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ABSTRACT  

Schwann cells (SC) enter the central nervous system (CNS) in pathophysiological 

conditions. However, how SC invade the CNS to remyelinate central axons remains 

undetermined. We studied SC migratory behavior ex vivo and in vivo after exogenous 

transplantation in the demyelinated spinal cord. Data highlight for the first time that 

SC migrate preferentially along blood vessel in perivascular ECM, avoiding CNS 

myelin. We demonstrate in vitro and in vivo that this migration route occurs by virtue 

of a dual mode of action of Eph/ephrin receptor. Indeed, EphrinB3, enriched in 

myelin, interacts with SC Eph receptors, to drive SC away from CNS myelin, and 

triggers their preferential adhesion to ECM components, such as fibronectin via 

integrinβ1 interactions. This complex interplay enhances SC migration along the 

blood vessel network and together with lesion-induced vascular remodeling facilitates 

their timely invasion of the lesion site. These novel findings elucidate the mechanism 

by which SC invade and contribute to spinal cord repair. 
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INTRODUCTION 

Myelination, the evolutionary characteristic acquired by vertebrates to allow rapid and 

saltatory nerve conduction, is supported by two different glial cell types, 

oligodendrocytes in the central nervous system (CNS), and Schwann cells (SC) in 

the peripheral nervous system (PNS). These two cell types are mutually exclusive in 

physiological conditions. However, in demyelinating diseases or injury, this PNS/CNS 

segregation is compromised and both, SC can invade and repair the CNS(1, 2), and 

oligodendrocytes myelinate peripheral nerve root axons(3). Remyelination of CNS 

axons by SC protects axons, restores axonal conduction and even reverses 

neurological deficits(4), highlighting their potential to rescue the injured CNS(5). 

These remyelinating SC arise either from the PNS(6, 7), or are generated from adult 

oligodendrocyte precursors cells (OPC)(8, 9). However, SC remyelination of CNS 

axons is always restricted to the spinal roots entry and exit zones (reviewed 

in(5)),and the presence of peripheral myelin has been frequently observed close to 

blood vessels (BV)(1). These observations suggest that although SC migrate 

efficiently in vitro(10, 11) and in vivo(12) into the PNS, their survival and migration 

within the CNS are limited. The presence of peripheral myelin close to BV raises the 

possibility for BV to play a role in guiding SC movements within the CNS. While 

migration along BVs has been recently described for different CNS cell types(13-15) 

including for SC along regenerative nerves(12), their role in SC invasion of the CNS 

has not been explored.  

Astrocytes(16, 17) and CNS white matter(18-20) inhibit SC migration within CNS, 

pointing out that multiple CNS components can alter this process. Among the 

molecules involved in various cell type segregation and guidance within the CNS, the 

Eph/ephrin family has been implicated in both developmental(21, 22) and 
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pathological conditions(23). In particular, EphrinB3, is expressed in myelin in brain 

and mouse spinal cord(24-26), and plays an important role in preventing neurite 

outgrowth(24), axonal regeneration(25) and oligodendrocyte progenitor 

differentiation(26). EphrinB3 acts also as a repellent molecule in the guidance of 

axon tracts towards the spinal cord during development(27). Interestingly, SC 

express several Ephrin receptors, including EphA4 that mediates SC repulsion by 

astrocyte EphrinAs(28). Hence, these receptors could mediate also similar SC 

repulsion by myelin-associated EphrinB3. In addition, EphB   is involved in SC sorting 

and migration in regenerating peripheral nerves(29). Eph/ephrin signalling is involved 

in the modulation of cell-cell adhesion, which results in increased integrin-mediated 

adhesion of Eph/ephrin-expressing cells(30, 31) or, as in the case of EphB signaling, 

in cell sorting by re-localization of N-cadherin in SC(29). Furthermore, EphrinB 

ligands control cell migration through positive adhesion to substrates such as 

collagen and fibronectin (FN)(32, 33), main components of perivascular extracellular 

matrix (ECM). Therefore, these cues could influence the capacity of SC to migrate 

within the CNS and/or interact with CNS myelin. 

In spite of these observations, a role for BV in SC migration/recruitment in the CNS 

and for EphrinB3 in modulating SC interactions with CNS myelin and/or BV has not 

been investigated. Using ex vivo, in vivo and in vitro paradigms, we show that BV are 

a preferred substrate for SC migration into the CNS, and that, angiogenesis and BV 

remodeling constitute a physiological response to demyelination. Moreover, we 

establish that CNS myelin plays an essential role in SC exclusion from the CNS and 

demonstrate that this effect is partially mediated by EphrinB3. Finally, myelin-

associated EphrinB3 modulates SC adhesion to the ECM component FN, via 

interactions with integrinβ1. This increased SC-FN adhesion, to perivascular ECM 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2018. ; https://doi.org/10.1101/498261doi: bioRxiv preprint 

https://doi.org/10.1101/498261
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

overrules SC inhibition by myelin and promotes SC migration along BV, facilitating 

their arrival at the lesion. Thus Eph/ephrin may guide SC within the CNS according to 

a dual mode, repulsing SC from CNS white matter on one hand, and favoring their 

interaction with BV on the other. These observations shed new light on the 

mechanism of SC invasion into the damaged CNS. 
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RESULTS 

Schwann cells preferential migration along blood vessels by passes their 

inhibition by myelin  

To address this question, we analysed the SC interactions with CNS components, 

myelin and blood vessels, in ex vivo and in vivo paradigms (Fig. 1, Fig. S1 and Fig. 

S2). For ex-vivo analysis, GFP-expressing SC (GFP+) were seeded on frozen spinal 

cord sections. We found that GFP+SC adhered 11.88 fold more over grey matter than 

white matter (Fig S1A, C). Moreover, SC spreading over white matter was reduced 

compared to grey matter (Fig. S1D). Immunolabeling for Glut1 showed that BV were 

7.78 fold more abundant in grey matter than white matter (Fig. S1B,E) and that most 

GFP+ SC (> 86%) were in contact with collagen 4-positive BV (Fig. S1F), indicating 

that SC densities in grey and white matter were correlated with BV densities in these 

regions. 

To explore how endogenous SC invade the CNS in response to demyelination, we 

used the Krox20Cre driver line crossed over Rosa-YFP to track the SC lineage(3, 

34). Krox20 transcription factor is specific of the PNS, and is expressed in the SC 

lineage until adulthood. LPC injections were performed in the dorsal funiculus of adult 

mice (2-3month-old), and mice were sacrificed at 3 days post injection (dpi). YFP+SC 

were detected only in the spinal cord cross sections of demyelinated mice (Fig. 

S2A,B) but not in controls (Fig S2C,D). YFP+ cells were Sox10+ (Fig. S2E,F) but 

never Olig2+ validating their PNS glial origin. We next examined the location of the 

invading SC-derived population and found that at this early time-point, the 

YFP+/Sox10+SC within white mater were found exclusively on Glut1+BV. This 

indicates that such as observed ex-vivo, endogenous SC preferentially associate with 
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BV when triggered to invade the demyelinating CNS. Although in normal 

development Krox20 specifically labels the peripheral SC lineage, under pathological 

conditions Krox20 was also expressed by Iba1+ microglial cells (Fig.S2G,H). 

As the Krox20Cre system was limited in tracing a sufficient number of SC invading 

the CNS from the periphery, we pursued our investigation using an exogenous 

paradigm in which GFP+SC were grafted two vertebrates away from a lysolecithin 

(LPC) lesion in the dorsal funiculus of adult wild-type mice (Fig 1A). In this paradigm, 

grafted SC are known to be recruited specifically by the lesion, modeling SC 

recruitment after CNS injury, whereas they remain at the graft site in the absence of a 

lesion(20, 35). As our study focused essentially on SC migration/recruitment, grafted 

animals were sacrificed at early time-points including 1, 3 and 5-day post-LPC 

injection (dpi) (Fig. 1B). The spatio-temporal distribution of the transplanted GFP-

expressing SC was assessed by scanning longitudinal frozen sections of the spinal 

cord for the GFP signal throughout the sections(20). At 1 dpi, lesion size (0.40 ± 0.06 

mm2 per section) and GFP+SC grafted area (0.16 ± 0.08 mm2 per section) showed 

minor variability among animals validating the lesion-graft paradigm. Analysis of the 

GFP signal over time confirmed the spatio-temporal progression of SC towards the 

lesion, which was systematically reached at 5 dpi (Fig. 1B,C).  

In the intermediate zone connecting the graft to the lesion, GFP+SC migrated 

preferentially along the midline avoiding myelin (Fig. 1C,D), as previously described 

after engraftment in shiverer and nude mice(20, 35). In this area, SC were found 

preferentially in association with Glut1+BV forming a narrow stream of cells (Fig. 

1C2,D). At their arrival in the lesion, GFP+SC were no longer confined to that narrow 

path, but randomly spread within the lesion. Co-detection of GFP and Glut1 at the 

lesion showed that the pattern of GFP+SC matched with that of Glut1+BV (Fig. 
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1C3).Co-labeling for Glut1 and GFAP showed that GFP+SC were localized in 

perivascular spaces between endothelial cells and astrocyte end-feet (Fig. 1E). SC 

within the BV lumen were never observed. 

