metabolomic features (see 206 

figure 1 for variation among plants in caterpillar performance and a subset of plant traits, and electronic 207 

supplementary material table S1 for a list of compounds).  Hierarchical clustering identified 14 subsets (or 208 

modules) of compounds with generally low correlations among modules and high correlations within 209 

modules (see electronic supplementary material figures S1 and S2 for correlations within and among 210 

modules, and figure S3 for module variation among plants).  The correlational structure of the 211 

phytochemical data is illustrated as an adjacency network in figure 2, where it can be seen that some 212 

modules (e.g., modules 1, 2, and 3) contain a great diversity of compound types, while other modules are 213 

made up of more narrow classes (e.g. modules 7 and 8 which are mostly saponins, a class of defensive 214 

secondary metabolites [29]).  From the 14 eigenvectors summarizing variation in the modules, as well as 215 

the other plant traits, lasso regression produced a reduced set of potential predictors which were then used 216 

in Bayesian multiple regression models that included between seven and nine independent variables (table 217 

1).  The models had reasonably high performance in leave-one-out cross-validation (correlations between 218 

observed and predicted values were between 0.50 and 0.59, table 1), and also in resampling analyses 219 

(electronic supplementary material figure S4), where a small fraction (never more than 4%) of randomly-220 

generated models exceeded the variance explained of the models reported in table 1.   221 

 Variation among plants in the suites of covarying compounds had large effects on caterpillar 222 

performance: for example, the beta coefficient of -2.33 (on the log-odds scale) associated with module 3 223 

corresponds to a reduction in mean survival from 0.58 to 0.12 associated with a one unit change in 224 

variation associated with that phytochemical module (table 1).  The phytochemical predictor variables are 225 

eigenvectors from clustering analysis, and thus are not entirely straightforward to interpret, especially 226 

when the clustering analysis was itself based on z-transformed data.  It is useful to note that our LC-MS 227 
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data consists of peak areas divided by the peak of an internal standard, and again divided by the dry 228 

weight of the sample (thus, in total, referred to as "relative abundance per dry weight").  Variation in 229 

these numbers reflects variation in concentrations within compounds (among plants), but care should be 230 

used in comparing among compounds because of different ionization responses relative to the standard 231 

(thus the use of z-transformation for among-compound analyses).  Nevertheless, the effects reported in 232 

table 1 reflect real variation in suites of compounds, as can be seen in correlations between eigenvectors 233 

and individual compounds in electronic supplementary material figure S2, and in variation among plants 234 

in average z-scores in figure S3.  235 

 Modules included in multiple regression models frequently had common effects across response 236 

variables (e.g., the positive association of module 10 with both survival and adult weight), with the 237 

exceptions of module 11 that had a solitary effect on survival and module 6 with an effect only on 238 

development time (although the probability of the latter having a negative effect was only 0.75).  Specific 239 

leaf area had a negative effect on survival and adult weight, and the coefficients for specific leaf area (-240 

0.31 for survival and -0.42 for weight) were of smaller magnitude than most phytochemical effects. 241 

 Module-based analyses (as in table 1) focused on feature reduction with lasso regression; as a 242 

complementary analytical approach, we used ridge regression on all of the compounds (which estimates 243 

effects of individual compounds without excluding variables as in lasso regression).  Analyses of 244 

individual compounds by ridge regression (figure 3) were broadly consistent with the strongest module-245 

specific effects, as can be seen, for example, with module 10 having positive effects on survival and adult 246 

weight in module analyses (table 1) and in compound-specific analyses (figure 3).  Similarly, the 247 

individual compounds in module 3 had negative compound-specific effects on survival (figure 3), and 248 

that module had the strongest negative effect on survival in the eigenvector-based analyses in table 1.  Not 249 

surprisingly, the larger modules (with a greater number of covarying compounds, including many primary 250 

metabolites) tended to have a more complex mix of positive and negative effects (for examples, modules 251 

1 and 2, figure 3).  For ease of interpretation, the coefficients from compound-specific regressions of 252 

survival and development time (in figures 3 and 4) have been back-transformed to be on the scales of 253 
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probability and days (respectively), and displayed as changes relative to intercepts.  For example, a 254 

compound with a relatively large effect on survival in figure 3 could be associated with a one half percent 255 

