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Abstract 
 
1. Species’ population trends are fundamental to conservation: they are used convey the 
global, national and local state of nature, justify calls to action and underpin many 
prioritisation exercises, including the IUCN red-list. It is crucial to be able quantify the 
degree to which population trend data can be trusted, yet there is not currently a 
straightforward means to do so.  
 
2. We present a method that compares trends derived from various samples of ‘complete’ 
population time-series, to see how often these samples correctly estimate the direction and 
magnitude of the complete trend. We apply our method to a dataset of 29,226 waterbird 
population time-series from across North America.  
 
3. Our analysis shows that if a significant trend is detected, even from only a few years, it is 
likely to reliably describe the direction (positive or negative) of the complete trend, though 
often does not approximate the magnitude of change well. However, if no significant trend is 
detected, a many-years long sample is required to be confident that the population is truly 
stable. Further, an insignificant trend is more likely to be missing a decline rather than an 
increase in the population. Sampling infrequently, but regularly, was surprising reliable in 
determining trend direction, but poor at determining the magnitude of change.  
 
4. By providing percentage estimates of reliability for combinations of sampling regimes and 
lengths, we have a means to determine the reliability of species population trends. This will 
increase the rigor of large-scale population analyses by allowing users to remove time-series 
that do not meet a reliability cut-off, or weighting time series by reliability, and could also 
facilitate planning of future monitoring schemes. Our methods are applicable to other taxa 
and we provide the tools to do so. 
 
 
Introduction 
Many crucial conservation decisions rely 
on knowing the overall trend of a species 
or population. This information underpins 
IUCN red-list classification (Rodrigues et 
al., 2006), many national threatened 
species ranking systems (e.g. NESP 
Threatened Species Recovery Hub, 2018; 
U.S. Fish & Wildlife Service, 2018) and 
can convey to policy makers the state of 
nature globally, regionally and locally 
(Gärdenfors, 2001; Collen et al., 2009). It 
is important that conservationists 
appreciate the extent to which they can 

trust the apparent trend of a population, 
both to ensure that at-risk species are not 
ignored and to avoid misallocating 
conservation resources towards species 
that are not actually at risk.  The reliability 
of population trends are poorly 
understood, especially when data on 
variability and measurement error are not 
available. In addition, many large-scale 
analyses and policy recommendations (e.g. 
Collen et al., 2009; WWF, 2016) rely on 
aggregating trends across numerous 
populations with little guidance on how to 
weight trends by their likely veracity.  
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Estimating the trend of a population 
requires a series of counts over time 
(typically years, as considered here). 
Linear, or non-linear, models are then fit to 
estimate yearly change (e.g. 1% decline 
per year), or modelled counts are 
compared between years at the start and 
end of a time period (e.g. a 10% increase 
over 10 years). The number of years of 
data, sampling frequency, degree of 
measurement error and population 
variability all affect the reliability of the 
derived trend. When data are available on 
measurement error and population 
variability, power analyses are 
recommended to estimate degree of 
reliability in trend estimates (Hayes & 
Steidl, 2002; Magurran et al., 2010; 
Johnson et al., 2014). Although power 
analyses are useful where sufficient data 
are available, there is often insufficient 
information, especially when assessing 
many populations, or using existing count 
data. 
 
Previous studies have attempted to 
quantify reliability of trends using both 
simulated and real data. Simulated studies 
conclude that longer time scales are 
needed for better trend estimates, and that 
there are high margins of error when 
detecting small population declines 
(Wilson et al., 2011; Prozt et al., 2012; 
Tománková et al., 2013; Connors et al., 
2014; Fox et al., 2018). Studies working 
with real data on diverse taxa have found 
that populations exhibiting a particular 
trend across one time-interval often show 
an opposing trend in later years (Dunn, 
2002; Keith et al., 2015). The number of 
years of sampling required to reliably 
detect a trend has been estimated at both 
10 (both by Rueda-Cediel et al., 2015 for a 
snail species and White, 2018 for various 
vertebrates) and 21 years (Reynolds et al., 
2011 for brown bears). These 
investigations are useful for gaining an 
approximate idea of reliability, but do not 
provide a straightforward way for a study 
to assign a value of reliability to 

population time-series of varying lengths 
(i.e. numbers of years).  
 