We used whole-mount immuno-labeling of clarified spinal cords to gain insight in SC-

BV3D spatial organization. For these experiments, tdTomato+ SC were grafted 

remotely from the lesion as above, and their migratory behavior analyzed at 5 dpi. BV 

and SC were visualized by immuno-labeling against anti-IgG and anti-Tomato 

respectively. Light sheet imaging and 3D reconstruction revealed the dense spinal 

cord vascular network and confirmed that grafted SC, en route towards the lesion, 

were preferentially associated with BV in the spinal cord midline (Fig. 1F). TdTomato+ 

SC were either polarized along blood vessels (Fig. 1G,H,I) or extending processes 

from one vessel to another (Fig. 1J,K,L).  

Whether SC moved along blood vessels was further confirmed by GFP+SC live-

imaging2 days post engraftment in the demyelinated spinal cords and host BV were 

labeled by intra-cardiac perfusion of rhodamine-lectin. Spinal cord whole mounts 

were maintained in appropriate physiological conditions, and areas containing 

GFP+SC were selected and video-recorded for 20 hours. Recordings confirmed that 

SC leaving the graft, reached for and became associated with BV, to migrate either in 

chains or as isolated cells, jumping from one BV to another one (MovieS1, Fig. S3A, 

blue empty arrowhead) or sliding along them (MovieS1, Fig. S3A, white arrowhead) 

as described above. While SC in chains glided along each other, individual cells 

escaped from the chain crawling along BV outer surface and merging further with 

other SC (Movie S2, Fig. S3B arrowhead). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2018. ; https://doi.org/10.1101/498261doi: bioRxiv preprint 

https://doi.org/10.1101/498261
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

To elucidate whether SC migrate in vivo in association with peri-vascular ECM, 

and/or whether they require direct interactions with endothelial cells, we performed 

immuno-electron microscopy (EM) on a novel series of GFP+SC grafted mice (Fig. 

1M,N,O). EM analysis of DAB labeled GFP+SC confirmed their location in close 

contact with BV. Interestingly, the majority of the grafted SC was embedded within 

the peri-vascular ECM (Fig. 1M,N) between the vascular cells and astrocyte end-feet 

(Fig. 1O). However, unlike observed in the injured PNS(12), direct contact with 

vascular cells was never observed. 

Temporal analysis of SC arrival at the lesion indicated that in lesions which had cells 

at early stages (3dpi), 62±9% of GFP+SC were closely associated with BV(Fig. 2A-

C,G),while at later times (5dpi) only 32±5% of them were associated with BV (Fig. 

2D-F,G). Immunohistochemistry for Glut1 and NF200 indicated that this transition 

correlated with a change in SC-BV to SC-Axon associations, with only 35±6% of 

GFP+SC associated with axons at 3dpi (Fig.2A,E,H), and61±5% GFP+SC associated 

with axons at 5days (Fig. 2B,D,H).  

LPC induced demyelination promotes angiogenesis and blood vessel 

remodeling. 

Since angiogenesis has been described in demyelinating diseases(36) and 

perivascular niche plays a role in remyelination(9), we examined the dynamics of BV 

in the absence of SC grafting. We found an increase in BV density in lesions of non-

grafted spinal cords (Fig. 3B-E), compared to PBS-injected spinal cords (Fig. 3A). 

Glut1-positivity increased from day 3dpi up to 7dpi with a peak at 5dpi compared to 

PBS injected controls (Fig. 3I). This transient increase in BV density in LPC lesions 

was partially due to increased proliferation of endothelial cells based on the number 
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of Glut1+cells, expressing Ki67 (Fig. 3A-F,J, Fig. S4,S5, Supplementary note 1), 

pointing to an increase of newly formed vessels as a specific reaction to 

demyelination in addition to BV remodeling. Immuno-labeling for FN and collagen 4 

showed that LPC-induced angiogenesis/BV remodeling was concomitant with 

changes in perivascular ECM (Fig. S6).  

We examined whether the presence of exogenous SC could influence the formation 

of new blood vessels. We found no difference in Glut1+area in lesions of SC-grafted 

mice compared to lesions of non-grafted ones at 5dpi (Fig. 3G,I). Moreover, no 

change in Glut1+area was observed at the SC graft site compared to PBS injected 

mice at 5dpi(Fig. 3H,I). 

Myelin-associated EphrinB3 as candidate to guide Schwann cells in the CNS. 

Since no effect of exogenous SC on vascularization was observed, we hypothesized 

that SC guidance within the CNS by SC-BV association and myelin repulsion could 

be due to some receptor-ligand mediated mechanism. We previously demonstrated 

that SC are repulsed by CNS myelin, partially mediated by the axonal repellent MAG, 

suggesting that other myelin components might be involved in this repulsion(20).  

Thus, we speculated that other axonal growth inhibitors were able to induce the same 

effect in SC. Of interest, EphrinB3 is expressed by CNS myelin and inhibits axonal 

growth and oligodendrocyte differentiation(25, 26), and SC express several 

EphR(28). Interestingly, Immature stages of the SC lineage such as boundary cap 

cells and SC precursors, have a greater capacity to migrate through white matter 

compared to more mature SC stages(37, 38)present lower expression of another 

EphrinB3 receptor, the EphB6(39). In support of these data, we performed gene 

profiling by RNA sequencing, comparing aged-matched wild-type and 
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developmentally arrested SC lacking Krox20 (Krox20null SC)(40)(considered at a 

more immature-like stage) revealed a dysregulation in the transcript levels of a 

variety of molecules among which Eph receptors were particularly expressed at lower 

level. While EphA4, EphB1, EphB2, EphB3, EphB4 and EphB6 transcripts were 

expressed in wild-type SC, EphA4, EphB1 and EphB6 were significantly down-

regulated inKrox20null SC (Fig. S7). Hence, we hypothesized that EphA4, EphB6, and 

EphB1 could be involved in SC poor mingling with CNS white matter, and favorable 

association with BV. 

The EphrinB3 present in myelin is able to bind and activate EphrinB3-receptors 

in Schwann cells. 

We first confirmed that SC have the molecular machinery to bind myelin-associated 

EphrinB3.Immunohistochemistry showed that purified mouse SC can bind EphrinB3 

in vitro, and that these cells express the three EphrinB3 receptors: EphB6 (Fig. 4A), 

EphA4 (Fig. 4C) and EphB1 (Fig. 4D). The presence of each receptor was 

corroborated by Western blot (Fig. 4B). Incubation of SC with pre-clustered 

EphrinB3by fluorescent anti-Ig and orthogonal views revealed that the three 

receptors were able to bind clustered EphrinB3 on SC surface leading to the 

formation of large signaling clusters as previously described(41) (Fig. 4A,C,D). 

Eph receptors are activated by auto-phosphorylation of specific tyrosine residues(42). 

To verify the ability of EphrinB3 to induce forward signaling, activation of Eph 

receptors on SC was assessed. Immunocytochemistry illustrates binding of EphA4 

with clustered EphrinB3, and its activation by the ligand (Fig. 4E). EphB6 is a 

recognized Kinase-defective receptor, which can form a hetero-receptor complex with 

EphB1 receptor and undergoes trans-phosphorylation(43). Immunohistochemistry 
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validated the presence of phospho-Y594 in EphB1 (and EphB2) receptor, and its 

interaction with bound EphrinB3 in SC (Fig. 4F). 

To test the hypothesis that myelin associated EphrinB3 is able to induce the 

activation of EphB and EphA4 receptors, we incubated purified SC during 30min with 

myelin protein extracts or myelin protein extract previously incubated with anti-

EphrinB3 known to block specifically its activity(26). SC were collected and blotted 

with an antibody against the phosphorylated EphA4 (Fig. 4G), and an antibody 

against phosphorylated EphB1+2 (Fig. 4H). The presence of myelin increased 

significantly the phosphorylated forms of both receptors compared to the 

housekeeping GAPDH, but this signal increase was not observed when the myelin 

extracts were pre-incubated with anti-EphrinB3 antibody before activation (Fig.4G,H). 

Blocking the epitopes of EphrinB3 in myelin neutralized the Eph receptor activation 

effect of myelin on SC. 

Hence, these observations evidenced the ability of SC to bind and respond to the 

presence of EphrinB3 in vitro. 

CNS myelin inhibits Schwann cell adhesion and spreading, and this effect is 

partly mediated by EphrinB3 through EphA4 and EphB6 receptors. 

Next, we examined whether EphrinB3 could contribute to SC-myelin repulsion. We 

performed a blocking receptor assay, pre-incubating purified GFP+SC with 

unclustered EphrinB3-Fc molecules before seeding them for 3 hours onto myelin 

protein extract or PBS (Fig.5A), and evaluated both SC adherence and polarization 

(Fig.5B). Control Fc-preincubated SC showed less adhesion to myelin, measured as 

the ratio of adhered SC to myelin compared to PBS coated surfaces. SC also 

extended fewer processes, based on a higher ratio of round cells over the total 
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adhered SC on myelin compared to control. Blocking EphrinB3 receptors on SC by 

soluble EphrinB3-Fc hindered myelin repulsion, resulting in a significant improvement 

of SC adhesion to myelin-coated surfaces, and ability to extend more processes 

(fewer round cells) on myelin than those pre-incubated only with soluble Fc 

(Fig.5A,B).  

To determine if the reduction in the number of SC adhering to myelin was due to cell 

death, we assessed cell viability comparing the percentage of caspase3+ nuclei or 

Hoechst+ pycnotic nucleiin SC incubated with PBS or myelin for 3h.SC exhibited a 

typical bipolar morphology and no difference in the percentage of caspase3+ nuclei or 

Hoechst pycnotic nuclei between control and myelin-treated groups were observed 

(PBS: 4.4±1.6‰, Myelin: 4.0±1.7‰, n=6). These data corroborate our previous 

results demonstrating that short incubation time with myelin does not induce 

apoptosis(20). 

