


Figure 4. Labeled beads and labeled RPMI-8226 cells are detected in the bloodstream post 
intravenous injection. A) Top panel: strong punctate signal is seen in the cross-section of a 
blood vessel of the ear pinna post-injection, indicating a passing labeled polystyrene bead. Red 
dotted line indicates boundary of the blood vessel of interest. Bottom panel: longitudinal cross 
section of a blood vessel pre and post-injection reveals the presence of an increased number of 
punctate signal similar to the one indicated in the red box that can be attributed to flowing cells 
labeled with LGNRs. B) Number of punctate signals in the cross section of the blood vessel 
were counted over a 30 minute period, at 2 minute intervals, to track circulation time of labeled 
beads (mean ±SD). Red arrow indicates time of injection. C) Number of punctate signals in the 
cross section of the blood vessel were counted over a 30 minute period, at 2 minute intervals, to 
track circulation time of labeled cells (mean ±SD). Red arrows indicate times of incremental 
injections. 
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Figure 5. RPMI-8226 cells can be visualized in PBS and whole blood after incubation with PSS-
LGNRs.  A) Hyperspectral images of the LGNR-labeled and unlabeled cells. Custom algorithms 
allow for the automatic detection of LGNRs taken up by the cells. Detected locations of LGNRs 
are shown in orange. B) 2µm polystyrene beads were incubated with LGNRs, washed, and then 
spiked into whole blood. Capillary tubes were filled with unlabeled cells in PBS, labeled cells in 
PBS, whole blood, whole blood + unlabeled cells, or with whole blood + labeled cells. Log 
intensity images were created during post processing. C) Labeled cells have more than 3 fold 
higher signal than cells alone  (p<0.001) and D) more than 2 fold higher signal than whole blood
(p<0.001).  
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