Therefore, in the absence of better 
guidance, studies based on population 
trends often lack the data to make any 
quantification of uncertainty (e.g. Craigie 
et al., 2010, Loh et al., 2005). Further, 
most studies assume that there is a ‘true’ 
trend exhibited by each population, but 
given most populations fluctuate over time 
in response to the positive and negative 
pressures affecting them, it is incorrect to 
maintain that any has one true detectable 
trend over long time-periods. 
 
We propose a method to quantify 
uncertainty in trend estimates. Our 
analyses hinge on the concept of 
comparing the trend derived from a 
‘sample’ (a subset of the full set of counts 
for a population) to the ‘complete’ trend of 
that population, derived from the full set of 
counts. We have chosen to use the word 
‘complete’ in this study rather than ‘true’ 
as even with yearly counts we cannot 
claim to know the true trend of a 
population. Normally, one would possess 
only the sample, and we therefore hope to 
provide an estimate of how likely that 
sample is to represent the complete trend, 
regardless of sample length or complete 
trend length. In our analysis we quantify 
reliability both in terms of accuracy of 
trend direction and magnitude of change. 
 
We ask two questions: 1) How reliable are 
trends derived from a certain number of 
years of data, based on the time over 
which a trend estimate is desired? For 
example, how well do 5 consecutive years 
of survey data represent the trend of a 
population over 10 years?; and 2) How 
reliable are trends derived from data 
sampled at different intervals, such as 
samples taken every year over a 30-year 
period compared to every 5 years over the 
same period? We also investigate two 
factors that we expect to impact reliability: 
species generation time and shape of the 
complete trend. We expect that species 
with longer generation times will require 
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longer survey periods, as there will be a 
lag before populations show responses to 
changes in birth rate while older 
individuals are still living (Kuussaari et 
al., 2009). We also expect that trends 
estimated from samples of populations 
with complex non-linear complete trends 
will be less accurate than samples from 
populations with linear or near-linear 
complete trends.  
 
As a case study, we use an empirical 
dataset of yearly counts of 129 waterbird 
species at 1,110 sites in North America (a 
total of 29,226 site by species 
combinations). Providing these estimates 
for waterbird data is particularly beneficial 
as data on waterbirds are available at large 
spatio-temporal scales and waterbird 
studies can provide insights into broader 
conservation goals (Piersma & Lindström, 
2004; Amat & Green, 2010; Amano et al., 
2018). However, our methods are general, 
and we provide code and instructions to 
generalise to other taxa. Our work 
provides an explicit measure of the 
reliability of a trend and gives an 
evidence-based justification for excluding 
samples below a certain length, according 
to the degree of confidence desired for a 
study. Finally, these results can be used to 
plan multi-species monitoring programs, to 
give the highest likelihood of capturing 
representative trends for the most species.  
 
Methods:  
Data 
We obtained an initial dataset of yearly 
count data for 174 waterbird species in 
North America from the Christmas Bird 
Count (CBC; Dunn et al., 2005) at 1,123 
sites spanning the years 1966 to 2013 
(Amano et al., 2018), from which 30 years 
of consecutive counts were taken for each 
site by species combination. We selected 
30 years because it represented a good 
balance between a long-term survey 
period, yet one for which adequate data 
were still available. In cases where a site 
was sampled for over 30 years, the most 
recent 30 years were taken. The supporting 
material provides a list of species and a 

map of spatial coverage. The CBC has 
been conducted yearly since 1900, 
primarily in the US and Canada, and 
involves a count of all bird individuals 
within a ‘site’, defined as a circle 24.1km 
in diameter. Sites are accessed by a variety 
of means including foot, car, boat, and 
snow mobile. Effort varies between sites, 
but the number of survey hours spent per 
count is documented, allowing effort to be 
accounted for (see below). We considered 
each species at each site as an independent 
population; as we were not attempting to 
estimate the trends of entire species, 
correlations between sites were irrelevant. 
This gave us an initial dataset of 56,022 
populations. 
 