SC adhesion to surfaces coated with EphrinB3-Fc was reduced compared to Fc as 

control in a dose-dependent manner (Fig. 5C).Moreover, the increased number of 

round SC indicated that SC were less polarized on EphrinB3 coated surfaces 

compared to control(significance reached with high concentrations of EphrinB3) (Fig. 

5C).  

EphrinB3 behaves as a dependence receptor, which can trigger cell apoptosis(44). 

To analyze the potential effect of EphrinB3 on Schwann cell survival, we assayed cell 

viability as above. Incubation of adhered SC with clustered EphrinB3, or Fc as 

controls, for 3h and 24hdid not induce any morphological difference, and the number 

of H+pycnotic or caspase3+nuclei between Ephrin-treated and control SC remained 

equivalent (3h treatment (n=6): Fc: 4.4±2‰, EphrinB3: 4.4±2‰; 24h post-treatment 

(n=8): Fc: 9.7±4‰, EphrinB3: 10.4±3‰). Adhesion assays were always performed in 
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serum-free medium, compromising SC proliferation. These results imply that the 

reduction in the number of attached and spread SC to the different substrates results 

from their preferential adhesion rather than a toxic effect of the treatment. 

To validate the involvement of EphA4 and EphB6 receptors in SC-EphrinB3 

response, we performed the myelin and EphrinB3 adhesion assay in the presence of 

antibodies that specifically interfere with EphA4 or/and EphB6 receptors, to block SC 

response. Blocking EphA4 or EphB6 receptor with excess anti-EphA4 or anti-EphB6 

respectively improved SC adhesion and spreading to myelin compared to PBS (Fig. 

5D) or to EphrinB3 compared to Fc (Fig. 5E). However, no synergistic/additive effect 

on adhesion was observed when antibodies to both receptors were combined 

(Myelin/PBS: anti-EphA4 + anti-EphB6: 0.8±0.2(n=11), p(IgG vs anti-EphA4 + anti-

EphB6)=0.003; EphrinB3/Fc:anti-EphA4 + anti-EphB6: 0.8±0.3(n=10), p(IgG vs anti-

EphA4 + anti-EphB6)=0.008) two-tailed t-student test.Anti-EphB6 and anti-EphA4 

pre-incubation did not show a significant difference in the number of round cells 

between myelin or EphrinB3 respect to PBS or Fc substrates respectively, and each 

group respect to the IgG control group.  

EphrinB3 increases Schwann cell adhesion and migration on the perivascular 

ECM component, fibronectin, via integrin ß1 

Eph/ephrin can modulate cellular pathways by regulating cell adhesion, either 

positively or negatively, depending upon the cellular context(45). Thus, positive 

regulation of SC adhesion to ECM and FN might have consequences on their 

migration capacity on this substrate(32, 33). As our in vivo study indicated that the 

grafted SC were embedded in perivascular ECM, and angiogenesis is a response to 

demyelination, we studied the effect of EphrinB3 on SC-ECM binding, in particular 

FN, that favors SC migration(10). Unlike SC repulsion byEphrinB3-coated surfaces, 
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EphrinB3 improved SC adherence and process expansion on FN coated surfaces 

compared to those coated with FN and Fc (Fig. 6A). 

The main FN-binding receptor on SC is the integrin heterodimer α5β1(46), and the 

integrin family is involved in the Eph/ephrin response(31, 32). To question whether 

integrinß1 could mediate the mechanism by which EphrinB3 regulates SC-FN 

binding, we performed an integrinβ1 interfering assay prior to SC adhesion on 

FN+EphrinB3 (Fig. 6B,C). Anti‐integrinβ1 pre-incubation with a specific blocking 

antibody(47) consistently prevented the increased SC adhesion to FN+EphrinB3 

coated surfaces compared to the FN+Fc coated ones. Moreover, Western blot 

showed that incubation of SC during 30 min with myelin protein extracts (100µg/mL) 

increased expression of Integrinβ1and this increase was prevented by pre-incubation 

of the myelin protein extract with anti-EphrinB3 (Fig.6D, E). This suggests that myelin 

associated EphrinB3 induced integrinβ1 expression, which is involved in the 

increased ECM adhesion induced by EphrinB3. 

We questioned whether this induced SC adhesion to FN could have some implication 

in their ability to migrate on FN by using the agarose drop assay(48). SC were 

seeded on FN in the presence of EphrinB3 or Fc, and their migration when exiting the 

agarose drop, was followed by time-lapse video-microscopy. Significantly more SC 

migrated out of the drop when sections were coated with FN+EphrinB3 (Fig.6G) 

compared to control (Fig. 6F,H). Moreover, based on their maximal distance of 

migration, SC migrated significantly furtheronFN+EphrinB3 compared to control (Fig. 

6I). 

Finally, we performed interference experiments to analyze the migratory behavior of 

SC incubated or not with anti-EphA4 on FN substrate alone or FN+Fc or 
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FN+EphrinB3. Analysis of the migration velocity of single cells traced by video 

microscopy on FN confirmed that SC migrate significantly faster 

onFN+EphrinB3substrate, compared to Fc+FN control (Fig. S8). This increased 

speed was counteracted when SC were pre-incubated with anti-EphA4 compared to 

control IgG. Moreover, data confirmed that pre-incubation with IgG or anti-EphA4 did 

not impair SC speed or pattern of migration on FN whether seeded over Fc or 

EphrinB3 (Fig. S8).  

Pre-treatment with anti-Eph4 promotes Schwann cell to mingle more with 

myelin in vivo, and reduces their interaction with blood vessels. 

In vitro experiments established that EphrinB3 had a dual effect, impairing SC 

interaction with myelin but improving their interaction with FN via increased integrinß1 

expression. Moreover perturbation experiments indicated that anti-EphA4 treatments 

did not affect SC migratory behavior. To examinewhetherEphrinB3 plays a role in 

their integration/migration into CNS white matter and/or their interaction with BV in 

vivo, we interfered with EphrinB3 by blocking EphA4, and examined SC interactions 

with BV and myelin. Since no synergic effect was observed in vitro when blocking two 

different receptors, EphA4 appeared to be the candidate of choice. Pre-incubation of 

SC with the functional anti-EphA4 blocking antibody prior transplantation as above, 

disrupted SC interaction with BV (Fig. 7A-C compared to D-E), evaluated by the 

number of SC-BV association (Fig. 7O), and improved their mingling with myelin 

along their pathway of migration (Fig. 7G,H vs 7I,J). While 67% of SC was associated 

with BV in the control group, only 45% did so in the anti-EphA4 treated group (Mann 

Whitney test, p=0.0003)(Fig.7O). Moreover, for the same graft-lesion distance, lesion 

size and amount of grafted cells, more GFP+SC were found in the lesion site at 5dpi 

in animals grafted with IgG treated-SC (Fig. 7C,K,L) compared to those grafted with 
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anti-EphA4 treated SC (Fig. 7E,M,N,P). Thus, anti-EphA4 treatment reduced the 

capacity of SC to progress efficiently along vessels and/or enhanced their sensitivity 

to other myelin inhibitors. 
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DISCUSSION 

Compelling evidences indicate that SC, whether recruited from the periphery or 

generated from resident progenitor cells, invade the CNS to remyelinate CNS axons 

after demyelination(5-9), having an obvious impact on clinical recovery(1, 4). 

However, in spite of their presence within the CNS, SC intrusion of the CNS is 

restricted to BV proximal to the PNS, and the mechanisms regulating PNS-CNS 

transgression after myelin injury, remain elusive. To gain insights into PNS-CNS poor 

interface, we studied SC behavior when confronted with CNS myelin and BV ex vivo 

and in vivo in demyelinating conditions. Using classic, live, 3D imaging as well as 

electron microscopy, we provide solid evidences that SC use the vascular scaffold to 

migrate within the adult demyelinated CNS. This phenomenon is doubly modulated 

by increased angiogenesis and perivascular ECM in response to demyelination, as 

well as by SC restricted migratory capacity by CNS myelin. In particular, the CNS 

myelin specific component, EphrinB3, negatively regulates SC adhesion to- and 

spreading on myelin, while enhancing SC adhesion to perivascular ECM and 

promoting their migration along them. 

Extensive intercellular communication and coordinated interaction between the 

vascular and nervous systems(49, 50)results in a functional neurovascular unit that 

contributes to wound healing(12), immune response(51) and embryonic 

development(52). Recently, a new role in supporting long distance migration of 

different kinds of cells within the nervous systems was attributed to BV, both in the 

developing and adult nervous system(13, 14)as well as under pathological 

conditions(12, 15).So far, despite the increasing number of cells guided by BV, the 

role of these structures in guiding SC within the CNS to participate in CNS repair was 

not explored. While SC are known to promote endothelial cell migration and 
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angiogenesis(53) as well as to use BV as scaffold during peripheral nerve 

regeneration(12), our work demonstrates that this SC-BV interface extends to the 

CNS and is of relevance to their contribution toCNS repair.  