(0.005) reduction in the probability of survival relative to average survival and while holding other 256 

compounds constant.  257 

 We also considered potential pairwise interactions among individual compounds, and found few 258 

interactions that passed the filter of the penalized regression (electronic supplementary material table S2), 259 

at least relative to the large number of potential interactions.  We did not find evidence that more or less 260 

variable compounds had differential effects on caterpillars, although there was a trend towards both 261 

greater positive and greater negative effects being associated with less variable compounds (figure S5).  262 

We did, however, see variation among classes of compounds in their effects on caterpillars (figure 4).  All 263 

classes included positive and negative effects, although phenolic effects on survival were more often 264 

negative.  The widest breadth of effects (including the most extreme positive and negative compound-265 

specific coefficients) tended to be found among peptides, saponins and phospholipids, with lipids and 266 

terpenoids having a more narrow range (figure 4). 267 

 268 

4. Discussion 269 

The results reported here represent a dissection of the phytochemical landscape facing a specialized insect 270 

herbivore attacking a novel host plant [30].  The phytochemical landscape is both physical, referring to 271 

variation in compounds among individual plants in a common garden, and hypothetical to the extent that 272 

effects of individual compounds on caterpillars are estimated, although compounds are of course not 273 

encountered in isolation.  Our exploration of the phytochemical landscape facing L. melissa on M. sativa 274 

is necessarily a first draft based on a snapshot in time.  Nevertheless, models including suites of covarying 275 

compounds and other plant traits had predictive success and suggested different natural products affecting 276 

survival, development time and adult weight (performance measured as adult weight is a proxy for 277 

fecundity [31]).  Previous work with M. sativa and insect herbivores has focused on sapogenic glycosides 278 

[29], and a simple outcome from our study could have been that one or a small number of saponins have 279 
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anti-herbivore properties that reduce fitness of our focal insect.  Instead, we find large numbers of 280 

compounds with potentially consequential effects on caterpillars (figure 3).   281 

 The precise identification of specific compounds is not as important as the more general result 282 

that the prominent class of defensive secondary chemistry, saponins, includes compounds with both 283 

positive and negative effects.  Moreover, saponin effects tend slightly towards the positive with improved 284 

survival, faster development and increased adult size (figure 4).  Positive effects are potentially associated 285 

with feeding stimulation, as has been observed (along with other positive effects) for other specialist 286 

herbivores and plant toxins [32,33].  Negative effects of saponins on insects potentially include disruption 287 

of hormone production [34], although exact modes of action on L. melissa will await further study.  288 

Perhaps more intriguing than the range of effects associated with saponins are the negative effects 289 

associated with variation in certain primary metabolites (figure 4).  For example, some of the largest 290 

negative effects in module 3 (figure 2) are phospholipids, peptides and even sucrose.  These could be 291 

direct effects if a compound is suboptimal for development, or they could be associated with nutritional 292 

imbalance [35], such that too much of one nutrient makes it difficult for caterpillars to consume a 293 

balanced diet.  It has been suggested that the presentation of unbalanced nutrition can be a kind of anti-294 

herbivore strategy for a plant that does not depend on secondary metabolites [36].  Although this 295 

possibility has not been thoroughly investigated in many systems with full metabolomic profiling, the 296 

idea that nutritional imbalance could be as important as direct toxicity suggests that we might update 297 

theories of the evolution of plant defense that were built on differential investment into simple categories 298 

of plant growth versus defense [37]. 299 

 The finding that our specialist herbivore is affected by a wide range of metabolites, primary and 300 

secondary, that vary greatly even within a single host population has implications for our understanding 301 

of heterogeneity in the system and for the course of local adaptation of the herbivore to the novel host.  302 