Data preparation 
Christmas Bird Count data have variable 
sampling effort and this must be accounted 
for in the modelling process. The most 
common expected relationship between 
effort and detection is a linear relationship 
between log-transformed count and effort. 
Following Butcher & McCulloch (1988) 
and Xu et al. (2015), we chose to retain 
only those species where a significant 
linear relationship between detection and 
log of effort was shown, found by running 
a negative binomial generalized linear 
model (see Modelling Specifications, 
below) for each species, at all years and 
sites: 
 

𝐸(𝐶𝑜𝑢𝑛𝑡() = 𝑔,-(𝛼 + 	𝛽	log(𝑒()) 
 

(1) 

𝑣𝑎𝑟(𝐶𝑜𝑢𝑛𝑡() = 	𝑣9:(𝐸(𝐶𝑜𝑢𝑛𝑡()) 
 

(2) 

 
The link function g(·) is ‘log’, so the 
inverse is an exponential. The expected 
value of Count for species i is predicted by 
an intercept, α , the log of effort (in hours), 
e (Eq. 1) and it’s coefficient, β. The 
variance of our count data is defined as 
negative binomial (Eq. 2). Any species 
found to have a non-significant β were 
removed from analysis, as were those with 
a significant, but negative β (i.e. as effort 
increased, detection decreased). We then 
included survey hours as an offset term in 
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our models to account for this sampling 
effort.  
 
We also removed any populations with a 
sum of less than 30 observations over the 
30-year sampling period, to remove 
populations with mostly zero counts. This 
resulted in our final dataset of 29,226 
populations, comprising 129 species at 
1,110 sites. 
 
As species varied in the extent to which 
they occurred at sites, we also ran our 
analysis on a standardised subset of the 
data: 99 species with 50 randomly selected 
sites each, 4,950 populations in total. Even 
though this dataset was less than 20% of 
the size of our full dataset, the results were 
highly congruent.  
 
Modelling Specifications 
To estimate the population growth rate, r, 
with population counts as the response 
variable and years as the explanatory 
variable, we used Generalized Linear 
Models (GLMs) run with the R package 
stats (R Core Team, 2017). We included 
effort using the ‘offset’ parameter, which 
allows a covariate with a known slope to 
be included in the model. For count data it 
is usual to use Poisson, quasi-Poisson or 
negative binomial distributions for the 
response, with the latter two being more 
appropriate if there is over-dispersion, 
where the variance of the response 
variable exceeds the mean. In our dataset 
99.7% of samples were over-dispersed, 
with 77% of these by at least an order of 
magnitude. We therefore ran our models 
using the negative-binomial distribution, 
though our provided code allows 
specification of any of these three 
distributions. 
 
Mathematically, the above is expressed as 
the following: 
 
𝐸(𝐶𝑜𝑢𝑛𝑡;) = 	𝑔,-(𝛼 + 	𝑟𝑥;

+ log(𝑒;)) 
 

(3) 

𝑣𝑎𝑟(𝐶𝑜𝑢𝑛𝑡;)
= 	𝑣9:(𝐸(𝐶𝑜𝑢𝑛𝑡;)) 

(4) 

 
As before, the link function g(·) was ‘log’, 
so the inverse is an exponential. The 
expected value of Count in year t is 
predicted by an intercept, α, the population 
growth rate, r, multiplied by the year 
value, x, and the log of effort (in hours), e 
(Eq. 3). Because the relationship between 
effort and count is known (i.e. a log linear 
relationship), it does not need a 
coefficient. Also, as before, the variance of 
our count data is defined as negative 
binomial (Eq. 4).  
 
For each model the population growth rate, 
r, and p-value of r were determined. For 
our main analysis, we followed the 
convention of setting a significance level 
of p<0.05. This is an arbitrary threshold, 
and circumstances may arise where the 
risk of missing a trend is greater than the 
risk of erroneously concluding there is one 
(e.g. a high risk group of species), in 
which case it is better to set a higher p-
value (Taylor & Gerrodette, 1993; Field et 
al., 2007), and vice versa. We provide 
functionality to adjust p-values in the our 
code.  
 
All models were run in R version 3.4.1 (R 
Core Team, 2017) using the Cambridge 
Service for Data Driven Discovery High 
Performance Computing service 
(https://www.hpc.cam.ac.uk, last visited 
14th Dec, 2018). 
 
