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Abstract  
 
Most people envision themselves as operant agents endowed with the capacity to bring about 
changes in the outside world. This ability to monitor one’s own causal power has long been 
suggested to rest upon a specific model of causal inference, i.e., a model of how our actions 
causally relate to their consequences. What this model is and how it may explain departures 
from optimal inference, e.g., illusory control and self-attribution biases, are still conjecture. To 
address this question, we designed a series of novel experiments requiring participants to 
continuously monitor their causal influence over the task environment by discriminating 
changes that were caused by their own actions from changes that were not. Comparing 
different models of choice, we found that participants’ behaviour was best explained by a 
model deriving the consequences of the forgone action from the current action that was taken 
and assuming relative divergence between both. Importantly, this model agrees with the 
intuitive way of construing causal power as “difference-making” in which causally efficacious 
actions are actions that make a difference to the world. We suggest that our model 
outperformed all competitors because it closely mirrors people’s belief in their causal power –a 
belief that is well-suited to learning action-outcome associations in controllable environments. 
We speculate that this belief may be part of the reason why reflecting upon one’s own causal 
power fundamentally differs from reasoning about external causes. 
 
Keywords: instrumental control; reinforcement learning; Bayesian inference; counterfactual 
emulation; reference-point dependence 
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Introduction 
Inferring causality, i.e., relating changes in one variable to the causal power of another, is a 
general, robust, and seemingly built-in ability of the mammalian brain (Premack, 2007). The 
ability to draw causal inferences is critical for a wide range of behaviours and functions that 
range from learning and planning to flexibly adapting actions and attitudes to external 
contingencies (Gopnik & Schulz, 2007). Importantly, this ability may have two different types, 
with distinct behavioural advantages that depend on the locus of the cause itself. Thus, if the 
ability to draw relationships between external variables is paramount for adaptation and 
survival, it is even more so in regard to identifying oneself (e.g., one’s own choice or action) as 
the cause of a change in the world. 

The ability to envision oneself as an operant agent endowed with the capacity to bring about 
changes in the external environment is classically referred to as “sense of agency” (Haggard & 
Chambon, 2012). Sense of agency builds on the biologically motivated belief that our actions 
are causal in nature: they have the power to make things happen and therefore can be 
implemented as an efficient means for pursuing desirable outcomes. A wealth of literature in 
social and cognitive psychology points towards this representation of one’s own causal power 
as something that is part of our natural endowment (Leotti, Iyengar, & Ochsner, 2010), 
develops early (Helwig, 2006) and is somewhat irrepressible (Ryan & Deci, 2006). These 
observations are corroborated by numerous studies showing that people readily experience 
control over objectively uncontrollable events (Blanco, Matute, & Vadillo, 2011), are subjected 
to illusions of control even when no true control exists (Langer, 1975), and experience control 
even though assuming control does not afford any behavioural advantage or is in fact 
detrimental to performance (Chambon & Haggard, 2012). The belief in one’s own causal 
power also comes with some advantages: higher levels of instrumental control are associated 
with greater general health (Bobak et al., 2000), fewer depressive symptoms (Rubenstein, 
Alloy and Abramson, 2016), and higher self-esteem (Heckhausen & Schulz, 1995). 
Conversely, a lowered sense of causation makes individuals more vulnerable to external, and 
potentially damaging, influence (Burger, 2016), and an abnormal sense of agency, such as a 
loss of control over one’s actions and thoughts, is long recognized as a key symptom of 
mental disorders (Schneider, 1959). 

Questions have been raised about the function of this belief in one’s causal power. The simple 
fact of exercising control (i.e., of making things happen intentionally) has been suggested to be 
inherently rewarding (Karsh and Eitam, 2015; see also Zimbardo and Miller, 1958), as 
reflected by activity in a corticostriatal brain network that overlaps with the neural circuitry 
involved in reward and motivation processing (e.g., Tricomi, Delgado and Fiez, 2004; 
O’Doherty et al., 2004; Bjork and Hommer, 2007). Incidentally, the belief in one’s causal power 
is associated with an inherent need for control, whereby opportunities to exercise control are 
preferred over situations with no control, even when exercising control affords no improvement 
in outcome reward (e.g., Suzuki, 1999; Sharot, De Martino and Dolan, 2009; Sharot, Shiner 
and Dolan, 2010; Cockburn, Collins and Frank, 2014; Bown, Read and Summers, 2003; Leotti, 
Iyengar and Ochsner, 2010). Exercising control could serve as one of the primary means 
through which people foster belief in their causal power. Thus, individuals with little experience 
acting as an effective agent show an impaired ability to detect action-outcome contingencies, 
and therefore, little belief in their ability to produce desired outcomes (Leotti, Iyengar and 
Ochsner, 2010; Maier and Seligman, 2016; Mineka and Hendersen, 1985)1.  

                                                
1 The need to be and feel in control is so strong that individuals do whatever they can to re-establish 
control when it disappears or is taken away (Brehm, 1966; Brehm and Brehm, 1981). Reestablishment 
of lost agency can take different forms from illusory pattern perception to erroneous identification of a 
causal relationship between random or unrelated stimuli. Thus, people experiencing a loss of control are 
more likely to see images in noise, to form illusory correlations, to perceive conspiracies or to develop 
superstitions (Whitson & Galinsky, 2008). Such erroneous causal attributions would help restore 
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A belief in one’s causal power echoes the well-documented need in humans and animals alike 
to engage in activities simply to experience “competence”, that is, a sense of influencing their 
environment (White, 1959; see also Karsh and Eitam, 2015). Children spontaneously engage 
in playful exploratory behaviours where the only drive is to effect “changes “in the environment 
(e.g., putting a finger in a candle, knocking something off a table). Likewise, rats would readily 
cross an electrified grid (Nissen, 1930) and monkeys would perform costly discrimination 
problems (Butler, 1953) simply for the privilege of exploring and/or interacting with new 
territory2. A persistent inclination to interact with the environment has been suggested to foster 
action over inaction, which may prove valuable in situations in which acting does not satisfy 
any short-term need. A bias towards action over inaction would thus promote learning of new 
contingencies by favouring the acquisition of incidental associations between actions and 
action-contingent events. Once learned, these new associations could then intentionally be 
used for pursuing desirable outcomes, i.e. for achieving goal-directed behaviours (Elsner and 
Bernhard, 2001; see also Berlyne, 1950; Berlyne, 1966)3.  

In addition to acquiring new action-outcome contingencies, a belief in one’s own causal 
efficiency may prompt the agent to probe the latent structure of the environment for causal 
variables. Making decisions based on the knowledge of causal variables, rather than based on 
local changes in the environment only, allows for better anticipation of changes in external 
contingencies, and for ultimately driving changes in the environment rather than being merely 
driven by environmental changes (Koechlin, 2014). Human cognition would be spontaneously 
framed in such a mode where “being a causal agent” is the default, and self-efficacy beliefs, 
cognitive instantiations of this default mode (Haggard & Chambon, 2012). 

Collectively, the pervasiveness of this default belief in one’s causal power (Haggard & 
Chambon, 2012), the behavioural advantages it affords (Shapiro, Schwartz and Astin, 1996), 
and the various functions it underlies (Leotti et al., 2010) provide some clues on how human 
agents calculate and oversee their causal influence on the external world. A belief in the 
causal effectiveness of one’s action is likely to rest upon a specific mechanistic model of 
causal inference, i.e., a model of how actions causally relate to their consequences. The 
general aim of this paper is to describe what this model is. Crucially, the mechanistic model 
should be able to explain how people learn and update their causal influence on a trial-by-trial 
basis and make appropriate decisions – such as adjusting behavioural strategies to 
contingency changes – based on reliable causal estimates. In addition to accounting for the 
robustness of our everyday inferences, the model should also be simple enough to account for 
the ease with which human agents calculate action-outcome contingencies, that is, this model 
should be algorithmically simple. We speculate that simplicity is required to explain how 
control beliefs can be sustained as a default backdrop to our normal mental life (Chambon and 
Haggard, 2013). Finally, the mechanistic model should be endowed with properties that 
ultimately account for spontaneous illusions of control, i.e., for why people readily credit 
themselves for unrelated events or perceive control where there is none and act 
superstitiously in the belief that they are objectively controlling uncontrollable outcomes. 

                                                                                                                                                     
feelings of control in helplessness individuals by returning the world to a predictable state where “being 
in control” is the default (Pittman & Pittman, 1980).  
2 An irrepressible tendency for playful and exploratory behaviours parallels Hendrick’s “instinct to 
master”, whose aim is merely “pleasure in exercising a function successfully, regardless of its sensual 
value”. This “primary pleasure” would arise when efficient action enables the individual to control and 
alter his environment (Hendrick, 1943). Interestingly, such exploratory behaviours have been found to 
be more frequent in younger animals, which have less experience with action-outcomes relationships 
(Siwak, 2001). 
3 In a similar vein, it has been suggested that some of our causal beliefs –e.g., control and self-efficacy 
beliefs– would have evolved to foster the discovery of unpredicted sensory events for which our actions 
are responsible, which would reinforce and prioritize those actions that lead to control over the 
environment (Redgrave and Gurney, 2006; Karsh and Eitam, 2015). 
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How people track the causal effectiveness of their actions has been a central aim of many 
empirical investigations, from animal learning to action cognition and personality psychology, 
through the prism of distinct but related, and often complementary, notions – e.g., intentional 
causation (Heider, 1958), perceived behavioural control (Rothbaum, Weisz and Snyder, 1982), 
self-efficacy (Bandura, 1989), credit assignment (Sutton and Barto, 1998), controllability 
(Harris, 1996), instrumental learning (Dickinson, 2001), and agency (Haggard & Chambon, 
2012). Despite the great variety of disciplines concerned, three dominant approaches to 
instrumental causation can be distinguished, upon which relationships between action and 
outcome are either: 

(1) retrospectively inferred (associative approach),  

(2) explicitly calculated (generative approach),  

(3) simply emulated (counterfactual approach)4  

Importantly, each of these approaches draws upon different strategies with different 
costs and benefits. Hence, they can be distinguished on several grounds: their efficiency, 
allowing for slow or quick adaption to contingency changes; their cost, which makes them 
likely or unlikely to be implemented by resource-bounded agents; and their vulnerability to 
illusions of control and self-attribution biases. In the next section, we describe typical instances 
of these three approaches (associative, generative, and counterfactual models), with their 
respective strengths and weaknesses. Then, we turn to computational instantiations of each of 
these approaches, which we tested and compared across a series of modified probabilistic 
reversal-learning tasks. The results support the counterfactual approach motivating the 
development of a computational model extending the standard reinforcement-learning 
framework to the emulation of unseen (i.e., counterfactual) action-outcome contingencies, 
which allowed choices to be made online with minimal computational expense.  

 
Associative models: causation is about maximizing the expected value of action 
One of the dominant views on causation, the associative approach, traces its roots to David 
Hume (1748/1978). This approach is motivated by the fact that causation is ultimately 
unobservable, and yet causal relations must be inferred from sensory inputs in some way (see 
Cheng, 1997; Walsh and Sloman, 2011; Illari, Russo and Williamson, 2011). According to 
Hume, only three empirical criteria must be met for characterizing causation: the cause must 
precede the outcome, the outcome must regularly follow the cause, and both must be spatially 
and temporally contiguous. Importantly, Hume’s definition of causation does not rely on any 
reference to the mechanism or process connecting events together. Causal relationships are 
assumed, rather than directly perceived or known, by noticing constant conjunctions between 
two events and by retrospectively presuming that a connection underpins their conjunction 
(Hume, 1748). Ultimately, the associative approach holds that causality is anything but a belief 

                                                
4 Here we draw upon a classical distinction between associative and generative approaches to 
causation, according to which causes are “associated” with effects by retrospection or actively 
“generate” their effects through an operant mechanism (e.g., Cheng, 1997). Strictly speaking, however, 
associative models in the form of reinforcement-learning (RL) algorithms do also possess a generative 
model of the world (i.e., an explanation for how observations are generated), whereas counterfactual 
emulation is a generative mechanism per se (i.e., a mechanism to decide which among several 
candidate causes has generated the effect). Here, and in what follows, we take the “generative” term in 
a broader and more liberal sense: generative models are those models drawing on an explicit 
representation of the generative source (usually in the form of a probability distribution over action 
outcomes), which can be used to make predictions about future outcome states. Representation of the 
generative source is either complete or approximating the complete solution (that is, an exhaustive 
representation of all possible action-outcome contingencies). In this sense, generative models are also 
often normative, i.e., derived from rational principles, and aim at statistical optimality (Gershman, 2015, 
“normative statistical perspective”). 
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that is rooted in our own biological habits, that is, a pure mental construct rather than an 
objective property of things. 