Lycaeides melissa typically colonizes weedy or feral patches of M. sativa on roadsides or integrated into 303 

natural communities, and previous work has documented dramatic variation among individual alfalfa 304 

locations (often in close proximity) in the extent to which they can support caterpillar development [38].  305 
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Previous phytochemical data with a lower resolution was less successful in explaining that variation [38], 306 

and the results reported here suggest that among patch variation could be explained by future studies 307 

using metabolomic data as used here.  The within-population complexity described in the current study 308 

combined with previous evidence for dramatic among-population variation in M. sativa suitability for the 309 

focal herbivore also raises the possibility that the novel host presents a multi-faceted and potentially ever-310 

shifting target from the perspective of evolving butterfly populations.  In particular, it is possible that M. 311 

sativa defense against a specialist herbivore might be realized through different combinations (within and 312 

among populations) of individually-acting compounds, thus making it unlikely for butterflies in any one 313 

population to possess an effective suite of alleles that improve fitness on the novel host.  In this context, it 314 

is interesting to note that a molecular genetic dissection of caterpillar performance in this system found a 315 

large number (potentially hundreds) of individual loci associated with performance on M. sativa, yet 316 

evolution in populations associated with the novel host is primarily associated with a loss (through 317 

genetic drift) of the ability to eat a native host and only slight improvement in the ability to eat the novel 318 

host [17].  319 

 The correlational structure of the phytochemical variation that we observed has implications for 320 

the evolution of plant defense and the accumulation of insect herbivores on M. sativa.  Specifically, 321 

correlations among modules should make it possible to hypothesize directions of least resistance for 322 

defense evolution.  Compounds in module 9 had a negative effect on survival (table 1), and module 9 323 

negatively covaried with module 10 (electronic supplementary material figure S1), which itself had a 324 

positive association with caterpillar survival.  Thus an increase in module 9 and an associated decrease in 325 

10 would be beneficial for the plant, at least with respect to herbivory by our focal herbivore.  Of course, 326 

most plants do not have the luxury of optimizing defense against a single herbivore, and it is easy to 327 

imagine that improvements in defense against one enemy could lead to increased attraction to another, 328 

especially given the diversity of effects even within major classes studied here, including saponins and 329 

phenols.  Compounds in the latter class (phenolics) were found to have strong positive and negative 330 

effects on assemblages of arthropods associated with the maternal plants from which seeds were collected 331 
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to start the common garden used in the present study [18].  We have not attempted to separate constitutive 332 

and induced defenses [39] as the plants in our common garden were exposed to natural and continuous 333 

levels of herbivory.  We have also focused on simple effects rather than interactions among compounds, 334 

although some were detected (electronic supplementary material table S2), and interactions could 335 

certainly add to the complexity of effects on different herbivores.  Future studies in this system involving 336 

greater numbers of plants will have greater power to test for robust interactive effects.  In the meantime, it 337 

is clear that metabolomic data such as that analyzed here has the potential to both open up new avenues of 338 

conceptual development in plant-insect interactions and to link micro-evolutionary trajectories across 339 

hosts and herbivores.   340 
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 447 