Sampling Methods (Consecutive and 
Interval) 
We considered two ways in which 
sampling could be conducted, and took 
subsamples of the complete data according 
to these. First, we used Consecutive 
Sampling (Figure 1a), i.e. sampling from 
consecutive years, where shorter adjacent 
subsets were taken from a complete 
dataset of n years in length. We sampled 
all possible consecutive subsamples from 
three years to n-1 years. Second, we used 
Interval Sampling, where samples were 
taken at regular intervals from within the 
complete 30 year dataset (Figure 1b): we 
varied the interval length (i.e. samples 
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taken every x years) from 1 year (i.e. 
consecutive years) to 14 years (i.e. 
samples taken at years 1, 15 and 29, or 2, 
16 and 30 years) and took all possible 
numbers of samples within these iterations 
to fill the 30-year period. Table 1 gives 
examples of these.  
 

 
 
Figure 1. Schematic diagram showing sampling 
and modelling technique for comparing sample 
trends and complete trends. Triangles show counts 
of a population, all counts are used to model the 
complete population trend (grey line), and only 
black triangles are used to model the sample trend 
(black line). Shows examples of: (a) Consecutive 
Sampling of five-years from a ten-year period; and 
(b) Interval Sampling, where samples were taken 
every 3 years from a ten-year period, giving four 
samples in total. We ran analysis on all possible 
Consecutive lengths, Interval lengths and complete 
trend lengths.  
 
The complete trend was initially estimated 
from annual surveys over the full 30-year 
time-period. We also conducted our 
Consecutive Sampling with differing 
lengths of ‘complete years’. For example, 
we defined the complete trend as the trend 
a population exhibited over a 10-year 
period. To do this, for each of our 29,226 
populations, we took all possible 10 year 
segments (e.g. 1-10, 2-11, 3-12 etc), and 
calculated the trend on all possible 
consecutive subsets of those ten years, 
which ranged from 3 to 9 years in length. 
We then compared these to trends 
calculated from the complete 10 years. We 
repeated this for Complete trend lengths 
ranging from 4 years to the full 30 years.  

Because Interval Sampling already had 
two dimensions (interval length and 
number of years sampled), we compared 
this only to the complete trend length of 30 
years.  
 
Table 1. All iterations used for interval samples 
taken every 8 years (i.e. interval length = 8) and 
number of years sampled as 3 or 4. For shorter 
interval lengths, larger subset sizes were possible; 
at the shortest interval of 1, i.e. samples taken 
every year, up to 29 consecutive years could be 
sampled. 

3 years sampled 4 years sampled 
1, 9, 17 1, 9, 17, 25 
2, 10, 18 2, 10, 18, 26 
3, 11, 19 3, 11, 19, 27 
4, 12, 20 4, 12, 20, 28 
5, 13, 21 5, 13, 21, 29 
6, 14, 22 6, 14, 22, 30 
7, 15, 23  
8, 16, 24  
9, 17, 25  
10, 18, 26  
11, 19, 27  
12, 20, 28  
13, 21, 29  
14, 22, 30  

 
Comparison Methods (Direction and 
Magnitude) 
We used two ways to assess whether a 
sample trend (Consecutive or Interval) was 
representative of a complete trend. First, 
we took the ‘direction’ of the trend, 
defining it as positive, negative or 
insignificant. Using this, a sample trend 
would be classified as matching if it was 
the same direction as the complete trend; 
opposing if it was the opposite direction; 
an erroneous positive or negative if it was 
positive or negative, but the complete 
trend was insignificant; and a missed 
positive or negative if it was insignificant, 
but the complete trend was positive or 
negative (Table 2). We term this 
‘Direction Comparison’. Note that we 
conducted a final supplementary analysis 
considering how often insignificant sample 
trends still approximated the direction of 
significant complete trends (see 
Supporting Information Section 4). 
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Table 2. Categories used for Direction Comparison. Columns show direction of trend derived from complete 
time-series and rows show direction of trend derived from sample time-series. Cells show category, based on 
sample and complete trend direction. 
 