Hume’s associative account of causation has inspired various models of causal learning, from 
contingency models (e.g., Ward and Jenkins, 1965) to Rescorla and Wagner’s discrepancy-
based learning rule (1972). A typical formulation of the associative approach can be found in 
studies of instrumental conditioning, in which causal action-outcome knowledge is acquired 
through repeated experience with event contingencies, i.e., with repeated associations 
between some actions (pushing a lever) and motivationally significant events, such as rewards 
(food delivery) (Dickinson, 2001). In the context of reinforcement learning (RL), the Rescorla-
Wagner rule formalizes a simple algorithm to account for the acquisition of associative links 
between event representations on a trial-by-trial basis (Rescorla and Wagner, 1972; Sutton 
and Barto, 1998). According to this rule, association between action and consequence is 
learned through experiencing incremental changes in the strength of their link, and learning 
continues until there is no longer a discrepancy between the predicted and the actual 
consequences of action (Sutton and Barto, 1998). While model-free RL assesses actions 
sequentially through trial and error, model-based RL can include predictive knowledge (e.g., 
“cognitive maps”) that explicitly relate alternative actions to future environmental states (Doya 
et al., 2002). These predictive representations, which are akin to internal models of the 
environment, are typically learned through experiencing repeated associations between 
actions and effects (Daw, Niv and Dayan, 2005; Daw and Dayan, 2014). Both model-free and 
model-based RL algorithms operate retrospectively on experience with previous rewards by 
reinforcing actions that were successful in the past –i.e., by increasing the propensity to take 
actions that were followed by a positive reward prediction error (Figure 1A).  

RL algorithms present several advantages that can be leveraged to model how people learn 
and represent their causal power. First, RL algorithms are computationally simple: they 
typically require only a feed-forward mapping of action to predicted consequences (Daw and 
Dayan, 2014). Their simplicity makes those algorithms robust and adaptive processes that can 
learn a variety of complex tasks even in uncertain environments (Koechlin, 2016; Gershman, 
2015). This simplicity however comes at the cost of inflexibility. As an RL agent can rely only 
on current experience to adjust its behavioural strategies, it requires a large amount of 
experience to learn reliable predictions (Gershman, Markman, & Otto, 2014), and therefore, it 
may adapt slowly to environments exhibiting action-outcome relationships that change 
periodically (Koechlin, 2016). 

 
Generative models: causation is about inferring the latent causes generating action-
outcomes links  
Although causal learning exhibits many of the cardinal features of associative processes, there 
is evidence that human agents do not assess their causal power by simply experiencing (even 
repeated) conjunctions between what they want, do, and get as an action effect. Rather, they 
actively infer causation based on representations of latent causes generating observation. 
Drawing upon these internal models, agents do not only notice that effects “follow” their 
actions: they explicitly represent the causal sources generating action-outcome contingencies.  

Various models of decision-making have endorsed this “generative” account of causation, from 
hidden Markov to Bayesian learning models (e.g., O’Reilly, Jbabdi, & Behrens, 2012; O’Reilly 
et al., 2013;  Parr, Rees, & Friston, 2018 ; Mathys, Daunizeau, Friston, & Stephan, 2011; but 
see also Tauber, Navarro, Perfors, & Steyvers, 2017). Briefly, generative models hinge on the 
assumption that the observed data are the realization of one or many hidden variables or 
latent states (the generative source) that can be inferred with some degree of certainty, i.e., 
probabilistically. Crucially, generative models of instrumental causation assume that people 
have a more or less comprehensive representation of these hidden states, which can be 
learned and built up over a history of observable events, or which can be given prior to 
observation (e.g., O’Reilly et al., 2013; for non-parametric Bayesian inference, see Collins & 
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Koechlin, 2012). Importantly, these generative representations of action-outcome relationships 
can be used to evaluate the different courses of action with respect to the agent’s current 
needs and motivational states through different causal hypotheses about action-outcome 
contingencies. 

When inferring action-outcome relationships, there are multiple advantages for generative 
models. First, generative models are statistically optimal for relating observed outcomes to 
alternative actions as long as their representation of action-outcome mappings matches the 
“true” structure of the environment. Such a representation allows for a potentially optimal use 
of information derived from experience. Thus, rather than building on the results of the sole 
action taken, an agent with an accurate estimate of the outcome distribution can potentially 
evaluate all alternatives at once (Figure 1B). Second, causal relations are computed directly 
based on their generative representations rather than inferred based on past experience with 
local changes in the stimulus. The generative approach thus allows for more flexibility in 
adjusting to abrupt or rapid changes in contingencies as they readily occur in open-ended 
environments (Koechlin, 2016).   

Shortcomings of the generative approach concern both its computational cost and its 
biological plausibility. Under a Bayesian setting, the generative approach assumes that the 
agent can build an exhaustive generative model of all possible states on which the inference is 
drawn. However, in real-life situations, representing and updating all possible alternatives at 
once leads to intractable computational costs. This makes the complete generative solution 
unlikely to be implemented by the brain (Eckstein et al., 2004), which explains why people 
often depart from statistically optimal predictions made by normative models (e.g., Waldmann 
and Walker, 2005; see also Blanco, Matute and Vadillo, 2011; Gershman, 2015). Interestingly, 
departures from normative predictions often arise in the form of illusions of control in which 
people behave superstitiously in the belief that they are controlling uncontrollable outcomes 
(Langer, 1975), such as those occurring when contrasting instrumental vs. observational 
learning (Waldmann & Hagmayer, 2005) and naturalistic vs. analytic contexts (Matute, 1996), 
or when experiencing imposed vs. chosen gambling outcomes (Kool, Gatez, & Botvinick, 
2013). Generative models have difficulty accounting for such illusions while at the same time 
failing to address causal problems that human subjects easily solve (Sloman & Lagnado, 
2015). Therefore, questions have been raised about whether deviations from normativity only 
capture approximations of the true generative solution – e.g., due to limits on the size of 
working memory or on the quantity of attentional resources – or whether they ask for a rethink 
of how individuals construe their causal power, i.e., with relatively high efficiency and 
sustainable computational costs (e.g., Jones and Love, 2011; Markman and Otto, 2011; 
Bowers and Davis, 2012; Collins & Koechlin, 2012). 
 

<<< Insert Figure 1 about here >> 
 
 
Counterfactual models: causation is about actions that make a difference  
Associative algorithms describe agents that can adapt to the causal structure of the world with 
minimal computational expense while generative models directly infer causation by relying on 
explicit representations of latent causes generating action-outcome relationships. Hence, 
associative and generative models of causation stand as opposite extremes on a continuum 
between statistical efficiency and computational tractability. Importantly, a number of 
theoretical and empirical works have suggested that counterfactual reasoning might sit in the 
middle of this continuum.  

In the decision-making domain, counterfactual reasoning (CF) draws upon representations of 
what would have happened had another choice been made (e.g. Boorman, Behrens and 
Rushworth, 2011). If a large psychological literature has chronicled the affective 
consequences of counterfactuals, especially regret, on choice behaviour (Bell, 1982; Roese, 
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1997; Coricelli et al., 2005), there is also abundant empirical evidence that people generate 
counterfactuals, i.e., simulate alternative possible events and their outcomes, when they think 
about causal relations. Thus, when a change to an event leads to a change in the outcome, 
people rate it as more causal than when a change to the event would not undo the outcome 
(e.g., Walsh and Sloman, 2011). Similarly, making a counterfactual alternative available 
strongly influences causal judgements, so that the greater the number of counterfactual 
alternatives for an event, the more causal this event is perceived (Spellman and Kincannon, 
2001; McCloy and Byrne, 2002; Byrne, 2005). While CF plays a role in causal reasoning, it is, 
however, not equally applied to all types of situations. People are more prone to counterfactual 
thinking for causal relations that have a behavioural significance to them, such as voluntary 
actions (see Roese, 1997, for a review). Thus, individuals are more likely to generate 
counterfactuals when judging causation in situations involving actions than inactions (“agency 
effect”, see Byrne, 2002) as well as controllable events (e.g., voluntary choices) instead of 
uncontrollable events (e.g., an asthma attack) (Girotto, Legrenzi and Rizzo, 1991; N’Gbala and 
Branscombe, 1995). Conversely, decreasing causal power and personal control diminishes 
the propensity for counterfactual thinking (Scholl and Sassenberg, 2014). Together, these 
results suggest that there is a close relationship between counterfactual thinking and people’s 
sense of causation for actions under their direct control. 

Importantly, the CF account defines a cause as something that makes a difference to another 
event (i.e., the outcome would have been different had another action been performed), which 
endorses a very intuitive way of construing causation as difference-making. In the 
counterfactual literature, models of causal reasoning (e.g., Pearl, 2000) share this idea with 
modern instantiations of the associative approach, such as recent accounts based on 
experienced action-outcome contingency – where contingency is defined as the difference 
between conditional probabilities, such as the so-called “ΔP rule” (e.g., Tanaka, Balleine and 
O’Doherty, 2008) – and with model-based learning algorithms drawing upon the notion of 
instrumental divergence (i.e., “Jensen-Shannon divergence”). Instrumental divergence 
formalizes the causal power of an action as the difference between probabilities of a given 
outcome in the presence vs. absence of this action (Liljeholm et al., 2011; Liljeholm et al., 
2013; Mistry and Liljeholm, 2016). Interestingly, both counterfactual reasoning and 
instrumental divergence are endowed with the same prior belief about goal-directed actions. 
They assume that goal-directed actions are instrumental in nature: choosing action A over 
action B (or choosing to act vs. not acting) makes a difference in terms of the outcome. 
Additionally, the greater the action differs with respect to its contingent states (the factual and 
counterfactual outcomes), the more flexible control the subject has over the environment 
(Figure 1C).  

Importantly, both CF reasoning and instrumental divergence imply being able to emulate5 the 
outcome associated with the unchosen course of action, i.e. to adapt behaviour as if the 

                                                
5 Although the term “simulation” is routinely used to describe the process of running (mental) 
alternatives to the current situation, the specificity of the counterfactual approach is perhaps best 
captured by a former distinction between simulation and emulation, such as examples found in 
computer science (e.g., Guruprasad, Ricci and Lepreau, 2005). A simulation represents a target’s 
behaviour by explicitly modelling its underlying states, which usually occurs through a generative model 
known to best represent the actual states at play. Importantly, however, a simulation does not imply to 
faithfully mimic the outward behaviour of a target (e.g., a simulation may run faster than real time). 
Emulation, conversely, aims to mimic the observable behaviour without having to accurately represent 
its internal states but ultimately aims to serve as a substitute for the target being emulated (a function – 
e.g., face recognition – emulated by a neural network). Note that emulating an agent, or a function, is 
useful when one does not exactly know its internal states, or when representing them accurately would 
be too demanding. 

Simulation and emulation hinge on two different assumptions, which align snugly with the 
generative and counterfactual approaches to causation, respectively. The generative view assumes that 
individuals infer causation by simulating the internal process through which hidden states generate 
observable effects. The process is computationally ruinous, but it may provide an accurate estimate on 
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unchosen course of action had been carried out and its outcome had actually occurred. Both 
views make the same assumption: when the difference between the real and emulated 
outcome is maximal, instrumental control (hence, causal power of one’s action) should be 
maximally assumed. Counterfactual emulation offers several advantages over both the 
associative and generative approaches. For example, CF makes it possible to learn 
information from unchosen alternatives without having to incur the costs of taking the 
alternative course of action (Boorman, Behrens and Rushworth, 2011; Buchsbaum et al., 
2012; Lohrenz et al., 2007; Collins & Koechlin, 2012). Counterfactual emulation is also far less 
costly than statistical inferences within generative models based on multiple hidden causes. 
Unlike generative models that must learn causation through considering and updating all 
possible alternative causes at once, CF assumes causation through a simple prior belief 
based on difference-making. 
 
 

Overview of the present study 
CF studies have provided convincing evidence that people generate counterfactuals when 
reasoning about causation (Sloman and Lagnado, 2015, for a review), whereas instrumental 
divergence provides a learning rule for how people make choices based on maximized 
divergence (Mistry & Liljeholm, 2016). However, both views have shortcomings. So far, CF 
models of causal reasoning have only been applied to static environments and abstract 
settings –i.e., verbal scenarios or summary descriptions of causal situations–, while studies 
drawing upon instrumental divergence critically lack of an algorithmic insight into how 
unchosen situations are emulated and according to which rule (e.g., what value should be 
assigned to the alternative? How can this value be learned and according to what dynamics? 
And what should be its update rule?). In this paper, we propose to bridge the gap between 
these two approaches by building and testing a counterfactual model addressing these issues.  

We tested and compared the performance of this model (hereafter, CF) against various 
instantiations of the associative and generative classes (hereafter, RL, BM, BC) in a series of 
tasks in which there was some uncertainty about the identity of the causal agent (Figure 2A). 
The tasks were built on a modified reversal-learning procedure (Rolls, 2000) and modelled a 
dynamic environment where action feedbacks were intrinsically noisy and instrumental or 
environmental contingencies could change unexpectedly (Figure 2B). To maximize their 
performance, subjects had to continuously monitor their causal influence over the task 
environment, by discriminating changes that were caused by their own actions from changes 
that were not. In turn, discriminating self- from externally caused outcomes required tracking 
changes in the different statistics manipulated in the task (i.e., action-outcome dependency, 
value, variance) and to flexibly adjust to these changes.  