Figure legends (also reproduced below individual figures) 448 

Figure 1.  Variation among plants in caterpillar survival (a), development time (b) adult weight (c), three 449 
individual compounds (d-e) and two external plant traits, specific leaf area (g) and leaf toughness (h).  450 
The three example compounds shown here (out of the 163 assayed) were among the top five most 451 
influential compounds for survival, development time and adult weight: cpd. 9 is a peptide with a 452 
negative association with survival, cpd. 94 (another peptide) has a negative association with development 453 
time, and cpd. 160 is a phospholipid with a negative association with adult weight.  Individual plants in 454 
all panels are organized from left to right by decreasing caterpillar survival in the top panel (a).  Standard 455 
errors are shown for panels b, c, g and h.  The units for d-e are compound relative abundance per dry 456 
weight of sample; the units for specific leaf area are cm2/mg, and grams/newton for leaf toughness. 457 
 458 
Figure 2.  Illustration of correlational structure among compounds: each node in the network is a 459 
compound, and compounds are linked by a line if they are correlated among individual plants at 0.5 or 460 
above (links among compounds in modules 12-14 represent weaker correlations, greater than 0.1; see 461 
main text for details).  Two letter codes within nodes indicate compound classes, as explained in the 462 
legend.  Colors of nodes correspond to membership in modules as determined by hierarchical cluster 463 
analysis; the color key to the 14 modules is shown in the lower left.  Not shown are a small number of 464 
compounds with weak connections to all other compounds, including two compounds that were not  465 
included in any module (shown as module zero in figure 3). 466 
 467 
Figure 3.  Effects of individual compounds on survival, development time and adult weight, as estimated 468 
by ridge regression (using binomial, Poisson and Gaussian models, respectively).  The strength of effect 469 
for each compound is indicated by the horizontal extent of each bar, and compounds are grouped by 470 
modules (m1, m2, etc.); the order of compounds along the vertical axis is arbitrary within modules and 471 
fixed across columns.  Orange colors indicate negative effects on survival, development and weight, 472 
while blue colors are positive effects.  The darker shades of orange and blue mark coefficients whose 95% 473 
confidence intervals did not overlap zero in 1,000 bootstrap samples.  Values for survival and 474 
development time have been back-transformed from units on the log-odds and log scales to units of 475 
probability and days to pupation, and are shown as changes from the mean or intercept values.  For 476 
example, a negative (orange) survival coefficient of 0.005 means a one-half percent reduction in average 477 
probability of survival associated with variation in a particular compound.  The ten compounds with the 478 
largest coefficients (by absolute value) and bootstrap intervals not overlapping zero are labelled by 479 
compound classes (see figure 2 for abbreviations) in each panel. 480 
 481 
Figure 4.  Violin plots of compound-specific effects (coefficients from ridge regressions) summarized by 482 
chemical classes.  Plots show median (black dot), interquartile range (box) and 95% confidence intervals 483 
(whiskers) surrounded by kernel density envelopes.  Sample sizes for each category as follows: l5 lipids, 484 
17 terpenoids, 24 saponins, 48 peptides, 43 phospholipids, 7 phenolics and 9 other.  Categories are as 485 
shown in electronic supplementary material table S1, with the exception of terpenoids (which is shown 486 
here as a pooled category of 5 sterols, 5 vitamins and 7 carotenoids) and "other" (which is 3 alkaloids, 2 487 
amino acids, 1 halogenated compound and 3 sugars).  Categories are arranged from left to right based on 488 
the gradient of median positive to negative effects on survival.  Coefficients for survival (a) and 489 
development time (b) have been back-transformed from the units of log-odds and log to probability and 490 
days to pupation, respectively, and shown as deviations from the mean or intercept value (as in figure 3). 491 
 492 
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Table 1.  Results from Bayesian regressions of module eigenvectors and covariates predicting 
caterpillar survival, development time and adult weight (as binomial, Poisson, and Gaussian 
regressions, respectively, with corresponding units in log-odds, log number of days, and 
milligrams).  For each regression coefficient, numbers in parentheses are 95% credible intervals 
(the first two numbers) and the probability that the coefficient has the estimated sign (e.g., 0.63 for 
the m2 survival coefficient of 0.37 indicates a 63% probability that the m2 module has a positive 
effect on survival).  Note that negative coefficients for development time indicate faster caterpillar 
development (fewer days) associated with variation in a particular compound.  Modules (listed in 
the left column) are only shown if they were included in one of the three regressions following 
feature selection using lasso regression (see main text for additional details).  Empty spaces in the 
table appear if a particular module was selected through lasso regression for one or two analyses 
but not all three (m3, for example, was not selected by lasso regression for development time).  
Slash marks (/) indicate variables not considered for a particular analysis (e.g., sex, adult weight 
[mg] and development time [days] were not possible for the survival analysis because they are not 
observed on dead individuals).  Values for “validation” shown in the last row are the correlation 
between observed and predicted values in a cross-validation analysis (electronic supplementary 
material figure S4).     

 Survival Development time Weight 
 coefficient (CI; prob.) coefficient (CI, prob.) coefficient (CI, prob.) 

m2  0.37 (-1.87, 2.67; 0.63) -0.07 (-0.26, 0.12; 0.78)   
m3 -2.33 (-3.94, -0.72; >0.99)   -2.33 (-4.87, 0.24; 0.96) 
m6   -0.05 (-0.19, 0.09; 0.75)    
m9 -2.31 (-4.49, -0.15; 0.98)  0.064 (-0.11, 0.24, 0.78)   
m10  2.54 (0.81, 4.23; >0.99)    3.56 (1.22, 5.84; >0.99) 
m11  2.01  (0.64, 3.42; >0.99)     
SLA -0.31 (-0.55, -0.08; >0.99)   -0.42 (-0.78, -0.06; 0.99) 
Protein  0.061 (-0.16, 0.28; 0.71)    0.08 (-0.26, 0.42; 0.68) 
Tough.  0.036 (-0.17, 0.24; 0.36) -0.002 (-0.02, 0.02; 0.57)   
Sex       /  0.06 (0.02, 0.10; >0.99)  1.10 (0.38, 1.83; >0.99) 
mg       / -0.03 (-0.05, -0.01; >0.99)       / 
Days       /       /  1.10 (0.38, 1.83; >0.99) 