  Complete Trend Direction 

 
 

Positive Negative Insignificant 

Sample Trend 
Direction 

Positive Matching Opposing Erroneous Positive 

Negative Opposing Matching Erroneous Negative 

Insignificant Missed Positive Missed Negative Matching 

 
 
 
Second, for cases where a significant trend 
was obtained from both the sample and 
complete time-series (i.e. cases of 
‘Matching’ or ‘Opposing’ from the 
Direction Comparison method), we 
considered the absolute difference between 
population growth rate r (i.e. the slope of a 
log-linear model) of the two; giving an 
idea of the degree of ‘correctness’. That is, 
difference = |rsample – rcomplete|. We defined 
tolerance levels ranging from ±0.01 to 
±0.5 and if the difference was less than the 
tolerance level, the sample trend 
represented the complete trend and was 
correct, and was incorrect if it did not. We 
term this ‘Magnitude Comparison’ (Fig. 
2).  
 

 
Figure 2. Example of Magnitude Comparison, 
showing three trends taken from the time-series of 
a particular population with modelled log 
population size vs. time. The solid line is the trend 
derived from the complete time-series, and the 
dotted and dashed lines are trends derived from 
samples of the complete time-series. The sample 
trend shown by the dotted line is correct at a 
tolerance of ±0.01 (because |0.021-0.029| < 0.01, 
but the sample trend shown by the dashed line is 
not (because |0.021-0.060| > 0.01).  
 

In all cases, we obtained a sample r and a 
complete r for each population, the 
significance level of each, and then 
compared them to give a category for 
representativeness (using either the 
Direction or Magnitude Comparison 
method). We then found, for each 
combination of sample and complete time-
series lengths and sampling types, the 
percentage of our 29,226 populations in 
each representativeness category.  
 
Generation Length 
We considered generation length as a 
major factor that is likely to influence the 
duration of sampling required. This is 
because long-lived species often take 
longer to show responses to environmental 
pressures, as older individuals can 
continue to survive even if recruitment is 
falling (Kuussaari et al., 2009). To assess 
this, we divided our species into three 
groups based on generation length: short 
(1-5 years), medium (6-10 years) and long 
(11-15 years). Generation length data was 
obtained from birdlife.org species fact 
sheets (e.g. 
http://datazone.birdlife.org/species/factshe
et/ruddy-turnstone-arenaria-
interpres/details, accessed 26th July 2018). 
We then organised our standard analysis 
according to these three categories.  
 
Trend Shape 
To assess how our results are affected by 
trends of different shapes, we used 
Generalized Additive Models (GAMs) 
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with the R package MASS (Venables & 
Ripley, 2002). These non-parametric 
models allow for non-linear relationships. 
We ran GAMs on all complete 30 year 
trends, model specification was the same 
as the GLMs but with a smoothing term on 
year, and took the estimated degrees of 
freedom (EDF) for each. EDFs ranged 
from 1 to 8.57, so we divided our trends 
into four shape groups, linear and 
quadratic up to cubic (EDF = 1 - 2.99), 
cubic or low degree polynomial (EDF = 3 
- 4.99), mid-degree polynomial (EDF = 5 - 
6.99) and high degree polynomial (EDF = 
7 - 8.99). We then organised our standard 
analysis (using GLMs) according to these 
four categories, to see whether sample 
trends were more of less representative 
when sample data was taken from 
complete data of different shapes.  
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Results 
See supporting information Section 1 for 
summary statistics of the full dataset. All 
data used to produce plots are also 
provided, as well as code to reproduce full 
results on any set of population counts. 
 
Direction Comparison of Consecutive 
Sampling 
Reliable estimation of the direction of 
complete trends required many years of 
data for Consecutive Sampling. For 
example, to have an 80-100% chance of a 
sample trend having the same direction as 
a complete trend, the sample time-series 
needed to be almost as long as the 
complete time-series (Fig. 3a). However, 
sample trends opposed the complete trend 
less than 10% of the time (Fig 3b).  