We show that BV are a favorable substrate for exogenous SC and guide them 

towards demyelinating lesions. BV serve as scaffold for SC as soon as they leave the 

graft and along their path until arrival at the lesion. Along this path, SC are organized 

in chains going from one BV to another. At their arrival in the lesion, SC embedded in 

perivascular ECM become more randomly dispersed and this dispersal faithfully 

overlaps with BV expansion with time (Fig. 1). This suggests that angiogenesis, a 

common response to demyelination and inflammation, via expansion of the vascular 

network and ECM increase, facilitates SC entry sites and dispersal in the lesion. 

Since SC remyelination has shown to have an impact in the nerve function 

recovery(4), the clinical impact of angiogenesis in remyelination should not be 

overlooked.  

While associated with BV at their arrival at the lesion at 3dpi, SC detached from BV 

to contact and align with the demyelinated axons at 5dpi. This change in substrate 

association may result from signals arising from the axons that trigger their 

differentiation into more mature SC as a first step to myelin repair. The absence of 

SC away from their narrow path of migration between the graft and lesion as well as 

their progressive increase in number in the lesion, point to their specific recruitment 

by the lesion most likely involving attractant signals yet to be defined.  Although most 

of our observations were performed with exogenous SC, induction of demyelination 

in Krox20 cre Rosa YFP mice, hints that PNS-derived SC(7) triggered to enter the 

spinal cord by demyelination, use BV as scaffold to reach the lesion during 

spontaneous repair. SC are generated also from CNS progenitors in response to 
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demyelination(8),(9) opening the possibility that these CNS progenitor-derived SC may 

also use BV to migrate towards more distant injured sites. 

In physiological conditions, the vasculature network, consisting of endothelial cells 

and pericytes surrounded by ECM, is rather dynamic, and angiogenesis is activated 

in response to damage(54). As part of this structure, ECM undergoes constant 

remodeling(55), as also observed in MS and animal models, even before symptoms 

appear(56). We show that injection of the lipid-toxic agent, LPC, in the absence of 

grafted SC, induced proliferation of endothelial cells in addition to expansion of the 

vasculature area. As BV remodeling is known to correlate with a change in ECM, we 

analyzed this impact in our paradigm. We found a prominent increase in FN and 

collagen 4 expressions, two main ECM components, which provide excellent 

substrates for SC migration. FN re-expression also affects directly OPC migration 

and differentiation and therefore, was proposed as a scaffold required to complete 

remyelination(57). Likewise, FN promotes SC mobility(10) indicating that the 

observed changes in ECM composition could stimulate SC migration along BV.  

BV also support SC migration in the injured PNS. However, in those circumstances, 

SC create direct contacts via protrusion with endothelial cells to migrate from one 

nerve stump to the other or in vitro when grown in 3D, suggesting that these 

protrusions constitute mechanical means to propel SC migration along BV in a tight 

environment(12). Although we found SC associated with BV along their migrating 

route, direct contact with endothelial cells or pericytes was never observed. Instead 

SC were heavily embedded in the perivascular ECM, thus indicating that although SC 

share similar mechanisms to conquer the injured nervous systems, some differences 

exist in their mode of migration between CNS and PNS, and BV guidance and 

perivascular ECM seems to prevail for their migration in the CNS. The observed 
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differences may result from different molecular and cellular environment existing 

between PNS and CNS, including different degrees of confinement in which SC are 

placed. 

We previously demonstrated that SC avoid and are repelled by myelin(20, 58). Here 

we confirm these data and show that SC prevented to migrate directly through white 

matter, are somehow forced to migrate on BV. We showed previously that MAG, a 

CNS myelin component that prevents axonal regeneration in the CNS, is also 

inhibitory to SC migration and survival(20). While MAG accounted only partially for 

the repulsive effect of myelin to SC, our data in the developmentally arrested SC 

(Krox20null) and those on SC expressing low levels of Krox20(39) hint that the better 

blending with myelin observed in immature stages of the PNS-linage(37, 38) could be 

due to the lower expression of Eph receptor profile. We identified EphrinB3 as 

another myelin component negatively regulating SC in contact with CNS myelin. Like 

MAG, EphrinB3/EphA4 receptor signaling has been implicated in axon 

pathfinding(27). This suggest that myelin components exerting their inhibitory effect 

on axons are not exclusively directed against axons, but extend their inhibition to 

other neural components such as myelin-competent cells, preventing differentiation 

of oligodendrocyte progenitors into mature oligodendrocytes(59) as well as SC 

survival, and migration. 

We first proved in vitro, that SC-bound EphrinB3 is able to activate by 

phosphorylation both EphA4 and EphB1, as well as to bind EphB6, which can be 

also transphosphorylated EphB1(43). Once bound to these receptors, EphrinB3 

impairs the adhesion of these cells to myelin proteins, diminishing their process 

extension onto their substrate. Our in vitro data indicate that interfering with both 

EphB6 and EphA4 do not show additional improvement of this myelin-SC repulsion 
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compared to single interference. Eph receptor signaling is not as straightforward as 

one receptor binding to one ligand. To trigger efficient activation, Eph receptors must 

cluster, homotypically (one subtype of Eph receptor) or heterotypically (involving the 

oligomerization of different Eph receptor subtypes)(41). This lack of synergic effect 

suggests that the mechanism of Eph/ephrin activation in SC might be mediated by 

heterotypic recruitment independent of the initial receptor activation.  

Ephrin signaling includes not only induced repulsion but also modulates expression 

of adhesion molecules(29-31). We show that myelin-associated EphrinB3 modulates 

SC adhesion and migration to ECM, in particular FN, and enhanced integrinβ1 

expression, overruling SC inhibition by myelin in vitro and promoting their migration 

along BV to reach the demyelinated lesions in vivo. This event occurs in correlation 

with increased FN expression, among other ECM molecules, during BV remodeling in 

response to demyelination, suggesting that the increased expression of ECM 

molecules by BV favours SC-BV interaction and subsequent migration along the 

vasculature in vivo.  

Despite the present implication of EphA4 and EphB6 receptors in SC response to 

myelin, and their contribution to SC migration along CNS BV, the involvement of 

other Eph receptors in SC migration within the CNS should not be disregarded. To 

mention, EphB2, also expressed by SC and able to bind myelin-associated EphrinB3, 

mediates SC-SC interaction through N-cadherin re-localization to organize SC chain 

migration in the PNS(29). In fact, we observed SC in chains forming bridges going 

from one BV to another (Fig. 1C2and F, Movie S1), suggesting the possible 

implication of EphB2 in these events. 

In addition, EphA4 is involved in SC-astrocyte repulsion(28). Although the 

interactions between SC and astrocytes has not been explored in this study, the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2018. ; https://doi.org/10.1101/498261doi: bioRxiv preprint 

https://doi.org/10.1101/498261
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

localization of the grafted SC in the vascular unit between the blood vessel wall and 

the astrocyte feet, suggests that the repulsion exerted by astrocytes can help 

confining SC to the perivascular space, and contribute to the mechanism of SC 

migration along BV. Interfering with EphA4 in SC could have altered this interaction 

and further allowed the grafted cells to escape from their perivascular path and 

mingle more with the surrounded white matter parenchyma. 

In conclusion, we used multiple ex-vivo, in vivo and in vitro approaches to highlight a 

novel mechanism of guidance and migration of SC during the early events of CNS 

repair. We also provide strong evidences that the Eph/ephrin family regulates the 

complex interactions existing between SC myelin and blood vessels. SC 

encountering myelin-associated EphrinB3, retract their processes failing to mingle 

with white matter, and adhere preferentially to BV via activation of Integrinβ1. This 

dual effect, repulsing SC from CNS myelin and enhancing their attraction to basal 

lamina, directs their migration along CNS vasculature towards the lesion (Fig.8). 

Lesions of white matter undergoing the formation and/or reshaping of the vasculature 

with increased expression of ECM adhesion molecules, in particular FN, further 

triggers SC mobilization throughout the lesion. While SC invasion of the CNS is not 

restricted to demyelinating diseases, future studies should indicate whether such 

mechanisms are of relevance for other clinical pathologies such as trauma as well as 

genetic and acquired myelinopathies. 
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MATERIAL and METHODS 

Animals. Eight week old C57Bl/6JR female mice were purchased from Janvier Labs 

(Rodent Research Models & Associated Services). Actin-green fluorescent protein 

(GFP) transgenic,Krox20Cre/+ R26RYFP/+(34), and Krox20Cre/flox,R26mT/+(3)mice were 

previously characterized(3, 34), and maintained at ICM and IBENS animal facilities. 

Animal experiments were performed according to European Community regulations, 

ICM and INSERM ethical committee (authorization 75-348; 20/04/2005) and were 

approved by the local Darwin ethical committee. 

Schwann cell isolation and purification.  Sciatic nerves of wild-type and Tg mice 

were isolated at postnatal day 15 and purification procedure was adapted from the 

previously described protocol(35). Briefly, enzymatic dissociation was performed by 

incubation with trypsin 0.025% and collagenase (420 U/ml) 10min at 37°C, followed 

by mechanical dissociation through different needle gages. After ending dissociation 

with fetal calf serum (FCS), SC were seeded in FN-coated flasks, and expanded in 

Dulbecco’s modified Eagles medium, containing 10% heat-inactivated FCS serum, 

penicillin (100 mg/ml), streptomycin (100 U/ml), human recombinant Neu-

differentiation factor ß (hrNDFß) (125 ng/ml), insulin (10 µg/ml) and forskolin (2 

µg/ml).SC were purified by differential adhesion(60), obtaining a purity of 90%, and 

passaged no more than three times before use. Purification was controlled by 

immunocytochemistry for p75.For adhesion, migration and blocking receptor assays, 

SC were maintained in Sato serum-free medium(61) supplemented with hrNDFB 

(125 ng/ml), and forskolin (2 µg/ml).  

iDISCO whole-mount immunofluorescence and imaging. Spinal cords were 

processed as described in the iDISCO protocol(62), including modifications described 

in the updated online protocol (https://idisco.info, December 2016). The primary 
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antibody used was rabbit anti-RFP (1:1000, Rockland). Secondary antibodies used 

were donkey anti-rabbit Cy3 (1:800, Jackson Immunoresearch) and donkey anti-

mouse IgG Cy5 (1:800, Jackson Immunoresearch) for intravascular staining. The 

cleared samples were imaged with a light sheet microscope (Ultramicroscope II; 

LaVision Biotec). 