Intercept  0.34 (0.14, 0.53; >0.99)  3.48 (3.45, 3.52; >0.99)  10.36 (9.81, 10.92; >0.99) 

Validation  0.53   0.59   0.50  
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Figure 1.  Variation among plants in caterpillar survival (a), development time (b) adult weight (c), three 
individual compounds (d-e) and two external plant traits, specific leaf area (g) and leaf toughness (h).  
The three example compounds shown here (out of the 163 assayed) were among the top five most 
influential compounds for survival, development time and adult weight: cpd. 9 is a peptide with a 
negative association with survival, cpd. 94 (another peptide) has a negative association with development 
time, and cpd. 160 is a phospholipid with a negative association with adult weight.  Individual plants in 
all panels are organized from left to right by decreasing caterpillar survival in the top panel (a).  Standard 
errors are shown for panels b, c, g and h.  The units for d-e are compound relative abundance per dry 
weight of sample; the units for specific leaf area are cm2/mg, and grams/newton for leaf toughness.  
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Figure 2.  Illustration of correlational structure among compounds: each node in the network is a 
compound, and compounds are linked by a line if they are correlated among individual plants at 0.5 or 
above (links among compounds in modules 12-14 represent weaker correlations, greater than 0.1; see 
main text for details).  Two letter codes within nodes indicate compound classes, as explained in the 
legend.  Colors of nodes correspond to membership in modules as determined by hierarchical cluster 
analysis; the color key to the 14 modules is shown in the lower left.  Not shown are a small number of 
compounds with weak connections to all other compounds, including two compounds that were not  
included in any module (shown as module zero in figure 3). 
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Figure 3.  Effects of individual compounds on survival, development time and adult weight, as estimated 
by ridge regression (using binomial, Poisson and Gaussian models, respectively).  The strength of effect 
for each compound is indicated by the horizontal extent of each bar, and compounds are grouped by 
modules (m1, m2, etc.); the order of compounds along the vertical axis is arbitrary within modules and 
fixed across columns.  Orange colors indicate negative effects on survival, development and weight, 
while blue colors are positive effects.  The darker shades of orange and blue mark coefficients whose 95% 
confidence intervals did not overlap zero in 1,000 bootstrap samples.  Values for survival and 
development time have been back-transformed from units on the log-odds and log scales to units of 
probability and days to pupation, and are shown as changes from the mean or intercept values.  For 
example, a negative (orange) survival coefficient of 0.005 means a one-half percent reduction in average 
probability of survival associated with variation in a particular compound.  The ten compounds with the 
largest coefficients (by absolute value) and bootstrap intervals not overlapping zero are labelled by 
compound classes (see figure 2 for abbreviations) in each panel. 
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Figure 4.  Violin plots of compound-specific effects (coefficients from ridge regressions) summarized by 
chemical classes.  Plots show median (black dot), interquartile range (box) and 95% confidence intervals 
(whiskers) surrounded by kernel density envelopes.  Sample sizes for each category as follows: l5 lipids, 
17 terpenoids, 24 saponins, 48 peptides, 43 phospholipids, 7 phenolics and 9 other.  Categories are as 
shown in electronic supplementary material table S1, with the exception of terpenoids (which is shown 
here as a pooled category of 5 sterols, 5 vitamins and 7 carotenoids) and "other" (which is 3 alkaloids, 2 
amino acids, 1 halogenated compound and 3 sugars).  Categories are arranged from left to right based on 
the gradient of median positive to negative effects on survival.  Coefficients for survival (a) and 
development time (b) have been back-transformed from the units of log-odds and log to probability and 
days to pupation, respectively, and shown as deviations from the mean or intercept value (as in figure 3). 
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