 

                                                                                                                                                     
the likelihood of a candidate cause given what is observed. The CF view, on the other hand, does not 
make any reference to the generative source behind observation. Thus, contrary to generative models 
that simulate all possible contingencies from a given situation, CF operates by emulating the unchosen 
alternative only, and by making decisions based on variations of some parameters value (e.g., learning 
rates) when one travels from the real (factual) to the emulated (counterfactual) world (see Lucas and 
Kemp, 2015).  
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Figure 1. Three decision-making and learning models to account for how 
human subjects infer and monitor their causal power. A. Associative model: 
agents associate action (A) and outcome (O) through experiencing repeated 
event contingencies, and reinforce actions that were successful in the past. 
Agents learn preferences for actions without ever explicitly learning or 
reasoning about the (hidden) structure of the environment. B. Generative 
model: agents infer action-outcome causal relationships based on an internal 
“model” of the world (Z; the “generative” source) that explicitly relates actions 
(A) to future outcomes (O). Generative models can ideally learn all possible 
hidden states (octagons in transparency) relating the action performed with 
the observed outcome. C. Counterfactual model: agents simulate what 
would have happened (Co) had another action (Ca) been taken. Under the 
counterfactual view, an action has causal power over an observed outcome if 
a change in that action (i.e., another action, or no action, is taken) leads a 
change in the outcome. Ideally, causal actions are those maximising the 
difference (Δo) between factual and counterfactual outcomes.  
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Overview of the experimental paradigm 
We ran three distinct experiments in three different groups of participants. In each experiment, 
the task consisted of a two slot-machines game (Figure 2A). Thus, for each trial, the 
participants had to make two distinct choices: (i) first, selecting which of the two machines she 
wanted to know the result of, then (ii) selecting which of the two buttons (a square or a circle) 
to press in order to trigger the machines. The order of choice (see Figure 2A: machine then 
button, or button then machine) was counterbalanced within participants, while the spatial 
mapping of the task stimuli and the response keys were counterbalanced across participants. 

Crucially, the participant was informed that although she played the two machines 
simultaneously, she would control one and only one machine. Thus, for one machine only, 
whatever the button pressed (a square or a circle) the average reward was the same, whereas 
for the other machine, one button (the “best-rewarding” button) gave a higher reward on 
average than the other (the “least-rewarding” button). Put another way, the chosen button 
influenced the gains of one machine only (the “controlled” machine), whereas the gains of the 
other machine (the “non-controlled” machine) were independent of the button pressed by the 
subject. To maximize her final payoff, the participant had to determine which machine she 
controlled, that is, the machine for which there was a best- and a least-rewarding button.  

The participant was informed that she would always win the sum of the gains from both 
machines on each trial. This was to motivate her to track the controlled machine (i.e., the 
machine for which her choice made a difference) rather than systematically searching for the 
best-rewarding machine. After a given number of trials, a feedback screen displayed her 
current payoff, which was graphically represented as the sum of the gains produced by each 
machine during these last trials. 

Gains produced by each bandit machine were drawn from Gaussian probability distributions 
(truncated between 1 and 100 and then rounded to the nearest integer). Mean, variance, and 
“divergence” of these distributions varied across conditions. Divergence refers to the distance 
between gains distributions associated with each button or machine. The divergence 
constituted our measure of control. The machine with a positive divergence was the controlled 
machine, that is, the machine for which there was a (maximal) difference in the probability 
distribution of gains associated with each action (e.g., Figure 4A, red and green distributions). 
Conversely, the non-controlled machine was the machine with a null-divergence; that is, the 
machine for which each action was similar with respect to its contingent state (e.g., Figure 4A, 
grey distribution). Thus, instrumental divergence defines the ‘controlled’ machine as the 
machine for which making a choice (e.g., selecting button A vs. B) makes a difference in terms 
of the outcome, in accordance with various accounts of instrumental causation as “difference-
making” (e.g., Walsh and Sloman, 2011; Liljeholm et al., 2013; Beebee, Hitchcock and Price, 
2017). It is worth noting that instrumental divergence quantifies the degree to which alternative 
actions differ with respect to contingent states, and hence this approach is formally equivalent 
to another highly related information theoretic measure, mutual information, which quantifies 
the statistical dependency between an action and a subsequent event (see Liljeholm et al., 
2013).  

Finally, participants were informed that unpredictable reversals could occur during the task so 
that either buttons or machines reversed unpredictably from time to time (e.g., the best-
rewarding button became the least-rewarding button, or the controlled machine became the 
non-controlled machine) (Figure 2B). Participants were thus explicitly asked to pay attention 
to the relationship between their gains and their choices so they could identify these reversals 
as fast as possible and adapt their choices accordingly.  

Importantly, the experimental conditions differed in how these reversals were implemented. 
Thus, depending on the condition within each experiment, participants had to monitor 
reversals in either: 

(i) the statistical dependency between their action and the resulting outcome,  
or (ii) the rewarding value of the outcomes produced by each machine, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/498675doi: bioRxiv preprint 

https://doi.org/10.1101/498675
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12	

or (iii) the variability of these outcomes over time. 

The first experiment tested the influence of these statistics on the participant’s choice 
separately, i.e., within independent experimental sessions. In this experiment, either explicit 
(Expt. 1a) or implicit (Expt. 1b) instructions were given to participants about their actual control 
over the task. The second experiment (Expt. 2) implemented the same procedure but 
controlled for interaction effects between the 3 statistics that were manipulated (e.g., 
dependency, value, variability) by employing a full factorial design in which these statistics 
were systematically crossed. 

 
 

<<< Insert Figure 2 about here >>> 
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Figure 2. Schematic of trial procedure and stimuli. (A) A trial started with the 
presentation of two bandit machines above and below a central fixation. In one half of 
the blocks, the subject had to first select a machine (here, the top machine, Choice 1, 
top panel) and then a button (here, the left button, Choice 2, top panel), and 
conversely in the other half (button, then machine; see bottom panel). Note that only 
the gains of the selected machine were displayed at the end of the trial. Each trial 
lasted approximately 3s. (B) Schematic of reversals during the task. The solid line 
represents the best button during the ongoing block, whereas the grey rectangles 
represent the location of either (i) the controlled machine (expt. 1: dependency 
session), (ii) the best-rewarding machine (expt. 1: value session), or (iii) the low-
variable machine (expt. 1: variance session). The vertical red dashed lines signal a 
reversal on the best-rewarding button (circle to square, or the converse) whereas the 
vertical blue dashed line signals a machine reversal. In all experiments, “button” or 
“machine” reversals occurred after a variable number of trials. 
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Modelling 

In both experiments, four classes of models were built and fitted to participant’s choices: (i) a 
simple reinforcement learning model (RL), (ii) a counterfactual learning model (CF) built in a 
model-free reinforcement learning framework, and two generative models whose aim was to 
learn the task environment correctly by searching for either (iii) the “best-rewarding” state 
(Bayesian-maximizer, BM) or (iv) the “controlled” state (Bayesian-controller, BC) in the task 
environment. Each of these four models draws on different assumptions about how subjects’ 
beliefs are formed and updated on a trial-by-trial basis and therefore makes different 
predictions on how choices are made based on these beliefs.  

In all four models, the two-stage decision process was concatenated into one single decision 
made between the four possible combinations of machines and buttons. We did so because 
reaction times suggested that the two successive choices (machine then button, or button then 
machine) were chunked into one unique choice made between four action sequences. Indeed, 
in all tasks, the reaction times for choices were significantly slower for the first choice made, 
whether this choice was a button (paired t-tests, all experiments: all t’s(15-25) < -2.91, all p’s < 
0.007) or a machine (all experiments: all t’s(15-25) < -11.1, all p’s < 0.001). Under these 
conditions, it has been shown that modelling two successive choices as one unique decision 
better predicts the participants’ data (Solway and Botvinick, 2015; Dezfouli and Balleine, 
2013). 

In all four models, each of the 4 possible actions made by the participant on each trial 
(choosing between 2 buttons × 2 machines) was associated with either an action value for 
both RL and CF models (Figure 3), or with beliefs (indexing the probability to be in one 
particular state among all possible states) for the generative models (Figure 4). All four 
models went through the same two steps on each trial. The first step consisted of updating the 
internal value or the beliefs associated with each of the 4 possible actions, depending on the 
outcome obtained in the previous trial. The updating rule was different between models (see 
below). The resulting internal values or beliefs were then used to compute the probability to 
choose one action over its 3 alternatives. The second step consisted in making a choice based 
on either internal values or beliefs using a non-deterministic (softmax) decision rule (see 
below, “Action selection”).   

 

RL model 
Each of the 4 possible actions were associated with an internal value (Sutton and Barto, 
1998), which is also called an action-value (Figure 3, top panel). The values themselves are 
hidden but are thought to drive choices between alternative actions. Specifically, the model 
draws upon the notion of prediction error (δ), which measures the discrepancy between actual 
outcome value, called reward (R) here, and the expected outcome for the chosen action (i.e., 
the chosen value) at time step t: 

δ t = R t − 𝑉!!!"#$(𝑡) 

According to the Rescorla and Wagner’s rule (1972), such a prediction error is used to update 
the value of the chosen action, as follows: 

V!!!"#$(𝑡 + 1) =  V!!!"#$(𝑡) + α!  × δ t  

αF is a fitted parameter capturing the rate at which prediction error updates the action values, 
and thus it is called the (factual) learning rate. Action values represent the reward value 
expected for choosing this particular action. Here, the action values associated with the three 
unchosen actions are kept constant (i.e., they are not updated): 

V!"#!!"#$ 𝑡 =  V!"#!!"#$ 𝑡 − 1  
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CF model 
Contrary to typical RL, values of the unchosen actions (i.e., counterfactuals) were explicitly 
updated in the CF model, and this update was performed according to a specific dynamic 
(e.g., learning rate). Note that counterfactual rewards were not experienced or seen, and 
therefore they must be somehow inferred by the participant. CF models assume that such 
inference requires emulating the unchosen action as if it was effectively taken and to derive 
the corresponding counterfactual outcome from it (Figure 3, bottom panel). Some uncertainty 
remains about how to model the emulation process. Converging evidence from reinforcement 
comparison methods (Sutton, 1984; Dayan, 1991; Kaelbling, Littman, & Moore, 1996) and 
behavioural economics (Palminteri et al., 2015; Denrell, 2015; Burke et al., 2016) suggests 
that people always make decisions relative to a context-dependent reference. When the 
context is a (binary or continuous) distribution of gain and losses, this reference approximates 
the mean of the distribution (Palminteri et al., 2015; Kahneman and Miller, 1986). Interestingly 
the mean is an important, often optimal, operator that allows for minimizing prediction error in 
error-prone situations, i.e., under uncertainty (de Gardelle and Summerfield, 2012). In the 
following, counterfactual rewards were thus inferred based on a simple contextual rule. The 
counterfactual reward (RCF) was derived from the actual reward, which it mirrored through a 
reference point (P) approximating the mean of the underlying generative distribution. The 
value of this reference (or “context value”, Palminteri et al., 2015) was separately fitted, rather 
than fixed or learned from reward history, in each participant: 

𝑅!" t = 2 × 𝑃 − 𝑅 𝑡  

According to this rule, when participants obtained a high reward (“high” being defined as being 
above the reference reward), the counterfactual reward associated with the unchosen action 
was inferred as being a “low” reward (i.e., below the reference reward), and the probability to 
stay with the same action on next trial increased. Conversely, when the obtained reward was 
low, the counterfactual reward was inferred as being “high”, and the probability to switch action 
on next trial increased. The emulated counterfactual reward thus allowed for computing a 
counterfactual prediction error (δ!") and a counterfactual learning rate (α!"), which was used 
to update the value of the unchosen actions according to a generalized version of the Rescorla 
& Wagner’s rule, as follows:  

δ!" t = 𝑅!" t − 𝑉!"#!!"!!(𝑡) 

V!"#!!"#$ 𝑡 + 1 =  V!"#!!"#$ 𝑡 + α!"  × δ!" t  

Note that because participants chose between four possible actions, there were necessarily 
three unchosen actions for each choice made: (i) the unchosen button associated with the 
chosen machine, (ii) the chosen button associated with the unchosen machine, and (iii) the 
unchosen button associated with the unchosen machine. Hence, the model was endowed with 
3 counterfactual learning rates (α!"!, α!"! and α!"!), which were fitted to each participant 
separately. 