 
The chance of an erroneous positive or 
negative (i.e. the sample indicated a 
significant trend but the complete trend did 
not reflect this, Fig 3c, d) was low 
regardless of the length of the sample or 
complete trend. However, the chances of a 
missed positive or negative trend (i.e. the 
complete trend had a significant direction 
but the sample did not detect this) were 
higher (see also Supporting Information 
Section 4); missed negatives were more 
likely than missed positives, and both were 
more likely when the sample time-series 
was considerably shorter than the complete 
time-series (Fig 3e, f). This implies that, 
particularly when trying to detect declines, 
shorter samples have low power to detect 
complete trends, but if they do detect a 
significant trend it is likely to be 
representative. 
 
 

 
Figure 3. Direction Comparison of sample population trends using Consecutive Sampling. Colour shows 
percentage of sample trends that, relative to the complete trend, were matching, opposing, an erroneous 
positive/negative or a missed positive/negative (see Table 1). Shown for all combinations of sample lengths (y-
axis), and complete lengths (x-axis). 
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Direction Comparison of Interval 
Sampling 
Our results show that sampling in intervals 
can be more representative than sampling 
in consecutive years when considering 
trend direction. For example, sampling for 
26 consecutive years (out of a 30-year 
complete time-series) gave the matching 
result 80% of the time (Fig. 4a, bottom 
row, note this is equal to Fig. 3a rightmost 
column), but the same level of reliability 
could be obtained by sampling 13 times 
every second year (Fig. 4a, second row). 
More strikingly, 4 years taken every 9 
years gave the same percentage matching 

(60-70%) as up to 20 years of Consecutive 
Sampling (Fig. 4a).  
 
As with Consecutive Sampling, the 
percentage opposing for Interval Sampling 
was very low (Fig. 4b), the chance of 
making an erroneous positive or negative 
was also very low for all sampling 
combinations (Fig. 4c, d) and, though 
missed positives and negatives were 
slightly more likely, the likelihood of 
missed trends never exceeded 40% (Fig. 
4e, f). As before, missed negatives were 
more likely than positives. 
 
 

 
 

 
Figure 4. Direction Comparison of sample trends using Interval Sampling. Colour shows percentage of sample 
trends that, relative to the complete trend, were matching, opposing, an erroneous positive/negative or a missed 
positive/negative (see Table 1). Shown for all combinations of Interval Sampling, with number of years sampled 
(x-axis) and interval length (y-axis). Thus 8 on the x-axis and 4 on the y-axis would mean 8 samples were taken, 
one every 4 years. The bottom row of each plot is equal to the right most column of the equivalent Figure 3 plot, 
but is included here to ease comparison. Complete trend length is always 30 years.  
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Magnitude Comparison of Consecutive 
Sampling 
When comparing the growth rate (r) of 
sample trends to complete trends, sample 
trends were regularly correct only at very 
high tolerances. For ease of interpretation 
these results are displayed at four complete 
trend lengths: 5, 10, 20 and 30 years. In 
order for the sample trend r to be within 
±0.1 (i.e. 10% population change per year) 
of the complete trend r, the sample time-
series needed to be at least 9 years long 

when compared to complete time-series of 
10 years (Fig. 5b); at least 16 years when 
compared to a 20-year time-series (Fig. 
5c); at least 19 years when compared to a 
30-year time-series (Fig. 5d); and could 
not be attained when the complete time-
series was 5 years long (Fig. 5a). A sample 
of 29 years only estimated a trend within 
1% (±0.01) of the 30-year trend in 80% of 
situations (Fig. 5d).  
 

 
Figure 5. Percentage of sampled trends that correctly estimate the complete trend, measured by whether the 
sample r matched the complete r within the tolerance (colours). Samples taken using Consecutive Sampling. 
Shown for four complete trend lengths, 5, 10, 20, and 30 years, and for all sample lengths (x-axis). 
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Magnitude Comparison of Interval 
Sampling 
Interval Sampling gave better results when 
comparing trend direction (above), 
however did not perform as well for 
estimating magnitude of change. It was not 
possible for even 50% of sample trends to 
be correct at low thresholds (±0.01 - 0.025; 
Fig 6). The direction of curves indicates 

that high percentages could be attained 
with enough years of sampling at large 
intervals, but this would mean sampling 
over very long time-scales. Better 
reliability was achieved at higher 
tolerances, but only at ±0.5 and ±0.25, i.e. 
25 - 50% population change per year. 
 