RNA transcriptome analysis. Library preparation and Illumina sequencing were 

performed at the EBENS genomic core facility. Briefly, (polyA+) mRNAs were purified 

from 250 ng of total RNA using oligo(dT). Libraries were prepared using the strand 

specific RNA-Seq library preparation TruSeq Stranded mRNA kit (Illumina). Libraries 

were multiplexed by 6 on 1 high-output flow cells. A 75 bp read sequencing was 

performed on a NextSeq 500 device (Illumina). A mean of 94 ± 9,5 million passing 

Illumina quality filter reads was obtained for each of the 6 samples. 

The analyses were performed using the Eoulsan pipeline(63), including read filtering, 

mapping, alignment filtering, read quantification, normalization and differential 

analysis. Before mapping, poly N read tails were trimmed, reads ≤40 bases were 

removed, and reads with quality mean ≤30 were discarded. Reads were then aligned 

against the Mus musculus genome from Ensembl version 84 using STAR(64). 

Alignments from reads matching more than once on the reference genome were 

removed using Java version of SamTools(65). To compute gene expression, Mus 

musculus GFF3 genome annotation version 84 from Ensembl database was used. All 

overlapping regions between alignments and referenced gene were counted using 

HTSeq-count 0.5.3(66). The sample counts were normalized using DESeq 1.8.3(67). 

Statistical treatments and differential analyses were also performed using DESeq 

1.8.3.  
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Data availability. The RNASeq gene expression data and raw fastq files are 

available on the GEO repository (www.ncbi.nlm.nih.gov/geo/) under accession 

number: GSE107401 (accession password: mlkfkwoezxujvsn). 

Myelin Protein Extract isolation. Myelin was purified by sucrose gradient 

centrifugation(68). Cerebral hemispheres of adult mice (3 months-old)were 

homogenized (on ice) in 0.35 M sucrose and 5 mM EGTA and the suspension was 

overlaid onto an equivalent volume of 0.85 M sucrose and 5 mM EGTA and 

centrifuged at 100000 x g at 4ºC for 20 min. The myelin-containing fraction at the 

interface was collected, diluted three-fold in distilled water, and centrifuged at 100000 

x g at 4ºC for 30 min. After washing with distilled water, the isolated myelin pellet was 

re-suspended in 20 mMTris-HCl, aliquoted, and stored at –20ºC. 

Pre-clustering of recombinant EphrinB3-Fc.  Mouse EphrinB3-Fc fragments and 

human Fc were purchased by R&D Systems. The soluble forms of EphrinB3-Fc, and 

its control Fc, have low effect on receptor activation(69), therefore they were mixed 

with anti-mouse Fc-IgG and anti-human Fc-IgG (Alexa 555) respectively, (ratio = 

1:5), and incubated for 1 h at 37°C prior to addition to SC(70).  

Adhesion and Spreading Assays. 

In vitro. Adhesion and spreading assays were performed in 24 well dishes. Silicon 

strips on coverslips were used to separate two coated areas of each coverslips(71). 

Surfaces were coated overnight at 37°C with recombinant EphrinB3-Fc fusion at 10 

µg/mL and Fc equimolar (as control) on each side respectively; or myelin extract (100 

µg/mL) and PBS buffer, as control. Before cell seeding, strips were removed and 

coverslips were washed carefully with PBS. 105SCwere seeded in serum-free Sato 
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medium to avoid proliferation, and allowed to adhere for 3h. Data were always 

expressed as ratio respect to the intra-coverslip control(24).  

Spinal cord frozensections. Cryostat longitudinal sections(20µm thick)of snap frozen 

spinal cords were allowed to adhere to glass slides and were thawed at room 

temperature just before use. Then, 50.000 SC/sections were seeded and allowed to 

adhere overnight (16h) before fixation in 4% paraformaldehyde (5 min), 

immunostaining for Glut1and mounting with fluoromount.  

Survival assay. GFP+SC were seeded on uncoated glass coverslips in normal 

medium. After overnight adhesion, medium was changed adding Sato serum-free 

medium supplemented with clustered-EphrinB3 at 10 µg/mL and Fc equimolar (as 

control); or myelin extract (100 µg/mL) and PBS (as control). SC were incubated for 3 

h or 24 h as specified in each experiment. After fixation in 4% paraformaldehyde (5 

min), SC were immuno-stained for caspase 3 adding Hoechst dye to visualize all 

nuclei, and coverslips mounted with fluoromount.  

Migration assay.SC were re-suspended at 3·106 cells/ml in Sato medium containing 

0.8% low melting point agarose (Sigma). 1.5 µL-drops of this suspension were 

applied to the center of FN +EphrinB3, or FN +Fc-coated glass coverslips, which 

were placed at 4°C for 1 min to allow the agarose to solidify. The cooled drop was 

covered with Sato medium with hrNDFß(125 ng/ml) and forskolin (2 µg/ml) and 

placed up to 6 h at 37 °C into the incubating chamber of a video-microscopy (ZEISS).  

SC receptor blocking assay. EphA4 and EphB6 receptors, or Integrinβ1 in SC were 

neutralized by incubation with anti-EphA4 (1.2 µg/10.000 cells, R&D, AF641), anti-

EphB6 (1.2 µg/10.000 cells, Santa Cruz Biotechnology, sc-7282), anti-integrinβ1 (0.6 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2018. ; https://doi.org/10.1101/498261doi: bioRxiv preprint 

https://doi.org/10.1101/498261
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

µg/10.000 cells, MA2910, Thermo Fisher Scientific)antibodies or IgG (as control) in 

Sato medium for 1 h at 37°C prior to cell seeding or transplantation. 

Immuno-staining. Cultured SC were fixed for 5 min in 4% paraformaldehyde prior 

immuno-staining and mice were sacrificed by trans-cardiac perfusion of PBS followed 

by cold 4% paraformaldehyde, and post-fixed in the same fixative for 1 hour. Spinal 

cords were cryo-protected by immersion in 20% sucrose solution overnight, 

embedded in cryomatrix (Thermo Scientific), and frozen in cold isopentane at –60°C. 

Finally, they were sectioned with a cryostat at 12 µm (Leica Microsystems). Both 

cells and sections were washed, blocked in 5% BSA for 40 min and incubated with 

the primary antibodies. While cells were incubated 1h at room temperature, slides 

were incubated overnight at 4°C.  For MOG staining, sections were incubated with 

absolute ethanol for 10 min followed by primary antibody, and then washed 

profusely. Primary antibodies were as follows: antiEphA4 (1:50, R&D, AF641); anti-

EphA4-Tyr(602) (1:50, ECM Biosciences, EP2731);  anti-EphB6 (1:50, SAB4503476, 

Sigma); anti-EphB1 (1:50, SAB4500776, Sigma; anti-Eph receptor B1+Eph receptor 

B2 (phospho Y594) (1:50, ab61791, Abcam); anti-Ki67 (1:100, 556003, BD 

Biosciences); anti-cleaved caspase3 (1:500, Cell Signalling, #9661S); anti-GFP 

(1:400, Aves, GFP-1020); anti-MOG (1:20, mouse IgG1 hybridoma, clone C18C5; 

provided by C. Linnington, University of Glasgow, Glasgow, United Kingdom); anti-

MBP (1:50, ab7349, Sigma), anti-Glut1 (1:100, 07-1401, Merck Millipore; and 1:400, 

MABS132, Sigma); anti-Fibronectin (1:600, F6140, Sigma); anti-CD31 (1:200, 

553370, BD Pharmigen); anti-NF200 (1:200, N4142,Sigma), anti-p75 (1:100, Ozyme, 

8238S), anti-CD13 (1:50, BioRad, MCA2183), anti-CD68 (1:400, BioRad, MCA1957), 

anti-CD11b (1:400, BioRad, MCA74G), anti-F8/40 (1:100, BioRad, MCA497R), anti-

Collagen 4(1:400, ab19808, Abcam), anti-Olig2 (1:300, MABN50, Millipore) and anti-
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sox10 (1:50, AF2864, R&D System).Next, cells or sections were washed and 

incubated with secondary antibodies and Hoechst dye for 1h at room temperature. 

The excess secondary antibody was removed by several PBS washes, and 

coverslips/slides were mounted using fluoromount.  

Electron microscopy. For electron microscopy, mice were perfused with PBS 

followed by 4% paraformaldehyde/2.5% glutaraldehyde (Electron Microscopy 

Science) in PBS for 45 minutes. Dissected spinal cords were post-fixed with the 

same solution for 2 hours, then,sectioned into 60µm slices with a vibratome and 

washed twice with PBS before enzyme immuno-labeling revealed by DAB/oxygen 

peroxyde. For DAB revelation, endogenous peroxidase was inhibited with a 

methanol/oxygen peroxide incubation, washed and blocked by 5% BSA for 1h. 