 

<<< Insert Figure 3 about here >>> 
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Figure 3. Schematic of the two-stages decision process in RL and CF 
models. On trial t, the circle button and the bottom machine are chosen, and 
‘32’ is obtained as a reward. RL (top) and CF (bottom) models differ in how 
action values are updated. While both models use the current reward to 
update the value of the chosen action through the Rescorla-Wagner (R-W) 
rule, only the CF model updates the value of the unchosen actions. The CF 
model derives a fictive counterfactual outcome (here, ‘68’) from the actual 
outcome (‘32’), which it mirrors through a reference point approximating the 
mean of the underlying reward distribution. The counterfactual outcome is 
then used to update the value of the unchosen actions through the classical 
R-W rule. Importantly, these different updates can lead the two models to 
make different choices: on the next trial, the RL model chooses the circle 
button and the bottom machine (choice C), while the CF model chooses the 
circle button and the top machine (choice A). Note that the figure shows a 
reversal in contingency (C is no longer the best valued action). As can be 
seen, the CF model adapts quickly to the reversal (it now chooses A), 
whereas the RL model sticks to the same action (it keeps choosing C as 
before).   
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Generative model 
The generative model was a Bayesian learner that updated beliefs, and not values, associated 
with each possible action, on each trial. Here, a belief referred to a probability for an action to 
be in a given state (Figure 4, and Appendix A, “Generative model”). Instructions that were 
explicitly given to participants defined four possible states associated with three generative 
distributions (G): 

1. the state associated with having selected the best-rewarding button of the controlled 
machine (G1), 

2. the state associated with having selected the least-rewarding button of the controlled 
machine (G2), 

3. the state associated with having selected the non-controlled machine (G3). 

On each trial, the model aimed to infer the correct state/action pair, i.e., to infer which among 
the three possible distributions generated the observed outcome given the button pressed. 
The model then updated its belief about all state/action pairs along with the parameters (mean, 
standard-deviation) of each generative distribution, given the new observations. Our model 
was implemented with a specific task structure defining the number of possible states (the 
three generative distributions), actions (the four possible actions), and hidden variables to 
describe them (e.g., the mean and standard-deviation of the generative distributions). The 
model assumed the generative distributions to be Gaussian with fixed mean and standard 
deviation. On each trial, the mean and variance of each generative distribution was inferred by 
the model, which was based on the history of observations, through Bayesian inference (see 
Appendix A, “Generative model”, for details). As reversals between actions occurred, the 
model also needed to infer a volatility parameter, the volatility being the probability for the 
states to reverse between actions. Thus, for each trial, the Bayesian models needed to infer a 
set of 7 parameters: the three Gaussian means, the three Gaussian variances, and the 
volatility parameter (Figure S1).  

To test how participants interpreted our instructions, we built two different Bayesian models: a 
Bayesian-controller (BC), and a Bayesian-maximizer (BM) model. The first model (BC) 
preferentially selected the action that it believed was associated with the controlled machine 
(i.e., the model made choices based on a control belief, see Figure 4, top panel) while the 
second model (BM) preferentially selected the action associated with the best-rewarding 
Gaussian irrespective of whether this Gaussian was or was not associated with the controlled 
machine (i.e., the model made choices based on the magnitude of the reward; see Figure 4, 
bottom panel). 

 

<<< Insert Figure 4 about here >>> 
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Figure 4. Schematic of the two-stages decision process in BC and BM 
models. On trial t, the circle button and the bottom machine are chosen, and 
‘32’ is obtained as a reward. Both BC and BM models infer the current state 
of the world (Z1, Z2, Z3, or Z4, bottom panel) based on the inferred reward 
distributions (G1, G2, G3, top panel), the volatility parameter and the past 
history of actions and rewards. The models also update the mean and 
precision of the three underlying distributions (from dashed to solid 
distributions, top panel). Because the two models aim to maximize different 
statistics (control for BC, value for BM), they end up choosing different 
actions from the state inferred (here, Z4). Thus, on the next trial, the BC 
model chooses the left button and the bottom machine (D = the best-
rewarding action of the controlled machine), while the BM model chooses 
either A or B, i.e., the current best-rewarding buttons. 
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Action selection 

Across all four models, action and belief values were used to drive action selection. For each 
trial, this selection was made through a softmax rule based on either updated action-values or 
beliefs (Daw et al., 2006). Under this rule, one action is stochastically selected according to 
the difference between each action’s expected value:  

𝑃!"#$%& !(𝑡) =
𝑒! × !! ! ! !!"#!!"# × !!"#!!"#,! !  ! !!"##$% × !!"##$%,! !

𝑒! × !! ! ! !!"#!!"# × !!"#!!"#,! !  ! !!"##$% × !!"##$%,! !!
 

where i enumerates over all possible choices and c!"#!!"#,! and c!"#!!"#,! were defined as the 
stickiness to the previous choice irrespective of the reward history:  

c!"#!!"#,! t + 1 =  1 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑤𝑎𝑠 𝑐ℎ𝑜𝑠𝑒𝑛 𝑜𝑛 𝑡
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

c!"##$%,! t + 1 =  1 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑏𝑢𝑡𝑡𝑜𝑛 𝑤𝑎𝑠 𝑐ℎ𝑜𝑠𝑒𝑛 𝑜𝑛 𝑡
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The exploitation intensity parameter β is fitted and represents the strength of the action values 
or beliefs on action selection. The parameters ρ!"#!!"# and ρ!"##$% capture the participant’s 
propensity to perseverate with their action choice, which cannot be explained by reward 
history (Lau and Glimcher, 2005). 
 

Parameter fitting 
Model parameters were fitted based on participants’ actions. Model fitting was performed 
separately for each participant and each condition. The best parameters were those 
maximizing the log-likelihood (LLH), which is defined as the sum of the log of the model’s fit to 
participants’ action choices. Thus, LLH close to 0 indicates a good model fit. To test the 
different possible combinations of parameters, we used a slice sampling procedure (Bishop, 
2006). More specifically, using three different starting points drawn from uniform distributions 
for each parameter, we performed 100,000 iterations of a gradient ascent algorithm to 
converge on the set of parameters that best fit the data. 

All four models shared the same three parameters: the perseveration biases ρ!"#!!"! and 
ρ!"##$%, and the exploitation intensity parameter β. The two Bayesian models (BC and BM) 
had no additional parameter to fit since the parameters used to compute the beliefs were 
inferred. The RL and CF models shared the learning rate parameter α!, but the CF model had 
4 additional parameters, including the three counterfactual learning rates and the reference 
point (P). To account for the risk of overfitting, a relative quality-of-fit metric, the Bayesian 
Information Criterion (BIC), was also computed. The BIC penalizes models with a high number 
of parameters: 

BIC =  −2 × 𝐿𝐿𝐻 + k × 𝑙𝑜𝑔 (N) 

with k being the number of parameters and N the number of trials.  

BIC values were compared between our four models (RL, CF, BM and BC). As an 
approximation of the model evidence, individual BICs were fed into the MBB-VB toolbox 
(Daunizeau, Adam and Rigoux, 2014), which is a procedure that estimates how likely it is that 
a specific model generates the data of a randomly chosen subject (the posterior probability of 
a model, PP) as well as the probability that a given model fits the data better than all other 
models in the set (exceedance probability, XP). 
 
Choice simulation 
The four resulting models (RL, CF, BM and BC) were simulated with the best-fitting 
parameters, and they underwent the same experimental conditions as participants did. For 
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each trial, the outcome given to the model was the one associated with the model’s choice, 
and not the participant’s choice. Simulations were used to provide aggregated measures of 
model performance (e.g., Figure 5B) but also to compare trial-by-trial choice sequence after 
reversal across models (e.g., Figure 6A). 
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Experiment 1 
 
Method 
Participants. Sixteen participants (8 females, with ages between 20 and 33 years old) took 
part in Experiment 1. They provided written informed consent prior to the experiment and were 
all paid 20 euros for each experimental session that was completed. No participants had a 
history of neurological or psychiatric disorders, and all had a normal or corrected-to-normal 
vision. The experiment was approved by the local ethics review board (CCP C07-28). 
Participants were informed about the general procedure of the experiment through detailed 
written instructions (see Supplementary Information).  

 
Stimuli and trial structure. On one half of the experiment, the first choice consisted in 
selecting a machine, then selecting a button, and the reverse occurred for the other half 
(button first, then machine). The order of choice was counterbalanced within participants.  
When the first choice was about the machine, a typical trial started with the presentation of two 
machines above and below a central fixation. Each machine was filled with a question mark 
(see Figure 2A, top panel, “machine first”). Participants had 700 ms to make their choice. 
Once the selection made, the question mark within the chosen machine disappeared. After a 
500ms delay two buttons (a square and a circle) appeared on both sides of the central fixation. 
Again, the participant had 700 ms to choose one button by pressing the corresponding key. 
The chosen button was then filled with white to confirm the participant’s key press. Once the 
choice is made, the two slot machines were spun for 200 ms. The gain corresponding to the 
chosen button then appeared in the chosen machine for 800 ms. If the participants did not 
press a key within the 700 ms delay, or if the wrong key was pressed, the trial was “missed”, 
and the next trial started. Each trial lasted approximately 3 s. 

The same timeline applied to trials in which the first choice to make was about selecting a 
button (Figure 2A, bottom panel, “button first”). As mentioned above, the spatial mapping of 
task stimuli and response keys was counterbalanced across the 16 participants: for half of 
them the machines were positioned on a vertical line, whereas the buttons were on a 
horizontal line (as represented in Figure 2A). This mapping was reversed for the other half, as 
were the response keys (see Figure S1, Supplementary Information).  

Participants were informed that they would always win the sum of the gains from both 
machines on each trial. Thus, every 208 trials, a feedback screen displayed the participant’s 
current payoff, which was graphically represented as the sum of the average gains produced 
by each machine during the last 208 trials. In total, a session consisted of 832 trials. Each 
session was preceded by a short training (64 trials).  

 
Experimental sessions. Participants completed 3 sessions, and each one was carried out on 
a different day and lasted approximately one hour. Each session required participants to track 
occasional changes in the structure of the task environment and to adjust their choices 
according to whether these changes related to either i) the statistical dependency between the 
option chosen and the subsequent outcome, or ii) the value or iii) the variability of the 
outcomes produced by each machine.  
Thus, each session was defined according to the type of statistic manipulated in the task: 

A. The “statistical dependency” between the action made and the resulting outcome was 
manipulated in the first experimental session. This session implemented a “controlled” 
(divergent) machine for which each button led to a different outcome, and a “non-controlled” 
(non-divergent) machine for which the reward was the same, regardless of the button that was 
pressed. For the controlled machine the gains associated with the best- and least-rewarding 
buttons were discretized rewards drawn from Gaussian probability distributions with identical 
variance (SD) but different means (see Figure 5A, left panel, green and red distributions, 
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means = 58 and 42, SD = 10, respectively). For the non-controlled machine, the gains 
associated with both buttons were drawn from the same Gaussian (Figure 5A, left panel, 
grey distribution, mean = 50). 

B. The “value” of each machine was manipulated in the second session by implementing a 
machine that was on average more rewarding than the other while keeping the two machines 
non-divergent. Thus, regardless of the button pressed, outcomes from each machine were 
drawn from Gaussians with identical variance but different means, such that the mean “value” 
of one machine (the “best-rewarding machine”, see Figure 5A, middle panel, light grey, mean 
= 58, SD = 10) was systematically higher than the other (the “least-rewarding machine”, dark 
grey, mean = 42, SD = 10).  

C. In a third session the “variance” of each machine was manipulated by making the gains 
from one machine more variable than the other while keeping the two machines non-divergent. 
Thus, regardless of the button pressed, the two machines were associated with Gaussian 
distributions that had the same mean but different variance (low- and high-variable machines: 
mean = 50, SD = 5 and 15, respectively) (see Figure 5A, right panel).  
 
We were first interested in assessing (i) whether, and how, the three statistics manipulated 
could influence participants’ control beliefs, and second (ii) whether and how well each class of 
models could account for this influence on participants’ choice behaviours. To independently 
assess the influence of the “value” and “variance” statistics on choice, the last two sessions 
did not implement any “divergent” machines. As a result, participants had no real control over 
the gains produced by the machines. The reason for this was twofold. First, it allowed for 
assessing whether choice behaviours modified in situations where one was told that events in 
the task were under one’s own control but where no true control in fact existed – such as in 
classical settings implementing the so-called “illusion of control” (Stefan and David, 2013). 
Second, the procedure allowed for testing how best fitting models –i.e., models that best 
accounted for participants’ choice under normal conditions– performed in a situation of illusory 
control, and how well these models effectively accounted for the participant’s data in this 
situation.  

Finally, to keep all sessions as similar as possible, the same instructions were delivered 
across all three sessions. Thus, instructions in the “value” and the “variance” sessions were 
the same as those given in the “dependency” session, which meant that participants were not 
told they had no control over the machines in these conditions. All participants always started 
with the “dependency” session that implemented divergent and non-divergent machines 
followed by the value and variance sessions in counterbalanced order across participants. 

 
Reversals. Each session comprised 32 “episodes”. An episode referred to an uninterrupted 
series of trials before a reversal occurred. The number of trials within an episode was on 
average 26 but varied between 14 and 38 (uniformly jittered) to make reversals as 
unpredictable as possible. In the “action-outcome dependency” session, two types of reversal 
could occur: either the buttons or the machines reversed such that the controlled machine 
became the non-controlled machine, or the best-rewarding button became the least-rewarding 
button. For the value and variance sessions, only non-divergent machines were implemented, 
so that only “machine” reversals occurred: either the best-rewarding machine became the 
least-rewarding machine (“value” session) or the low-variable machine became the high-
variable machine (“variance” session).  