 
 
Figure 6. Percentage of samples (y-axis) that correctly estimate the complete trend, measured by whether the 
sample r matched the complete r within the tolerance (colours); samples taken using Interval Sampling. Shown 
for six stages of Interval Sampling: samples taken either every 1, 3, 5, 7, 9, or 11 years (facets), for all possible 
numbers of years sampled (x-axis). Complete trend length is always 30 years. Note that panel a is equal to 
Figure 5d (with a truncated x axis) 
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Generation Length and Trend Shape 
For populations with long generation 
lengths, short samples of long complete 
time-series were less likely to match the 
complete trend (Fig. 7, Supporting Figure 
3). Erroneous trends and opposing trends 
were roughly equal among populations of 
different generation lengths (Fig. 7, 
Supporting Figure 3). Populations of 
different generation lengths performed 
similarly according to the Magnitude 
Comparison method (Supporting Figures 4 
& 5). 
 

Where complete trends were highly 
variable across time (high estimated 
degrees of freedom), there were more 
erroneous positives and negatives with 
short samples of long complete time-
series. However the percentage of sample 
trends that matched complete trends 
remained reasonably constant regardless of 
trend shape (Supporting Figures 6 & 7). 
Populations of different trend shapes 
performed similarly according to the 
Magnitude Comparison method 
(Supporting Figures 8 & 9). 
 

 
Figure 7. Direction Comparison of sample population trends using Consecutive Sampling, for populations of 
different generation lengths. Heat shows percentage of sample trends that, relative to the complete trend, were 
matching, opposing, an erroneous positive/negative or a missed positive/negative (see Table 1). Shown for all 
combinations of sample lengths (y-axis), and complete lengths (x-axis). Divided by populations with either a) 
short (1-5 years), b) medium (6-10 years) or c) long (11-15 years) generation lengths. 
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Discussion 
In this paper, we provide and test a method 
that can estimate reliability of population 
trends of different lengths and sampling 
types, based on the total time over which a 
trend estimate is desired. Our results are 
derived from an entirely empirical dataset 
with no simulations and they show a high 
amount of convergence (e.g. Fig 5), 
indicating that our sample sizes are large 
enough to give a reliable estimate of 
likelihood for each category. Our results 
were robust to standardisation of the 
number of populations per species, sub-
setting of species into three separate 
groups based on generation length (see 
also White, 2018) and sub-setting of 
populations into different trend shapes. We 
discuss the meaning of our results in the 
context of trusting population trends, how 
our methods can be adapted to other taxa, 
and how results from our methods can be 
used to quantify reliability in large-scale 
studies of population trends and to design 
future monitoring schemes. 
 
Waterbird case study 
Our results show that if a significant trend 
is obtained from a population time series, 
even when the data are from a few years, it 
is likely to reflect the longer-term trend 
direction of the population, though not 
necessarily the magnitude. Further, few 
samples at widely spaced intervals can 
produce similar levels of reliability in 
trend direction compared to double the 
number of samples taken in consecutive 
years. However, we show that to be 
confident in a lack of trend, i.e. an 
insignificant result, one must obtain a very 
high number of samples. Further, if an 
insignificant trend is obtained, it is more 
likely to be missing a decline than an 
increase in a population, and we suggest 
caution with conclusions and decisions 
from insignificant trends. Keith et al. 
(2015) studying birds similarly found that 
past population trajectory was a good 
predictor of future population trajectory. 
Møller et al. (2008) and Sanderson et al. 
(2006) also found a similar, though weak, 
correlation between trends of migratory 

birds between 1970-1990 and 1990-2000. 
However, Keith et al. (2015) found that 
past trajectories were not a good predictor 
of future trajectories in mammals, salmon 
and other fish, meaning this method should 
be tested on other taxa using relevant data.  
 