Sections were incubated with anti-GFP overnight at 4°C, then washed and incubated 

with a secondary biotinylated antibody for 2h at room temperature. After several 

washes with PB 0.1M sections were incubated with the ABC kit (VECTASTAIN® 

ABC-HRP Kit, Vector Lab) containing peroxidase-antiperoxidase for 40min followed 

by a DAB/ oxygen peroxide mix before stopping the reaction with distilled water. 

Samples were fixed in 2% osmium tetroxide (Sigma-Aldrich) 30min, washed gently 

and incubated with 5% uranyl acetate for 30min in the dark. After dehydration, 

samples were embedded in Epon resin 812.Ultra-thin sections (80 nm) were 

examinedwith a HITACHI 120 kV HT-7700 electron microscope. 

Demyelinating lesions and grafts. Wild-type mice were anaesthetized with a 

ketamine/xylazine mixture. Demyelination was induced by stereotaxic injection of 

LPC (1%, 0.5 µl) in PBS. LPC or PBS (in control animals) was injected into the dorsal 

funiculus of the spinal cord at the level of T8–T9 in the dorsal column white matter 
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using a glass micropipette. SC (105/ 2µL) were injected the same day two vertebrate 

caudally (4mm) in the same tract.  

Western blotting. SC (6·106 cells/well) were lysed in RIPA buffer with Complete® 

and Phosphostop® inhibitor and analyzed by electrophoresis in an SDS 4–20% MINI 

PROTEAN TGX gel. After electrophoresis, proteins were transferred 

electrophoretically to polyvinylidene difluoride membranes and probed with the 

following antibodies:anti-EphB6 (1:500, SAB4503476, Sigma), anti-EphB1 (1:500, 

SAB4500776, Sigma), anti-EphA4 (4µg/mL, 37-1600, ThermoFisher), anti-p-

EphB1+2 (1:300, ab61791, Abcam), anti-p-EphA4 (1:300, EP2731, 

ECMBiosciences), anti-Integrinβ1 (1:500, 550531, BD Pharmingen), anti-EphrinB3 

(1:250, 1µg/mL, AF395 R&D systems), anti-MBP (1:1000, ab980, Millipore), anti-

GAPDH (1:5000, MAB374, Millipore) and anti-Actin (1:50000, A2228, Sigma). 

Peroxidase-conjugated anti-rabbit, anti-goat or anti-mouse IgG secondary antibodies 

(Jackson ImmunoResearch) were used at a dilution of 1:5000, 1:10000 and 1:20000, 

respectively, and anti-Rat biotinylated (1:100, Vector Labs) followed by peroxidase-

conjugated streptavidin. Protein bands were visualized by chemoluminescence (ECL 

BioRad). Intensity of the bands was quantified with ImageJ. 

Neutralization of EphrinB3 epitopes in myelin extracts. EphrinB3 epitopes in 

myelin extract proteins were neutralized by incubation with anti-EphrinB3 antibodies 

(AF395, R&D system and  sc-271328, Santa Cruz Biotechnology; ratio: 1:1) for 2 h at 

room temperature prior to the addition to the cells(26). 

Spinal cord live imaging. LPC lesion followed by GFP+SC engraftment was 

performed in 60 days-old animals and mice terminally anesthetized. Rhodamine 

labeled BSL I (Vector Labs RL-1102) at 2mg/ml was injected in the beating heart to 

label BV. After 5 minutes allowing dye circulation, spinal cords were dissected in ice-
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cold HBSS solution supplemented with 6,4 mg/mL d-(+)-glucose and bubbled for 30 

min with bubbled with 95% O2/5% CO2. Spinal cord segments including lesion and 

graft sites were laid onto Millicell-CM slice culture inserts (Millipore) over culture 

medium (50% DMEM+Glutamax, 25% HBSS, 25% heat-inactivated horse serum, 5 

mg/mL d-(+)-glucose, 20mM Hepes, penicillin (100 mg/ml), streptomycin (100 U/ml), 

human recombinant neu-differentiation factor ß (hrNDFß) (125 ng/ml), and forskolin 

(2 µg/ml)in a glass bottom plates, and then placed into an inverted Leica SP8X 

confocal with an on-stage incubator (while streaming 95% O2, 5% CO2 into the 

chamber). Spinal cords were imaged using a 25x immersion objective at intervals of 

15 min during 12 hours with intermittent repositioning of the focal planes. Maximum 

intensity projections of the collected stacks (~60 μm at 2 μm step size) were 

compiled in FIJI program. 

Quantification 

Lesion. The lesion area was identified by immune detection of GFAP combined with 

Hoechst (H+) labeled nuclei to reveal astrocyte reactivity and hyper-cellularity 

respectively. 

SC adhesion and spreading in vitro. SC adhesion on different surfaces was 

quantified as the ratio of the number of adhered GFP+ on myelin- or EphrinB3-coated 

areas, over those adhered to uncoated or Fc-coated area within the same coverslip. 

All coated areas were of equal size. Schwann cell spreading was evaluated by 

quantifying the ratio of GFP+SC not able to expand their processes out of the total on 

myelin- or EphrinB3-coated areas over those on non-coated or Fc-coated.  

SC spreading and adhesion to BV ex vivo.SC spreading on frozen spinal cord 

sections was evaluated by quantifying the GFP+ area per cell identified by Hoechst+ 
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nuclei. Adhesion on these sections was evaluated as the number of cells in contact 

with collagen 4-positive blood vessels. 

SC extent of migration in vitro. SC migration was quantified by measuring the number 

of SC outside the 1.5 µL agarose drop and the maximum extent of their migration 

from the edge drop. 

SC velocity in vitro. SC speed of migration was quantified by manual cell tracking 

plugging of FIJI program, calibrating pixel size and duration of time-lapse of each 

frame.  

Size of lesion and graft area. Lesion and grafted cells within the dorsal funiculus were 

quantified by delimiting Hoechst+ nuclei hyperdensity and GFAP-positive 

areaper12µm-section. Lesion and graft areas were quantified by ImageJ 1.49s. For 

each animal, at least three serial sections with 60 µm intervals were quantified. 

Extent of SC migration in vivo. SC migration within the dorsal funiculus was 

quantified on longitudinal sections evaluating the distance between the graft injection 

site and the most proximal GFP+ cell to the lesion (LPC injection site) in each animal 

from different groups.  

BV expansion. BV were identified by immunoreactivity to Glut1, a marker restricted to 

micro-vessels with blood-tissue barrier function.BV expansion was quantified as the 

Glut1+area over a cut-off threshold of staining using ImageJ 1.49s.Glut1+area in 

controls was averaged and every animal value of both groups was expressed as a 

ratio over this control mean. Endothelial cell proliferation was assessed taking into 

account only Glut1+ cells containing a Ki67+ nucleus clearly embedded within their 

cytoplasm, and excluding Ki67+ nuclei, closely apposed. 
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SC-BV association. SC-BV association was quantified in the intermediate zone, 

at1mm from the graft edge in the direction of the lesion or in the lesion site. 

GFP+/Hoechst+SC, with complete or more than half-cell size in contact with Glut1+ 

endothelial cells were counted as “closely associated cells” while those with only “tip” 

contacts or no contacts were considered as “not associated cells”. Data are 

expressed as the percentage of total counted cells in both groups. 

SC-Axon alignment. SC-BV alignment in the lesion site was quantified. 

GFP+/Hoechst+ SC, with complete or more than half-cell in parallel orientation and 

aligned closely to NF200+ axons (excluding alignment to BV), were counted as 

“closely associated cells” while those with only “tip” contacts or no contacts were 

considered as “not associated cells”. Data are expressed as the percentage of total 

counted cells in both groups. 

Statistics 

The sample size calculation was performed by the resource equation method, trying 

to minimize the sample size to follow the ARRIVE guidelines for reporting animal 

research. Each n represents one animal or SC sample in the experiment. The 

grafting experiments were repeated at least three times with different set of animals 

each. For the in vitro analysis, experiments were performed at least three times with 

SC obtained from different dissections and dissociations. Statistical analysis was 

carried out using GraphPad Prism 6 software. All values were expressed as mean ± 

SD. Normality in the variable distributions was assessed by the D'Agostino&Pearson 

omnibus test and Grubbs' test was used to detect and exclude possible outliers. 

When Normality test was passed, means were compared by two-tailed Student’s t 

test. When one or both groups did not follow a normal distribution, means were 

compared by two-tailed Mann-Whitney U test. When different independent groups 
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were compared, we performed a one-way ANOVA plus Tukey’s multiple comparison 

tests. One sample t-test was used to compare values to the hypothetical mean: 1 for 

ratios and 100 for percentages. Repeated‐measure ANOVA was used to analyze the 

difference along time of a certain parameter. P-values lower than 0.05 were used as 

a cut-off for statistical significance.  
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    Fig. 1. Migrating behavior of SC grafted in white matter remotely from LPC-induced 
demyelination. 