 
Modelling. To simulate participants’ choices, we implemented the same four models that were 
previously described (RL, CF, BC and BM). To test if participants would adapt their strategy to 
the session, we fitted the models’ parameters separately across the three different 
experimental sessions. As mentioned above, in both the “value” and “variance” sessions, 
instructions were the same as those delivered in the “dependency” session: participants were 
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not told they had no real control over the machines. This was explicitly accounted for by in the 
two generative models (BC and BM) through implementing the same latent states (i.e., 
generative distributions) as in the “dependency” session. Thus, our two generative models 
assumed there were a controlled and a non-controlled machine for all conditions. 
 

<<< Insert Figure 5 about here >>> 
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Figure 5. (A) Reward probability distributions associated with each button 
and machine of each experimental session from Experiment 1. Left panel: In 
the first session, action-outcome dependency was implemented for one machine 
only. For this “controlled” machine, the outcome depended on the button choice: 
one button led to a mean outcome of 58 (green) whereas the other button led to a 
mean outcome of 42 (red). For the other “uncontrolled” machine (dark grey), the 
outcome displayed was drawn for a unique Gaussian distribution, irrespective of 
the button being chosen. Middle panel: In the “value” condition, no machine was 
controlled, but one bandit was best rewarded (dark grey, mean outcome: 58) than 
the other (light grey, mean outcome: 42). Right panel: In the “variance” condition, 
the mean outcome (50) was the same for both machines, irrespective of the 
button chosen, but outcomes from one machine were more variable than 
outcomes from the other machine (light grey, SD = 15, vs. dark grey, SD = 5). (B) 
Mean proportion of choice for the three sessions, and for each button and 
machine. Bars: participants’ choices (%); dots and diamonds: models’ choices 
(%). RL: reinforcement-learning model; CF: counterfactual model; BC: Bayesian-
controller model; BM: Bayesian-maximizer model. The horizontal grey line 
indicates chance level (0.25%). All error bars indicate standard error. For the sake 
of visibility, models’ error bars are not shown. Three-stars: p < 0.001. 
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Results 
 
Percentage of choices. We first assessed whether subjects could discriminate between the 
two (divergent) states of the controlled machine relative to the non-controlled machine by 
comparing the choice proportion for each button of each machine within each session. As 
expected, participants discriminated well between the two buttons of the controlled machine in 
the dependency session (best- and least-rewarding buttons: 0.45 vs. 0.15, t(15)= 6.3, p < 
0.001, Figure 5B, green vs. red bars, left panel), while choosing button 1 and button 2 of the 
non-controlled machines equally in all sessions (all t’s < 1.62, all p’s > 0.12; Figure 5B, grey 
bars). We then compared button preferences across all sessions. To do so, we subtracted 
choice proportion for one button from choice proportion for the other button within each 
preferred machine and compared the difference across sessions using a one-way ANOVA 
(dependency vs. value vs. variance). The ANOVA confirmed that “button” preferences differed 
across the 3 sessions (F(2,45)=28.98, p < 0.001, η2

p = 0.56). Thus, participants discriminated 
between buttons of the preferred machine in the dependency session to a far greater extent 
than in the value and variance sessions (0.30 vs. 0.016, and 0.30 vs. 0.017, respectively, post 
hoc tests: all p’s < 0.001).  

Second, we tested whether participants showed a preference for one machine over another 
within each session by comparing choice proportion for each machine against the chance level 
(0.50). We found that participants showed a marked preference for the controlled machine in 
the dependency session (0.62 vs. 0.50, t(15) = 4.86, p < 0.001) as well as a marked 
preference for the best-rewarding (0.76 vs. 0.50, t(15) = 10.67, p < 0.001) and the low-variable 
(0.57 vs. 0.50, t(15) = 3.04, p = 0.004) machines in the value and variance conditions, 
respectively. Finally, we compared the proportion of choice for the preferred machine across 
all 3 sessions. The one-way ANOVA revealed that “machine” preferences differed across the 3 
sessions (F(2,45)=21.31, p < 0.001, η2

p = 0.48), Thus, participants chose the best-rewarding 
machine (“value” session, 0.76) more than the controlled machine (“dependency” session, 
0.62), and both the controlled and rewarding machines were chosen more than the low-
variable machine (“variance” session, 0.56) (post hoc tests, all p’s < 0.05).  

Note that, in all sessions, participants were able to quickly adjust to machine and/or button 
reversals: on average, the plateau of performance was reached within 5-10 trials after reversal 
(see Figure 6A, “reversal learning curves”).  

 
Model comparison. Participants’ trial-by-trial choice sequence were best accounted for by the 
CF model than by all other models in the set (RL, BM or BC). This was true for all conditions 
(exceedance probability > 98%) (Table 1 and Figure 6B). In addition to comparing model 
parameters across conditions and subjects, we also evaluated the generative performance of 
each concurrent model, i.e., its ability to replicate the participant’s proportion of choices as well 
as the participant’s trial-by-trial choice sequence after reversal (Palminteri et al., 2017). To do 
so, the 4 models were simulated with the best-fitting parameters for the whole experiment. 
Crucially, only the CF model showed a pattern of choices similar to participants in all sessions 
either with regard to the choice of the machine or to the choice of the button (see Figure 5B, 
CF = black circle).  

Then we plotted the model learning dynamics before and after a reversal. Again, only the CF 
model was as flexible as participants and adjusted to reversals with a similar dynamic (see 
Figure 6A, CF = red bars). In the “dependency” session, more specifically, the CF model 
outperformed all 3 competitors for both types of reversals. Thus, CF was able to retrieve the 
“controlled” machine and the “best-rewarding” option as quickly as participants, while the 3 
other models adjusted more slowly, as particularly evidenced by the RL model after a button 
reversal (Figure 6A, top panel). In the “value” session, CF also better simulated the 
participants’ choices than all competing models (Figure 6A, bottom panel, left). Note that the 
BC model (“Bayesian-controller”, dark green bars) aimed to maximize control, i.e., 
preferentially chose the option associated with the controlled machine. Thus, its poor 
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performance in this session with no true control was no surprise. The same trend applied to 
the “variance” session where no machine was controlled either (Figure 6A, bottom, right). In 
this session, human participants showed a marked preference for the “low-variable” machine 
and switched their choice after reversal to retrieve this preferred machine. Importantly, only the 
CF model was able to simulate this preference for poor variable choice outcomes. 

 
<<< Insert Figure 6 about here >>> 
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Figure 6. (A) Reversal curves for human participants (solid black line) and 
models (colored bars), up to 15 trials after a “machine” or a “button” reversal. Top 
panel: reversal curves for the A-O dependency session, after a (controlled vs. non-
controlled) machine reversal, or a (best vs. least-rewarding) button reversal. Bottom 
panel: reversal curves for the value and the variance session after a machine reversal 
(best vs. least-rewarding machine, or low vs. high variable machine, respectively). For 
the sake of readability, subjects’ error bars are not shown. Model simulations: CF (red 
bars); RL (light grey); BM (light green bars); BC (dark green bars). Bars indicate 
standard error. RL: reinforcement-learning model; CF: counterfactual model; BC: 
Bayesian-controller model; BM: Bayesian-maximizer model. Dashed vertical lines 
indicate reversal point. Horizontal grey lines indicate chance level. (B) Comparison 
of the posterior probability (PP) of each model, for each session. The PP is 
calculated from the BIC, which penalizes model complexity. The blue dashed line 
represents the chance level at 0.25. The insert chart shows the exceedance 
probability (XP) of each model in the set. The blue vertical dashed line shows the 
95% threshold. In all three sessions, the CF model best explained the data.  
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Experiment 1: Preliminary discussion 
 
The first experiment tested whether, and how well, human participants adjusted to self- vs. 
externally generated changes in a task in which the source of these changes was uncertain.  

Our results show that participants discriminated well between best- and least-rewarding 
buttons as well as between controlled and non-controlled machines. Hence, they preferentially 
chose the controlled machine over the non-controlled machine while exhibiting a marked 
preference for both highly rewarding and low-variable machines. In the context of goal-directed 
control, this preference for high reward and low variance is reminiscent of the literature on self-
attribution biases: adults are more likely to believe they control the occurrence of positive, 
relative to negative, events (e.g., Mezulis et al., 2004) while spontaneously assuming that 
series of low-variable events are more likely to be generated by intentional than non-
intentional agents (e.g., Boland and Pawitan, 1999; Caruso, Waytz and Epley, 2010). 
Unsurprisingly, the pattern of preference exhibited across all 3 sessions suggests that 
participants construe their action, not only as a mean to make a difference in the world 
(instrumental divergence) but also as an instrument to bring about positive events and to 
reduce the inherent variability of the environment. 

Both quantitative (BIC) and qualitative (simulated learning curves) results showed that a model 
drawing on pure associative processes (RL) cannot fully explain participants’ behaviours and 
neither can a generative model that makes choices based on either gain (BM) or control (BC) 
maximization strategies. Rather, we found that a model (CF) deriving the consequences of the 
forgone action from the current action taken and assuming relative (i.e., context-dependent) 
divergence between both best explained the data. 

While BC and BM models had explicit priors for control in the task – assuming distinct 
outcome distributions depending on the subject’s choice –, the CF model was endowed with a 
more general prior about instrumental divergence. This prior implements the belief that taking 
a specific action (e.g., choosing option A vs. B) makes a difference in terms of the outcome. 
Importantly, instrumental divergence is a reliable proxy for goal-directed control as the greater 
the action diverges with respect to its contingent states (the factual and counterfactual 
outcomes), the more flexible control one has over the environment. The fact that CF best 
explains data in all conditions suggests that human subjects construe their causal power 
based on such a prior. Interestingly, the CF model also best accounted for the participants’ 
choice even when no true control existed, which suggests that this prior holds as a default 
belief, whereby goal-directed actions are thought to be causally efficient (i.e., divergent) in 
nature. 

This study had two limitations. First, all sessions were not fully counterbalanced between 
subjects. All participants underwent the “dependency” session first, and then the two 
remaining sessions in which no true control was implemented. Additionally, instructions given 
across all three sessions systematically emphasized the notion of control over the task. In a 
follow-up experiment (20 subjects, 3 one-hour sessions each), we thus ran a similar task while 
carefully controlling for these two potential biases. Sessions were fully counterbalanced and 
both verbal and written instructions were kept as minimal as possible (see Appendix B, 
“Experiment 1b: Methods and Results”). 

Most of the results from experiment 1 were replicated. As expected, participants exhibited a 
strong preference for high rewards and preferentially chose low-variable machines, regardless 
of their overall value. We also found that participants were able to discriminate between 
causally efficient actions and to identify where in the task environment choosing one action 
rather than another made a difference to the outcome (the controlled machine), and where it 
did not (the non-controlled machine). Finally, we again found that a model based on a simple 
context-dependent counterfactual rule (CF) fitted the data better than all competing models, 
including a pure reinforcement learner (RL) and a model that explicitly aimed at maximizing 
reward through Bayesian inference (BM) (Appendix B).  
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In both experiment 1 and its follow-up, each statistic (dependency, value, variance) was tested 
within a different session, therefore limiting the opportunity to test and control for their potential 
interactions. In a second experiment, we addressed this limitation by implementing a factorial 
design in which these statics were systematically crossed. In addition to controlling for 
interaction effects, this experimental design allowed for better characterization of subjects’ 
choices in situations where these statistics were explicitly conflicting. 

 
<<< Insert Table 1 about here >>> 

 
  

Table 1. Mean posterior probability (±SEM) of each model (PP) in each session and/or 
experiment. The exceedance probability (XP) refers to the probability that a given 
model fits the data better than all other models. CF: counterfactual model; RL: 
reinforcement-learning model; BC: Bayesian-controller model; BM: Bayesian-maximizer 
model.  
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Experiment 2 

 
Method 
Participants. Twenty-six participants (14 females, age between 21 and 40 years old) took part 
in Experiment 2. As before, they provided written informed consent prior to the experiment and 
were all paid 80 euros for the whole experiment (4 sessions). No participants had a history of 
neurological or psychiatric disorders, and all had a normal or corrected-to-normal vision. The 
experiment was approved by the local ethics review board (CCP C07-28). Participants were 
informed about the general procedure of the experiment through detailed written instructions.  
 