Sampling in intervals provided better, 
relative to effort, and surprisingly accurate 
results, compared to sampling in 
consecutive years. When sampling a fixed 
number of times, accuracy increased with 
the distance between each sample. 
Presumably a limit exists at some point, 
but according to these results it is greater 
than 13 years. Other studies have found 
similar results (Urquhart et al., 1998; 
Starcevich et al., 2018), for example 
Reynolds et al. (2011) found that 
surveying brown bears every 10 years 
gave similar model performance to 
surveying in 3 out of every 5 years. 
Interval sampling could allow, say, a 
greater number of sites to be surveyed over 
a given area (Buckland & Johnston, 2017). 
However it is not always practical, 
especially for high risk species where 
declines may need to be detected and acted 
on quickly. In addition, whilst Interval 
Sampling could be good for cheaply 
obtaining trend estimates, it is not a 
replacement for long term monitoring that 
takes yearly samples, which can provide 
data for analyses considering drivers of 
population change.  
 
In cases where analyses or management 
decisions depend not only on the direction 
of a population trajectory, but the actual 
rate of change, we find that sample trends 
are much less likely to be representative of 
complete trends. To be 80% reliable at a 
rate of population change of 1-2.5% per 
year over 30 years, one must sample for at 
least 19 consecutive years. These results 
are roughly in agreement with other 
studies on diverse taxa that find samples 
should be between 10 (Rueda-Cediel et al., 
2015; White, 2018) and 21 years 
(Reynolds et al., 2011). Sampling in 
intervals also struggled to produce 
accurate results: 80% reliability was never 
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achieved if samples had to be correct at 
anything less than a rate of change of 10% 
per year (i.e. drastic population change). 
 
This analysis was kept simple by 
restricting it to single location time series, 
and by restricting sampling to a minimum 
of once every year. Increasing the number 
of samples in each time period can 
improve confidence and accuracy in 
derived trends (Atkinson et al., 2006) and 
it is likely that percentage reliability in 
derived trends would increase if this was 
considered. Some studies have found that 
sampling at more locations improved trend 
detection better than longer time series 
(Sims et al., 2006, though see Schumann 
et al., 2013) and so modelling trends from 
multiple locations is likely to improve our 
reliability estimates (Rhodes & Jonzén, 
2011).  
 
Applications 
For those working with large datasets who 
cannot conduct power analysis or quantify 
measurement error in their populations, 
reliability can be assigned to trends using 
the data from this study (see Supporting 
Information), or data produced using these 
methods with other taxa (using the 
provided code, see Data Accessibility). 
The user should define a target ‘complete’ 
trend length for the study, and extract the 
reliability estimates for this complete trend 
length. After this two options are possible: 
1) assign reliability estimates to each time-
series based on how long it is, and weight 
analysis according to these estimates or 2) 
select a threshold (e.g. time-series must be 
at least 80% likely to represent the 
complete trend) and remove any time-
series that do not meet this criteria. We 
readily agree that our values are not 
infallible: they could vary with location, 
time period or taxa. However, this is an 
improvement on making an arbitrary cut-
off point, or having no way of weighting 
population trends.  
 
These results could also be used to help 
plan future monitoring schemes, but we 
would advise this be done with a cautious 

eye. The goals of monitoring have been 
subject to much discussion (Hauser et al., 
2006; Legg & Nagy, 2006; Nichols & 
Williams, 2006; Lindenmayer & Likens, 
2009; McDonald-Madden et al., 2010), but 
in cases where programs are carried out 
with the goal of detecting trends (Marsh & 
Trenham, 2008) we can provide some very 
general guidance: monitoring for many 
years is essential to accurately capturing 
population trends, and resources can be 
conserved and possibly allocated to more 
locations or taxa if sampling is conducted 
in intervals rather than every year. 
 
Finally, our results could help with make 
cost effective management decisions, for 
example defining sensible allocations of 
effort to different species based on 
confidence in derived trends.  
 
Conclusions 
In this age of increasing large-scale 
analyses, we believe the scientific 
community can do better at making 
informed decisions around uncertainty and 
reliability. Our methods and results 
provide a clear and quantitative way to add 
rigour to large scale population analyses. 
We advocate an end to arbitrary cut-offs, 
and recommend that, where possible, users 
instead consider methods such as ours to 
quantify reliability and make decisions 
about their data accordingly. Our methods 
are fully transferable to other taxa, and the 
concepts can also be transferred to areas 
outside of population ecology. 
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