    (A) Scheme of LPC lesion and SC graft targeted into the dorsal funiculus of the spinal 
cord; graft and lesion are 4mm apart. (B) Quantification of SC distance of migration and 
recruitment by the lesion. Extent of migration and percentage of animals with lesions 
containing SC at different times, shows that the SC arrival at the lesion is timely regulated. 
Data are expressed as mean ± SD, 1dpi (n=5), 3dpi (n=6), 5dpi (n=7). (C1) General view of 
longitudinal sections of the spinal cord illustrating the graft and lesion sites at 1dpi, 3dpi 
and 5dpi, stained for Glut1. GFP+SC grafted within dorsal spinal cord white matter 
progress along the midline, migrate preferentially in close contact with Glut1+ endothelial 
cells towards the lesion (C2) and spread within the lesion close to the BV (C3). Dotted lines 
identify the graft and lesion sites. (D) Grafted GFP+SC along the midline in the 
intermediate zone avoid myelin (revealed with MOG) and are associated with Glut1+BV. (E) 
3D reconstruction from a Z stack illustrating GFP+SC located between Glut1+endothelial 
cells and perivascular astroglial end feet (GFAP+). (F) 3D reconstruction after light sheet 
imaging of clarified whole spinal cord illustrates the abundant vascular spinal cord network 
and tdTomato+SC migrating from the graft along the dorsal funiculus midline (intermediate 
zone) en route for the lesion. While a few of tdTomato+SC escape from the graft in other 
directions, most tdTomato+SC exiting the graft are polarized on BV (G,H,I) or between BV 
evoking jumping events from one BV to another one (J,K,L). Immuno-EM of GFP+SC in the 
intermediate zone illustrates several GFP+SC revealed by DAB embedded in perivascular 
ECM (M) between BV and astrocytes (As) (O). (N) Higher magnification of the boxed area 
in (M).  
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Figure 2 

Fig. 2. Schwann cells migrate along BV and timely dissociate from them to contact 

demyelinated axons at the lesion site. (A,C,E) Upon arrival at the lesion at 3dpi, grafted 

GFP+SC are associated with BV. (B,D,F) At 5dpi, fewer SC are associated with BV but are 

aligned with NF200+axons. (C,D) Higher magnifications of GFP+ cells in the lesion 

illustratinghe temporal decrease of association of GFP+SC with Glut1-positive BV (white 

arrows) compared to(E-F) the progressive increase of GFP+SC in association with NF200+ 

axons (blue arrow). (G,H) Quantification of SC associated or not, with BV at 3dpi (n=2) and 

5dpi (n=8) (two-tailed Mann Whitney test p=0.035) (the experiments were repeated 

independently three times, mean value ± SD). C, E and D, F show separated colors of A and 

B respectively. A-F images represent confocal maximal projections of Z-stacks, while insets 

show only one confocal Z-plane. 
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Fig. 3. Dynamics of the vascular network in response to LPC demyelination. 

Immunohistochemistry for Glut1+ (red) at 1dpi (B), 3dpi (C), 5dpi (D) and 7dpi (E) illustrates 

increased vascularization in LPC lesions compared to control (A). (F1) Orthogonal and (F2) 

3D views show proliferating Glu1+Ki67+ endothelial cells. (G,H) Immunohistochemistry for 

Glut1+ at lesion site (G) and graft site (H) in SC grafted mice at 5dpi. (I) Quantification of 

Glut1+area shows a significant expansion of BV from 3dpi-7dpi, with a peak at 5dpi, which is 

similar to that observed in lesions of grafted animals. Glut1+ quantification showed no 

increase in Glut1+ area at the graft site. (Glut1+area in Lesion/PBS (n=15): 1dpi (n=4): 

1±0.05; 3dpi (n=4): 1.8±0.5; 5dpi (n=4): 2.2±0.4; and 7dpi (n=7): 1.6±0.5; 5dpi in lesion of 

grafted mice/PBS (n=6): 2±0.4; 5dpi in SC graft site (n=6): 1.1±0.2; one-way ANOVA 

p<0.001, F(4,28)=10.96; two-tailed Mann Whitney test with PBS group: 3dpi (p=0.019); 5dpi 

(p=0.0005); and 7dpi (p=0.01). Values are expressed as the ratio to the PBS mean). (J) The 

number of Glut1+/Ki67+ cells increases at 1dpi preceding that Glut1+area, and declining 

thereafter (1dpi (n=4): 12.7±7 (p=0.004), 3dpi (n=4): 7.8±7 (p=0.001), 5dpi (n=4): 6.5±6 

(p=0.002), 7dpi (n=7): 2.9±4 (p=0.001); one-way ANOVA p=0.007, F(4,25)=4.48; two-tailed 

Mann Whitney test with PBS group: 1dpi (p=0.004), 3dpi (p=0.001), 5dpi (p=0.002), 7dpi 

(p=0.001). Dashed lines highlight the lesion border defined by GFAP immunostaining and 

Hoechst hyper-cellularity, and graft site. Data are expressed as mean value ± SD of control 

(PBS). The experiments were repeated independently three times. **means p<0.01 and 

*means p<0.05. 
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Fig 4. EphrinB3 binds and activates EphA4, EphB1 and EphB6 receptors in SC. (A, C, 

D) Orthogonal views of SC activation with clustered-EphrinB3 shows that EphrinB3 binds 

EphB6 (A), EphA4 (C) and EphB1 (D) receptors on SC. (B) Western blot analysis confirmed 

the presence of these receptors in SC. (E,F) Bound EphrinB3 activation of EphA4 and EphB 

receptors viewed by immunodetection of phosphorylated forms. (G,H) SC incubation with 

myelin increased the phosphorylation of EphA4 (G) and EphB1+B2 (H) by Western blotting, 

which is not the case when myelin is previously blocked by anti-EphrinB3 antibody (O.D. of 

p-EphB1+2/GAPDH control (n=6): 0.93±0.05, myelin (n=6): 1.1±0.08, myelin+anti-EphrinB3 

(n=6): 0.82±0.21) (one-way ANOVA p=0.003, F(2,15)=8.57, followed by a Tukey’s multiple 

comparison test); and O.D. of p-EphA4/GAPDH control (n=6): 0.74±0.07, myelin (n=6): 

1.29±0.30, myelin+anti-EphrinB3 (n=6): 0.82±0.30 (one-way ANOVA p=0.0036, 

F(2,15)=8.44, followed by a Tukey’s multiple comparison test). Quantification was assessed 

in at least 3 independent experiments and data are expressed as ratio of the optical density 

(O.D.) of the bands (mean values ± SD). 

 

* 

O
.D

. 
p
-E

p
h
B

1
+

B
2
 

/G
A

P
D

H
 

SC 

control 

SC + 

Myelin  

SC + Myelin + 

antiEphrinB3 

1.5 

1.0 

0.5 

0 

** ** 

O
.D

. 
p
-E

p
h
A

4
  

/G
A

P
D

H
 

SC 

control 

SC + 

Myelin  
SC + Myelin + 

antiEphrinB3 

* 

1.5 

1.0 

0.5 

0 

2.0 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2018. ; https://doi.org/10.1101/498261doi: bioRxiv preprint 

https://doi.org/10.1101/498261
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5 

PBS Myelin 

F
c
 

E
p

h
ri
n

B
3

-F
c
 

M y e lin  a d h e s io n  F c  E p h r in B 3  p r e in c u b a t io n

F c E p h r in B 3

0

5 0

1 0 0

1 5 0

B 

** 

** 

# 
1.5 

1.0 

0.5 

0 

Myelin/PBS 

M y e lin  a d h e s io n  F c  E p h r in B 3  p r e in c u b a t io n

F c E p h r in B 3

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0 ** 

## 

6 

5 

3 

4 

2 

1 

0 
Fc EphrinB3-Fc 

Fc EphrinB3-Fc 

R
a
ti
o
 o

f 
R

o
u
n
d
 S

C
/S

C
T

O
T

A
L

 
R

a
ti
o
 o

f 
a
d
h
e
re

d
 G

F
P

+
H

+
S

C
 

A1 
PBS  

Myelin 

GFP+SC w or w/o  
Fc/EphrinB3 preinc 

substrate seeding 

A2 

** 

** 

EphrinB3/Fc 
C 

e p h r in b 3  2 .5 ,  1 0 , 2 0

2 .5 1 0 2 0

0

5 0

1 0 0

1 5 0

e p h r in b 3  2 .5 ,  1 0 , 2 0

2 .5 1 0 2 0

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

1.5 

1.0 

0.5 

0 

2.5 

µm/mL 

10 

µm/mL 

5 

3 

4 

2 

1 

0 

** 

** 

20 

µm/mL R
a
ti
o
 o

f 
ro

u
n
d
 S

C
/S

C
T

O
T

A
L

 

2.5 

µm/mL 
10 

µm/mL 

20 

µm/mL 

R
a
ti
o
 o

f 
a
d
h
e
re

d
 G

F
P

+
H

+
S

C
 

** 

** 

D 
Myelin/PBS 

1.5 

1.0 

0.5 

0 

3 

4 

2 

1 

0 

** 

## 

** 

## 

* 
# 

## 

IgG EphB6 EphA4 

IgG EphB6 EphA4 

R
a
ti
o
 o

f 
ro

u
n
d
 S

C
/S

C
T

O
T

A
L

 
R

a
ti
o
 o

f 
a
d
h
e
re

d
 G

F
P

+
H

+
S

C
 

E 
EphrinB3/Fc 

1.5 

1.0 

0.5 

0 

2.0 

1.0 

0 

** 

## 

** 

# 

* 
## 

* 

IgG EphB6 EphA4 

IgG EphB6 EphA4 

0.5 

1.5 

2.5 

R
a
ti
o
 o

f 
ro

u
n
d
 S

C
/S

C
T

O
T

A
L

 
R

a
ti
o
 o

f 
a
d
h
e
re

d
 G

F
P

+
H

+
S

C
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 16, 2018. ; https://doi.org/10.1101/498261doi: bioRxiv preprint 

https://doi.org/10.1101/498261
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 5. EphrinB3 mediates myelin-inhibition on SC adhesion and polarization through 

EphA4 and EphB6 receptors. (A1) Diagram of the adhesion assay. Coverslips divided by 

silicon strips were coated with PBS (non-coated control) or myelin in each half. After 

removing the strip, cells pre-incubated with Fc or EphrinB3 were seeded homogenously on 

the coverslip. (A2) Unclustered EphrinB3 partially reverts myelin-induced inhibition of SC 

adhesion and spreading. (B) Quantification of the number of adhered and polarized GFP+SC. 