Experimental sessions. The task (stimuli, timeline, and trial structure) was identical to the 
one used in experiment 1. The only difference was implemented by the experimental design. 
Each participant completed 4 sessions, and each lasted approximately one hour. Each 
session was carried out on a different day. A session consisted of 9 experimental conditions 
with 140 trials each (Figure 7) and was preceded by a brief training (64 trials). The order of 
conditions was pseudo-randomized within each session. 
As in the previous experiment, the “statistical dependency” between action and outcome was 
manipulated by implementing a controlled (divergent) machine for which each button led to a 
different outcome, and a non-controlled (non-divergent) machine for which the reward was the 
same, regardless of the button that was pressed. For the controlled and non-controlled 
machines, the gains associated with each button were discretized rewards drawn from 
Gaussian probability distributions, whose variance and mean depended on the condition (see 
below). The “value” and “variance” dimensions were crossed within a 3-by-3 factorial design, 
with each dimension varying across three levels (Figure 7): 

1. The “value” dimension referred to the mean of the reward probability distribution associated 
with each machine. The mean of the controlled machine could vary across three different 
values (i.e., low = 42, medium = 54, high = 62), whereas the mean of the non-controlled 
machine was kept constant (i.e., 62). Low, medium, and high values characterized the 
average reward delivered by the controlled, relative to the non-controlled, machine (Figure 7, 
x-axis). The “low” value level indicated that the controlled machine was less rewarding on 
average than the non-controlled machine, whereas the “high” level indicated that the non-
controlled machine was more rewarding than the non-controlled one.  

2. The “variance” dimension referred to the standard deviation (SD) of the reward probability 
distribution associated with each machine. The standard deviation of the controlled machine 
was kept constant throughout the task (SD = 10) whereas the standard deviation of the non-
controlled machine varied across three levels (low, SD = 5; medium, SD =10; high, SD = 15) 
(Figure 7, y-axis). These 3 levels characterized the variability of the rewards delivered by the 
controlled, relative to the non-controlled, machine. Thus, the “low” variance level indicated that 
the controlled machine was less variable than the non-controlled machine, whereas the “high” 
variance level indicated that the controlled machine was more variable than the non-controlled 
one.  

Because the 3 levels of each dimension characterized the value and variance of the controlled 
machine relative to the non-controlled machine, we now refer to these as low, medium, and 
high “relative levels”. In the following, we looked at whether choice proportion changed as a 
function of the relative value and relative variance of the controlled machine. Specifically, we 
asked whether the proportion of choice for the best-rewarding button and/or the controlled 
machine would change as the controlled machine became more or less rewarding, or more or 
less variable, than the non-controlled machine. 

Reversals. Finally, button or machine reversals could occur within each experimental 
condition as described before. Button reversals consisted of the best-rewarding button (e.g., 
the square) becoming the least-rewarding button (e.g., the circle) for the controlled machine, 
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whereas machine reversals consisted in the controlled machine becoming the non-controlled 
machine. Within each experimental condition, 6 reversals (3 machine reversals and 3 button 
reversals) could occur after a variable number of trials (between 14 and 26, uniformly jittered). 
 
 

<<< Insert Figure 7 about here >>> 
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Figure 7. Schematic of experimental conditions in Experiment 2. 
Contribution of action-outcome dependency (controlled vs. non-controlled 
machine), outcome value (x-axis) and outcome variance (y-axis), to the 
participant’s choice, was assessed by manipulating the reward probability 
distributions associated with each button of each machine. Red and green 
Gaussian distributions: rewards from the controlled machine when the best- and 
least-rewarding buttons were selected, respectively. Grey distributions: rewards 
from the non-controlled machine, irrespective of the button selected. X-axis: the 
value of the controlled, relative to the non-controlled, machine, varied across 
three levels (low, medium, and high) – e.g., “low” level: the value of the 
controlled machine was low relative to the non-controlled machine. Y-axis: the 
variance of the controlled, relative to the non-controlled, machine, varied across 
three levels (low, medium, and high) – e.g., “low” level: the variance of the 
controlled machine was low relative to the non-controlled machine. 
Experimental conditions are numbered from 1 to 9 (top left to bottom right).  
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Results 
 
Percentage of choices. We investigated the effect of the value and the variance dimensions, 
together with their interaction, on two dependent variables: (i) the proportion of choice for the 
controlled machine, and (ii) the proportion of choices for the best-rewarding button of the 
controlled machine. As in the previous experiment, the proportion of choice for the best-
rewarding button was normalized by subtracting the proportion of choice for the least-
rewarding button from it within each condition.  
The proportion of choices for the controlled machine as well as the proportion of choices for 
the best-rewarding button were analysed using two 3 × 3 repeated-measures ANOVAs with 
the value (low vs. medium vs. high) and variance (low vs. medium vs. high) as within-subjects 
factors. Participants discriminated well between the controlled and non-controlled machines 
across all 9 conditions, but the proportion of choice for the controlled machine differed 
significantly as a function of the dimension manipulated. Thus, we found a significant main 
effect of the value (F(2,50)=283.50, p < 0.001, η2

p = 0.91) and a significant main effect of the 
variance (F(2,50)=5.48, p = 0.007, η2

p = 0.18) factor on the proportion of choice for the 
controlled machine. The proportion of choice for the controlled machine progressively 
increased as its relative value increased (low < medium < high, post hoc test, all p’s < 0.001), 
but also increased when its relative variance decreased (low vs. medium, p = 0.009; medium 
vs. high, p = 0.04). These results are consistent with the high-value and low-variance biases 
observed in experiment 1, in which participants tended to preferentially select the machine 
with the highest value and the lowest variance (see Figure 5).  

The value-by-variance interaction effect was also significant (F(4,100)=6.66, p < 0.001, η2
p = 

0.21). Thus, when the relative value of the controlled machine was high, participants more 
often chose this machine irrespective of the variance dimension; that is, they chose the 
controlled machine in similar proportions whether the controlled machine was highly or poorly 
variable (post hoc tests comparing low vs. medium vs. high variance, all p’s > 0.12). On the 
other hand, when the value of the controlled machine was low, participants tended to choose 
the controlled machine more when it was poorly, rather than highly, variable (comparing low 
vs. medium variance, p = 0.07; low vs. high variance, p = 0.005). In other words, the variance 
dimension had the strongest effect on the choice of the controlled machine when the value of 
this machine was the lowest (Figure 8, top panel, “Machine choice”, “LOW value”).  

Similar to experiment 1, we then compared the proportion of choice for the best-rewarding 
button across conditions. We again found significant main effects of the value (F(2,50)=78.81, 
p < 0.001, η2

p = 0.75) and variance (F(2,50)=4.28, p < 0.019, η2
p = 0.14) dimensions. With 

respect to the value dimension, the higher the relative value of the controlled machine, the 
more often participants chose the best, relative to the least, rewarding button (post hoc tests: 
low vs. medium = 0.28 vs. 0.17, p < 0.001; medium vs. high, p < 0.001). In other terms, the 
more rewarding the controlled machine was, relative to the non-controlled machine, the more 
participants discriminated between each button, and the more their choice reflected the true 
“divergence” of the controlled machine (Appendix C, Figure S2). The same was observed for 
the variance dimension: the proportion of choice for the best, relative to the least, rewarding 
button increased as the relative variance of the controlled machine decreased (post hoc tests 
comparing low vs. medium variance: 0.15 vs. 0.17, p = 0.07; medium vs. high variance: 0.17 
vs. 0.19, p = 0.005) (Appendix C, Figure S3). Finally, the value-by-variance interaction effect 
was also significant (F(4,100)=8.54, p < 0.001, η2

p = 0.25). We found the same pattern of 
interaction for the machine choice: the variance dimension had the strongest effect on button 
choice as the value of the controlled machine decreased (Figure 8, bottom panel, “Button 
choice”, “LOW value”).  

In sum, for both dependent variables (machine and button choices), the outcome value had an 
overwhelming influence on participants’ choice and this influence largely overrode the effect of 
variance. As a consequence, the effect of variance could only be observed in conditions in 
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which the value of the controlled machine was the lowest (see Figure 8, top and bottom 
panels) 

 
<<< Insert Figure 8 about here >>> 
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Figure 8. Participants’ performance: mean proportion of choice 
(±SEM) across each dimension manipulated. Top panel: 
proportion of choice for the controlled machine in trials in which the 
machine had a low, medium, or high value, relative to the non-
controlled machine (x-axis), and had a low, medium, or high, 
variance, relative to the non-controlled machine (black, dark grey, 
and light grey, solid lines, respectively). The interaction effect 
between the value and variance factors was significant: the variance 
dimension had the strongest effect on the choice of the controlled 
machine when the value of this machine was the lowest. Bottom 
panel: normalized proportion of choice for the best-rewarding button 
in trials in which the controlled machine had a low, medium, or high 
value, and had a low, medium, or high, variance, relative to the non-
controlled machine. As for the choice of the controlled machine, the 
interaction effect between the value and variance factors was 
significant. Two-stars: p < 0.005; Three-stars: p < 0.001; ns. = p > 
0.05. 
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Model comparison. The same four models were fitted and simulated as described before. 
Again, the CF model best predicted participants’ choices (exceedance probability = 99%, 
Table 1, and Figure 9C) with regard to choice proportion for the best-rewarding button 
(Figure 9A, CF = black circles) or to choice proportion along the value (Appendix C, Figure 
S2) or the variance (Appendix C, Figure S3) dimensions.  

Importantly, the participant’s sensitivity to action-outcome dependency was best accounted for 
by the CF model. Thus, CF was the only model that did not underestimate the difference in 
choice proportion between the buttons of the controlled and non-controlled machines (see 
Figure 9A, black circle). The CF model also correctly simulated the participant’s choices along 
the value dimension. Thus, the CF model was able to reproduce the participant’s propensity to 
better discriminate between the “best” and “worst” buttons as the value of the controlled, 
relative to the non-controlled, machine increased (Figure S2). The RL (grey circles) and BM 
model (grey diamonds) showed a similar, although less clear-cut, pattern of choice. In 
contrast, the BC model (white diamonds) exhibited the same pattern of choices across all 3 
levels of the dimension, and both the BC and BM models underestimated the difference 
between the two buttons of the controlled machine in the “high” value condition. The same 
applied to the “variance” dimension: both the CF and RL models were able to discriminate 
buttons of the controlled machine while choosing the two buttons of the non-controlled one 
equally often (Figure S3). In contrast to the BC and BM models, CF and RL also tended to 
choose the low-variable, relative to the high-variable, machine more often, as participants did. 

 
<<< Insert Figure 9 about here >>> 

 

As for participants, the models’ choices for the controlled machine and for the best-rewarding 
button were analysed further using two 3 × 3 ANOVAs with value (low vs. medium vs. high) 
and variance (low vs. medium vs. high) as within-subject factors. Relative to participants’ 
performance, only the CF model was able to replicate the main effects of the value (machine 
choice: F(2,50) = 289.36, p < 0.001, η2

p  = 0.92; button choice: F(2,50) = 86.00, p < 0.001, η2
p  

= 0.77) and of the variance (machine choice: F(2,50) = 2.50, p < 0.001, η2
p  = 0.33; button 

choice: F(2,50) = 5.03, p = 0.01, η2
p  = 0.16) factors as well as the significant interaction effects 

between them (machine choice: F(4,100) = 21.98, p < 0.001, η2
p  = 0.46; button choice: 

F(4,100) = 2.68, p = 0.035, η2
p  = 0.09; post hoc comparing low vs. high variance, p = 0.032) 

(Figure 10, “CF model”, machine choice: left panel; button choice: right panel). Importantly, 
none of the 3 other models could replicate this exact performance pattern. 

The CF model also showed the most consistent reversal curves across conditions and 
outperformed all competing models when adjusting to changes according to either action-
outcome dependency (Figure 9B), outcome value (Appendix C, Figure S2) or outcome 
variance (Appendix C, Figure S3). Specifically, both the BM and CF models correctly 
simulated the participants’ learning curves, whether in terms of dynamic (slope) and absolute 
performance (plateau), whereas the RL model converged to the plateau of performance more 
slowly than real subjects did. Note that the BC model (dark green line) was designed to 
preferentially choose the action associated with the controlled machine, and therefore 
systematically reversed choice after reversal of the best button.  

 
<<< Insert Figure 10 about here >>> 
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Figure 9. (A) Bar graphs comparing the proportion of choice (± 
error bars) across buttons and machines, averaged across all 
dimensions of the task design. Bars: participants’ performance; 
dots and diamonds: models’ performance. For the sake of visibility, 
models’ error bars are not shown. Three-stars: p < 0.001. (B) 
Reversal curves (± error bars) for participants (solid black line) 
and models (colored bars), up to 15 trials after a button reversal. 
The horizontal grey line indicates chance level. Dashed vertical lines 
indicate reversal point (left graph: machine reversal; right graph: 
button reversal). Model simulation: CF (red bars); RL (light grey); BM 
(light green bars); BC (dark green bars). (C) Comparison of the 
posterior probability (PP) of each model, for each session. The 
PP is calculated from the BIC, which penalizes model complexity. 
The blue dashed line represents the chance level at 0.25. The right 
graph shows the exceedance probability (XP) of each model in the 
set, with the blue dashed line representing the 95% threshold.  
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Figure 10. Models’ performance: mean proportion of choice (±SEM) 
across each dimension manipulated. Stars indicate a significant 
interaction between the value and variance factors. Only the CF model 
replicate the interactions observed in human subjects, for both machine 
(left) and button (right) choices. The BC model shows the opposite 
interaction effects (see Results). One-star: p < 0.05; Three-stars: p < 
0.001; ns. = p > 0.05. 
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Experiment 2: Preliminary discussion 
 
Experiment 2 reproduced most of the effects that was previously obtained in a design 
controlling for potential interaction effects between conditions. Importantly, participants 
performed the task well despite no explicit available cue to signal the transition from one 
condition to the other. In a situation in which uncertainty was high, participants were able to 
monitor the different statistics implemented by the task and to adjust when these statistics 
changed and reversals in (either machine or button) contingencies occurred. In line with 
experiment 1, we found that participants chose the controlled machine more often when the 
relative value of this machine increased, but they also chose it when its relative variance 
decreased, in line with the literature on self-attribution biases. Likewise, when the value of 
control increased, participants discriminated better between the best and worst option of the 
controlled machine, and choice behaviour was then found to better reflect the true divergence 
of the controlled machine. Finally, we found a significant interaction between value and 
variance factors. Specifically, a significant effect of variance on machine and button choice 
was observed in low-value trials only. This interaction suggests that competition between both 
statistics is fundamentally asymmetrical. If a conflict arose, subjective preferences for highly 
valued options overrode preferences for options giving rise to poorly variable outcomes. On 
the other hand, when the difference in value between competing options was low, subjects 
made a choice based on variance estimates from past choice outcomes. 

As expected, the overall effect of value on choice was well captured by algorithms that aimed 
to maximize reward value (RL, CF), while an optimal learner aiming to maximize control (BC) 
failed to account for this effect. We again found that the CF model outperformed all 
competitors according to both quantitative (BIC) and qualitative (reversal curves) criteria. 
Interestingly, CF was the only model to not systematically underestimate the difference in 
choice proportion between the two buttons of the controlled and non-controlled machines as 
well as to better discriminate between each button of the controlled machine as the value of 
this machine increased, as participants did. The CF model was also the only model to replicate 
the exact pattern of performance found in human subjects. Thus, the CF model increasingly 
chose the controlled machine and the best-rewarding button as the value of this machine 
increased (main effect of value) but also as its variance decreased (main effect of variance). 
Critically, choices of the CF model also exhibited a significant value-by-variance interaction 
effect. Thus, the effect of variance on the model’s choices was only observed in low-value 
trials, as in participants. Overall, we found that one single model (CF) was able to simulate 
participants’ performance across all three dimensions and was able to do so with the same set 
of parameters and same parameter values. 

In the next section of the paper, we analysed and further compared the parameters of the 
“winning” CF model across both experiments 1 and 2, namely: (1) the reference point, and (2) 
the factual and counterfactual learning rates. Importantly, these two sets of parameters can be 
seen as direct or indirect proxies for instrumental control: 

(1) The “reference” is a fitted parameter whose value approximated the mean of the 
reward distribution associated with the chosen action (see Figure 11A and 11B). It is 
an add-on to the classical RL algorithm that implements control as difference-making. 
Thus, the more the value of the reference departs from the true reference, the more 
divergent actions are, and the greater the difference between the outcomes associated 
with the chosen and unchosen actions will be (see Figure 11C, for an illustration).  

(2) The “counterfactual (CF) learning rate” is a proxy for how much weight is given to the 
counterfactual prediction error. In a world where instrumental control is assumed (i.e., a 
world where factual and counterfactual actions give rise to different outcomes), a CF 
learning rate is a measure of how fast the divergence between factual and 
counterfactual outcomes builds up over time.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/498675doi: bioRxiv preprint 

https://doi.org/10.1101/498675
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 40	

CF model: best-fitting parameters 
We first compared the value of the reference parameter against the “true” reference, i.e., the 
true mean of the reward distributions, in both experiments. The value of the fitted reference 
overall approximated the mean of the reward distributions (t-tests against the mean of the 
reward distributions in each experiment: all p’s > 0.05, except for the variance condition: p = 
0.035, see Figure 11). Note that the value of the fitted reference varied across subjects with 
some participants substantially underestimating the true mean of the current distribution (see 
Figure 11, vertical dashed black lines). Interestingly, participants who underestimated the true 
mean also tended to exaggerate instrumental divergence as a result – i.e., the difference 
between chosen (factual reward) and unchosen (counterfactual reward) alternatives (see 
Figure 11A and 11B, dark solid curve, and 11C, “True vs. Fitted Reference”). 

 
<<< Insert Figure 11 about here >>> 

 

We next compared factual and counterfactual learning rates within and between experiments. 
Three counterfactual alternatives were updated on each trial:  

(i) the unchosen button of the chosen machine (αCF1),  
(ii) the chosen button of the unchosen machine (αCF2),  
(iii) the unchosen button of the unchosen machine (αCF3) 

To first compare the factual and counterfactual learning rates of experiment 1, we carried out a 
2 × 2 × 3 repeated-measures ANOVA with the button (chosen vs. unchosen), the machine 
(chosen vs. unchosen), and the 3 different statistics (dependency vs. value vs. variance) as 
within-subject factors. A similar 2 × 2 repeated-measures ANOVA was performed on all pooled 
conditions of experiment 2. 

In experiment 1, the main effect of the “machine” (F(1,15) = 4.66, p < 0.03, η2
p  = 0.273) and 

the main effect of the “button” (F(1,15) = 15.78, p = 0.005, η2
p = 0.51) were significant. Thus, 

the learning rate associated with the chosen machine was significantly lower than the learning 
rate associated with the unchosen machine (post hoc test, all p’s < 0.04), whereas the learning 
rate associated with the chosen button was globally higher compared to the unchosen button 
(all p’s < 0.001).  

The machine-by-button interaction effect was also significant (F(1,15) = 60.07, p < 0.001, η2
p  = 

0.80). Across all three sessions of experiment 1, post hoc tests showed that learning rates of 
the chosen buttons did not differ across chosen (αF) and unchosen (αCF2) machines, while 
learning rates associated with the unchosen buttons (αCF1 vs. αCF3) differed significantly (all p’s 
< 0.001). Chosen (αF) and unchosen (αCF1) buttons of the chosen machine also differed 
significantly (all p’s < 0.001), whereas they could not be distinguished for the unchosen 
machine (αCF2 vs. αCF3) (Figure 12A). This interaction effect was observed in all conditions 
equally (i.e., no significant modulation of the machine-by-button interaction by the type of 
statistics: F(1,15) = 1.17, p = 0.3, η2

p = 0.07). Experiment 2 showed the same tendency as 
observed in the previous experiment (see Figure 12B). However, only the machine-by-button 
interaction effect was statistically significant (F(1,25) = 4.06, p = 0.04, η2

p = 0.21). Note that the 
pattern of fitted learning rates from the CF model was correctly recovered when applying the 
procedure to simulated data, and therefore, it was not an artefact of the parameter 
optimization procedure (see Figure 12C, and Appendix D, “Parameter recovery procedure”).   

 
<<< Insert Figure 12 about here >>> 
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Figure 11. Fitted individual references across the different sessions of 
Experiment 1 (A) and Experiment 2 (B). The bars represent the value of the fitted 
reference relative to the true reference, i.e., the true mean of the reward 
distributions (vertical red line), in each participant. A negative value indicates that 
the participant underestimated the true reference. The greater the negative value, 
the lower the counterfactual reward inferred by the subject, relative to the factual 
reward (OCF < OF). Conversely, the greater the positive value, the greater the 
counterfactual reward inferred by the subject, relative to the factual one. Below the 
red line, the vertical dashed blue line represents the group mean of the fitted 
reference. Over individual bars, the solid dark curve represents the divergence 
between chosen and unchosen alternatives in each subject. The divergence was 
calculated by subtracting the factual from the counterfactual reward in each trial, 
based on the subject’s fitted reference, and averaging the result over all trials (C) 
True vs. fitted reference. When combined with the contextual rule of the CF model, 
underestimating the true reference leads to exaggerating the divergence between 
factual and counterfactual outcomes (e.g., 24 rather than 32).  
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  Figure 12. Fitted learning rates from the winning model (CF). (A) Expt. 1: 
Factual (αF) and counterfactual learning rates (αCF) within each experimental 
session, for each button (chosen, unchosen) and each machine (chosen, 
unchosen). (B) Expt. 2: Factual and counterfactual learning rates for all 
conditions pooled together. (C) Parameter recovery procedure: “True value”: 
learning rates used to simulate the data (see Appendix D, Table S1). 
“Recovered value”: learning rates obtained from fitting the model on the 
simulated data. “Subjects” = highest learning rate for the unchosen button; “flat” 
= identical learning rates across the unchosen button and the unchosen 
machine; “reverse” = highest learning rates for the unchosen machine. Our 
parameter optimization procedure was able to correctly recover the (true) 
parameter values from all patterns in all sessions.  
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Interestingly, our findings reveal that participants calibrate their learning rates in a way that 
reflects their belief about the task structure. First, counterfactual (CF) learning rates associated 
with the button or with the machine were significantly higher than zero in all experiments and 
conditions (see Figure 12, comparing αCF1, αCF2, αCF3 > 0, all p’s < 0.005). A high CF learning 
rate indicates that participants update the value of the forgone alternative; this counterfactual 
update results in making the value of the unchosen alternative diverge from the value of what 
is currently chosen. Thus, above-zero CF learning rates show that our participants construed 
their actual choice as being causally efficient, i.e., as making a difference relative to the 
unchosen alternative.  

A CF learning rate is formally equivalent to the notion of “mutability” in previous work on 
counterfactual reasoning (e.g., Dehghani, Iliev and Kaufmann, 2012; Kahneman and Miller, 
1986). Mutability is a property of a variable that signals whether the variable is likely to take 
different values in the real and counterfactual worlds. Thus, a highly mutable variable is highly 
likely to diverge across factual and counterfactual worlds (Lucas and Kemp, 2015). Similarly, a 
machine associated with a high CF learning rate is a highly mutable machine: choosing this 
machine, rather than the other one, should make a significant difference with respect to the 
outcome. Conversely, a low CF learning rate would minimize the divergence, while a null CF 
learning rate would signal a null divergence between the chosen and unchosen options. 
Importantly, our results revealed a hierarchy across buttons and machines. Counterfactual 
learning rates were higher for the machine than for the button, which suggests that participants 
conceived the former as being more “mutable” than the latter. In other words, participants 
believed that making a choice about the machine was more likely to make a difference to the 
world relative to making a choice about the button.  

What does this hierarchy account for? We suggest that counterfactual emulation is more likely 
to be leveraged for testing control at most abstract levels of action representation (e.g., at the 
level of the machines) and is less required for less abstract levels (e.g., the level of the 
buttons) where direct instrumental testing is available to the subject. Crucially, should this 
prediction be correct, counterfactual emulation would be optimal in an environment where 
instrumental divergence is maximal between machines, rather than between buttons. We 
directly tested this hypothesis by simulating our CF model across two different environments: 
(1) an environment where divergence was maximal between buttons, or (2) an environment 
where divergence was maximal between machines (see Figure 13A, left and right panels, 
respectively, and Appendix D). We tested the performance of different patterns of learning 
rates across these two types of environment: i) a pattern that was similar to that of participants 
(higher CF learning rates for the most abstract level, i.e., the unchosen machine), ii) the 
reverse pattern (lower CF learning rates for the unchosen machine), and iii) a flat pattern 
(equal learning rates across unchosen machines and buttons). 

Consistent with our prediction, we found that the pattern of participants outperformed the two 
alternative patterns in the environment where the divergence was set at the most abstract 
level, i.e., the machine level (see Figure 13A). Importantly, this result was all the more true 
when values of the reference point approximated the true mean of outcome distributions (see 
Figure 13B).  

 

<<< Insert Figure 13 about here >>> 
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Figure 13. Simulated performance of the winning model (CF) across 
two different environments, with three distinct patterns of learning 
rate. (A) Left panel: performance of the CF model when the divergence is 
maximal between buttons (red and green distributions). The pattern of 
participants (dark box: “subjects”) is outperformed by the two alternative 
patterns (“flat” and “reverse”). Right panel: performance of the CF model 
when the divergence is maximal between machines (dark and light grey 
distributions). Here, the pattern of participants outperforms the two 
alternative patterns. Model’s performance is normalized against chance-
level. αF = “factual” learning rate (chosen button of the chosen machine); 
αCF = “counterfactual” learning rate (unchosen button and/or unchosen 
machine). Three-stars: p < 0.001. (B) Averaged performance of the CF 
winning model (y-axis) across the two environments, depending on 
the value of the reference point (x-axis). Model’s performance is optimal 
in both environments when the reference point approximates the true 
mean (red vertical line), as most subjects did (green and dark circles). The 
hatched areas delineate the range of reference values for which the CF 
model outperforms the RL model (horizontal dashed lines). In both 
environments, model’s performance is normalized against chance-level. 
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General discussion 
 

Using a modified reversal-learning procedure, we tested whether, and how well, human 
participants could adjust to self- vs. externally generated changes in a task where the source 
of these changes was uncertain. Specifically, any perceived changes could potentially be 
ascribed to three different causes: (i) the participant’s choice, (ii) the intrinsic variability of the 
outcome, or (ii) a reversal in either instrumental or environmental contingencies. Thus, 
maximizing performance in the task required the ability to discriminate action-related changes 
from changes due to intrinsic feedback noise and/or external volatility as well as to adjust 
one’s choice behaviours accordingly.  