Pre-incubation of SC with unclustered EphrinB3 promotes their adhesion and spreading on 

myelin-coated surfaces compared to those pre-incubated with Fc only. Ratio of adhered cells 

Myelin/PBS; Fc-preincubated SC on myelin(n=9): 0.4±0.2 (**p<0.0001); EphrinB3-

preincubated SC on myelin(n=7): 0.8±0.2 (**p=0.0009); #p=0.01. Ratio of round cells 

Myelin/PBS: Fc(n=9): 2.9±1 (**p=0.0009); EphrinB3(n=7): 1.5±0.5, ##p=0.0021. (C) SC 

seeded on substrate coated with increased concentrations of EphrinB3, adhere and spread 

less in a dose concentration manner respect to the intra-coverslip control (Fc) substrate. 

Ratio of adhered cells EphrinB3/Fc; 2.5µg/mL(n=9): 0.9±0.3, 10µg/mL(n=7): 0.7±0.07 

(**p=0.002) and 20µg/mL(n=6): 0.5±0.2 (**p=0.007), one-way ANOVA (p=0.003, 

F(2,18)=8.21). Ratio of round cells EphrinB3/Fc:  2.5µg/mL(n=9): 1.2±0.4, 10µg/mL(n=7): 

1.8±0.4 (**p=0.003) and 20ug/mL(n=6): 3±0.9 (**p=0.003), one-way ANOVA (p<0.001, 

F(2,19)=15.81).(D, E) Quantification of the number of adhered and polarized SC pre-

incubated with anti-EphB6 or anti-EphA4 (extracellular domain). Pre-incubation with anti-

EpB6 and anti-EphA4 improves the number of adhered and polarized SC on Myelin (D) and 

EphrinB3 (E) compared to PBS and Fc respectively. Pre-incubation with IgG as control shows 

similar results than non-preincubated cells (B, C). Ratio of adhered cells Myelin/PBS: 

IgG(n=10): 0.4±0.2 (*p<0.0001); anti-EphB6(n=11): 0.9±0.4, anti-EphA4(n=9): 0.8±0.2; one-

way ANOVA p<0.001, F(2,27)=10.21; ##p(IgG vs anti-EphB6)=0.001; ##p(IgG vs anti-

EphA4)=0.001. Ratio of adhered cells EphrinB3/Fc: IgG(n=11): 0.5±0.09 (*p<0.0001), anti-

EphB6(n=11): 0.9±0.2, anti-EphA4(n=14): 0.6±0.2; ANOVA p<0.001, F(2,33)=13.42; #p(IgG 

vs anti-EphA4)=0.03; ##p(IgG vs anti-EphB6)=0.0001. Ratio of round cells Myelin/PBS: 

IgG(n=9): 1.8±0.9 (*p=0.02), anti-EphB6(n=11): 1.0±0.4, anti-EphA4(n=10): 0.8±0.4, one-way 

ANOVA p=0.003, F(2,27)=7.17; #p(IgG vs anti-EphB6)=0.01; ##p(IgG vs anti-EphA4)=0.007. 

Ratio of round cells EphirnB3/Fc: IgG(n=11): 1.4±0.3 (**p=0.003), anti-EphB6(n=11): 1.0±0.4, 

anti-EphA4(n=12): 1.2±0.4, one-way ANOVA p=0.08, F(2,31)=2.65; #p(IgG vs anti-

EphB6)=0.02; ##p(IgG vs anti-EphA4)=0.17. Data are expressed as ratio (mean values ± SD) 

of Myelin or EphrinB3 surfaces compared to intra-coverslips control non-coated surfaces 

(PBS) or with equimolar concentration of Fc respectively. */** are used for comparison of a 

group with its hypothetical mean: 1 by one sample two-tailed t-test, and #/## for comparison 

between two different groups by two-tailed Mann Whitney test. *means p<0.05; **means 

p<0.01; #means p<0.05; ##means p<0.001.  
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Fig 6. EphrinB3 improves SC adhesion and migration on FN coated surfaces. (A) 

Quantification of the number of adhered and polarized SC seeded on substrate coated with 

EphrinB3 with or without FN. Data are expressed as ratio (mean values ± SD) respect to Fc-

non FN coated surfaces. Ratio of adhered cells: EphrinB3 (10µg/mL) (n=7): 0.7±0.07 

(**p=0.002), EphrinB3 (10µg/mL) + FN (2µg/cm2) (n=10): 1.07±0.1 (*p=0.04); 

##p(FN+EphrinB3 vs FN=Fc)=0.001. Ratio of round cells: EphrinB3 (10µg/mL) (n=7): 1.8±0.4 

(**p=0.003), EphrinB3 (10µg/mL) + FN (2µg/cm2) (n=10):  0.82±0.3 (p=0.11); 

##p(FN+EphrinB3 vs FN=Fc)<0.001. . (B1) Diagram of the adhesion assay on FN. Coverslips 

divided by silicon strips were coated with Fc+FN (control) or EphrinB3+FN in each half. After 

strip removal, cells pre-incubated with IgG or anti-Integrinβ1 were seeded homogenously on 

the coverslip.  (B2) Blocking Integrinβ1 decreases SC adhesion and polarization to substrates 

coated with EphrinB3+FN compared to those coated with Fc+FN. (C) Quantification of SC 

adhesion and polarization on EphrinB3 when SC are pre-incubated with IgG or anti-

integrinß1. Data are expressed as ratio (mean values ± SD) over control (Fc+FN substrate); 

IgG (n=17): 1.1±0.4; anti-integrinβ1 (n=15): 0.7±0.3; #p=0.01. (D) Western blot analysis 

shows increased expression of Integrinβ1 when SC are activated by myelin extracts.(E) This 

increase is not significant when myelin is incubated with anti-EphrinB3 before the assay. 

(D,E) O.D. of Integrin β1/GAPDH control (n=5): 0.72±0.05, myelin (n=5): 1.12±0.22, 

myelin+anti-EphrinB3 (n=5): 0.81±0.21; one-way ANOVA p=0.011, F(2,12)=6.62;, followed by 

Tukey’s multiple comparisons test. (F,G). Exit of SC entrapped in an agarose drop and 

seeded on FN + Fc (F) and FN+EphrinB3 (Fc: n=3, EphrinB3: n=3). (H) More SC exit from 

the agarose drop after 5h post-seeding (two-way ANOVA with repeated measures p=0.03, 

F(1,4)=10.24) and (I) migrate over longer distances from the drop-edge from 4h on (two-way 

ANOVA with repeated measures p=0.02, F(1,4)=12.74)on combined FN and EphrinB3 coated 

surfaces. Graphs represent the values of separate experiments. */** are used for comparison 

of a group with its hypothetical mean: 1 by one sample two-tailed t-test, and #/## for 

comparison between two different groups by two-tailed Mann Whitney test.* means p<0.05; ** 

means p<0.001; # means p<0.05; ## means p<0.001. 
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Fig 7. Pre-incubation of SC with anti-EphA4 reduces their migration along BV after 

transplantation in the demyelinated spinal cord. (A) GFP+SC pre-incubated with IgG 

migrate from the graft along the midline in the intermediate zone in association with BV (B,G) 

but avoid CNS myelin (B,H) before arrival at the lesion at 5dpi (C,K,L). (F) Anti-EphA4-

preincubated GFP+SC exiting the graft mingle more with myelin (D, J), but associate less with 

BV (D,I) and frequently fail to reach the lesion site at 5dpi (E,M,N). (O) Quantification of SC in 

association or not, with BV show significant differences between control (IgG) and anti-EphA4 

pre-incubated SC with fewer cells associated with BV after anti-EphA4 pre-incubation. (P) 

Quantification of the extent of migration of grafted GFP+SC. The reduced extent of migration 

by SC pre-incubated with anti-EphA4 prior grafting, compared to control SC, correlates with a 

reduced percentage of animals in which grafted SC are recruited by the lesion. Dashed lines 

delineate lesions. Data are expressed as mean values ± SD. IgG: n=7, anti-EphA4: n=8; * 

means p<0.05. 
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Fig 8. Model of the mechanism of guidance and migration of SC after CNS 

demyelination. SC invading the CNS (a) are activated by the myelin-associated EphrinB3 

through EphB6- and EphA4-SC receptors (b). The activation by phosphorilation of these 

receptors increases the SC expression of Integrinβ1 (c), impairing the SC adhesion to white 

matter and promoting their adhesion to BV extracellular matrix (d). In parallel, lesions of white 

matter undergo the formation and/or remodeling of BV and increases expression of ECM 

adhesion molecules, in particular FN, which further facilitates SC mobilization towards the 

lesion (e). 
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