 
Behavioural results: control, value and variance 

In all experiments, we found that participants were able to discriminate the best- from least- 
rewarding buttons and to distinguish between the controlled and non-controlled machines – 
that is, between the machine for which there was a best- and a least-rewarding button and the 
machine for which both buttons were equally rewarding. Participants performed the task well 
despite the lack of explicit cues to signal reversals in the best-rewarding button or in the 
controlled machine. In experiment 1, participants preferentially chose the controlled machine 
over the non-controlled machine while also exhibiting a marked preference for the best-valued 
and low-variable machines in both experiments 1 and 2. Interestingly, both outcome value and 
variance had an effect on the proportion of the controlled machine. Thus, participants more 
often chose the controlled machine when the relative value of this machine increased but also 
when its relative variance decreased. Likewise, when the value of control increased, 
participants discriminated better between the best and worst options of the controlled machine, 
and choice behaviour was therefore found to better reflect the true divergence of the controlled 
machine.  

This interaction between value and control, as well as between variance and control, is 
reminiscent of self-attribution biases in which healthy adults take credit for positive outcomes 
while denying responsibility for negative events (e.g., Mezulis et al., 2004), and overestimate 
the variability of random series while under-estimating the variability of self-caused events 
(e.g., Boland and Pawitan, 1999). Spurious positive relationships between control and value 
are further exemplified in situations where people mistake the value of an event for real control 
over this event through inflating probabilistic estimates of action-event contingencies (Kool, 
Gatez and Botvinick, 2013). This interplay between control, (high) reward value, and (low) 
variance, suggests that individuals construe the effects of their action along multiple 
dimensions: as a mean to make a difference to the world but also as an instrument to bring 
about positive events and to reduce the inherent variability of the environment. Importantly, we 
found that one single model (CF) was able to simulate participants’ performance across all 
three dimensions and was able to do so with both the same set of parameters and same 
parameter values.  
 

Associative learning and counterfactual update 
In all experiments, optimal performance required a complete knowledge of the underlying 
causal structure of the task, i.e., a representation of each probability distribution relating each 
possible action to a particular state. Thus, reaching optimal performance was computationally 
costly because it ideally required maintaining probability distributions across all alternative 
causes and updating all possible alternatives at once whenever integrating new evidence. 
Whether such a strategy is used, or is even usable, by human subjects remains unknown 
(Eckstein et al., 2004; Jones and Love, 2011). Although they lack an explicit representation of 
instrumental contingencies, simpler learning schemes, e.g., based on pure associative 
processes, can readily adapt to causally structured environments, at a much lower cost 
(Dickinson, 2001). On the other hand, associative processes only enable a form of proximal 
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instrumentality in which acquisition and performance of new and existing behavioural 
strategies are regulated by their immediate consequences. Accordingly, associative agents 
only slowly adapt to environments with periodically changing action-outcome mappings and 
therefore would hardly approximate the efficiency of human performance (Gershman, 
Markman and Otto, 2014). An intermediate solution would consist of combining a (simple) 
associative learning scheme with a generative rule for emulating an approximate version of the 
environment’s causal structure. In contrast with pure associative algorithms, this “combined” 
model would assume a generative source behind observation, but this source would not have 
to be a fully specified probability distribution of expected action outcomes. Models of 
counterfactual reasoning (e.g., Lucas and Kemp, 2015) can be specified to permit action 
outcomes to take different values in the real and counterfactual worlds. Importantly, these 
models can also account for hierarchical inference in causal reasoning by allowing factual and 
counterfactual action values to be updated according to different dynamics (e.g., learning 
rates).  

We tested and compared the ability of associative, generative, and counterfactual models to 
account for the participants’ data across all experiments. We found that models that merely 
aimed at maximizing action value –whether by prediction-error minimization (RL) or by means 
of Bayesian inference (BM)– could not explain the participants’ choices well and neither could 
a model (BC) that aimed to maximize control over the task, regardless of action value. For 
both quantitative (BIC) and qualitative (reversal curves) criteria, participants’ behaviour was 
best accounted for by a model that made choices based on counterfactual contingencies, i.e., 
a model that emulated unseen action-outcome pairs according to a contextual rule. Thus, 
counterfactual contingencies were emulated by deriving the consequences of the forgone 
action from the current action taken and by assuming relative (i.e., context-dependent) 
divergence between both. Importantly, instrumental divergence was implemented in the model 
as a prior.  

Specifically, this prior conveys the belief that taking a specific action (e.g., choosing option A 
vs. B) makes a difference in terms of the outcome. As mentioned above, instrumental 
divergence is a reliable proxy for goal-directed control because the more the action diverges 
with respect to its contingent states (the factual and counterfactual outcomes), the more 
flexible control one has over the environment. The fact that the CF model best explained the 
data in all conditions suggests that human subjects construe their causal power based on such 
a prior. Interestingly, the CF model also provides the best match for the participants’ choice 
even when no true control existed (i.e., “value” and “variance” conditions), which suggests that 
this prior could be considered a default belief in which goal-directed actions are thought to be 
causally efficient (i.e., divergent) in nature. Finally, only the CF model was able to replicate the 
value-by-variance interaction observed in subjects for both machine and button choices, while 
the other models replicated this pattern only partially (e.g., RL) or exhibited the reverse 
performance pattern (e.g., BC) (see Figure 10).  

 
The counterfactual world negatively covaries with the real world 

Counterfactual reasoning has been the subject of many investigations in the decision-making 
domain from regret-based theory of choice (e.g., Bell, 1982; Coricelli et al., 2005) to empirical 
works on fictive learning, i.e., learning from alternative action values (e.g., Lohrenz et al., 
2007). While it has been repeatedly shown that instrumental learning benefits from tracking 
alternative courses of action and their outcomes, how these counterfactuals are generated, 
and based on what rule, is currently unclear. In most studies on fictive learning, subjects are 
explicitly informed about the result of the forgone alternative (e.g., Lohrenz et al., 2007; 
Boorman, Behrens and Rushworth, 2011; Palminteri et al., 2015). In our task, however, the 
reward associated with the unchosen machine was not shown to the participant but had to be 
inferred given the chosen button. Crucially, our CF model provides an algorithmic explanation 
for how counterfactual action values were inferred according to a flexible, context-dependent 
reference, whose value was separately fitted to each participant’s data.  
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As previously argued, exploiting counterfactual information can be beneficial to the learner if 
the cost of getting and storing the information is not too high (Boorman, Behrens and 
Rushworth, 2011). Importantly, the context-dependent reference embedded in the CF model 
approximated the mean of the generative distributions in the task, and thus allowed for 
emulating counterfactuals to occur with a low cost. The mean is a simple and often-optimal 
operator that minimizes prediction error. Under uncertainty, making decisions based on an 
averaged representation of the environment is often advantageous (Sutton and Barto, 1998). 
In this respect, the CF model would be efficient, not because it would maintain an expensive, 
yet accurate, causal model of the task (e.g., the probability distributions over all possibilities), 
but because it embeds a prior (the reference point) that approximates the actual structure of 
the environment (see also Parpart et al., 2017). In addition to showing better performance than 
a classical RL, the CF model also maintains simplicity in terms of algorithmic design and 
computation. We argue that this simplicity provides a step towards an explanation of how 
human agents achieve a trade-off between robust causal inference and the costs of 
maintaining an accurate model of the world (Bramley et al., 2017).  

Updating the counterfactual according to a context-dependent reference is consistent with a 
broader literature on reference dependence in behavioural economics in which the utilities of 
outcomes are assessed relative to a context-specific reference point (e.g., Kahneman and 
Tversky, 1979; Köszegi and Rabin, 2006; Denrell, 2015). Converging evidence from 
reinforcement comparison methods and behavioural economics equally suggests that people 
make decisions according to a context-dependent reference (Palminteri et al., 2015; Palminteri 
et al., 2017; Klein, Ullsperger, & Jocham, 2017; Burke et al., 2016). Importantly, providing 
counterfactual information to the subject reinforces the dependence on context for evaluating 
rewards and punishments (Palminteri et al., 2015). Thus, when subjects are informed about 
the result of the forgone alternative, value contextualization is enhanced. Similar to our CF 
model, such contextualization would consist in tracking the mean of the distribution of values 
of the current choice context (i.e., the reference point) and using it to centre both factual and 
counterfactual option values. Such value contextualization echoes adaptive coding of 
outcomes in neural populations in which neural outputs rescale to the range of currently 
expected outcomes (Burke et al., 2016), and it is more generally consistent with studies on 
context-based processing of outcome information showing that motivationally relevant 
information is encoded in a relative fashion that adapts to the current value-context (Seymour 
and McClure, 2008).  
Because it updates alternative action values based on a context-dependent reference, the CF 
model can be viewed as a generalization of the Rescorla-Wagner (R-W) rule (Sutton and 
Barto, 1998). Interestingly, counterfactual updating in associative learning can also be 
modelled using a Bayesian generalization of the R-W model, i.e., using Kalman filters based 
on temporal difference (TD) learning (Keramati, Dezfouli and Piray, 2011). Kalman TD 
incorporates a component of counterfactual thinking by encoding a negative covariance 
between stimuli elements. In terms of instrumental learning, this covariance structure can be 
leveraged to update both factual and counterfactual action values, as learning one particular 
instrumental contingency automatically leads to a reduction in the associative strength of the 
unchosen contingency (Gershman, 2015). In a recent study, Morris et al. (2017) showed that 
instrumental learning was best explained by a Kalman algorithm that combines prediction-error 
learning with a similar covariance matrix, which reflects the structure of the task environment. 
In their task, several causal variables compete to explain the observation. The winning model 
assumes negative covariance between these variables, which means that a change in the 
belief of one cause inversely affects the other (Morris et al., 2017). The covariance matrix thus 
allows the learner to reason counterfactually about alternative courses of action, which allows 
her differentiate the unique effects of action from background effects, i.e., from effects that 
would have occurred in the absence of that action. Morris and collaborators found that this 
model, which combines key features of associative learning and model-based RL, better 
characterized behavioural performance and neural activity associated with instrumental 
learning than models based on covariance or prediction error alone.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/498675doi: bioRxiv preprint 

https://doi.org/10.1101/498675
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 48	

Morris et al.’s model has formal resemblance to our CF model. In the CF model, however, the 
negative covariation between factual and counterfactual values critically relied on a parameter, 
the reference point, whose value was separately fitted in each participant. Importantly, the 
value of this reference showed some variability across participants, depending on their 
subjective preferences and beliefs. Thus, while some underestimated, some other 
overestimated the true mean of the current distributions. Interestingly, underestimating the true 
mean was self-serving in nature because it led participants to exaggerate the divergence 
between factual and counterfactual outcomes. Thus, in subjects underestimating the true 
mean, the lower the reference, the worse the outcome would have been had they made 
another choice (OCF < OF, Figure 12). Conversely, participants overestimating the true mean 
could be seen as pessimistic because they assumed that the alternative course of action 
would have been better off on average (OCF > OF, Figure 12). This result agrees with a variety 
of empirical works showing that while healthy adults exhibit attribution biases when judging 
their agency, these biases vary substantially across individuals (Mezulis et al., 2004, for a 
review). By combining counterfactual updating with a subjective reference point, the CF model 
accounts for interindividual variability in self-serving beliefs, i.e., perceived controllability, 
during online instrumental learning. 

 
Counterfactual emulation operates at most abstract levels of action control 

Negative covariance is at the heart of the notion of “difference-making” in counterfactual 
theories of causal reasoning. Counterfactual (CF) theories posit that a cause is something that 
makes a difference to another event (Walsh and Sloman, 2011). According to the CF view, 
individuals would infer causal relations by simulating models of close alternatives (“nearest 
possible worlds”) in which the candidate cause (A) is negated and the outcome is observed 
(O). If the outcome is undone (∼O) as a result of negating the candidate cause (∼A), then the 
probability that A is selected as the cause should increase accordingly (e.g., Roese & Olson, 
1997; Woodward, 2003; Sloman and Lagnado, 2015). When applied to intentional causation, 
an action should be considered “causal” when simulating a change in that action (e.g., the 
action is not taken) produces a change to the outcome (e.g., the outcome does not occur). In 
CF theories, “mutability” is a property that characterizes the effects of “simulating” changes in 
one variable, and hence can be seen as a measure of its causal power (Kahneman and Miller, 
1986; Dehghani, Iliev and Kaufmann, 2012). Thus, a variable is highly mutable if realizing, 
relative to not realizing, this variable is likely to make a difference in the world. Put differently: 
a variable is mutable if it is likely to diverge across factual and counterfactual worlds (Lucas 
and Kemp, 2015).  

The notion of “mutability” closely relates to the notion of counterfactual learning as instantiated 
in the CF model through a counterfactual (CF) learning rate parameter. A CF learning rate can 
be viewed as measuring the speed of divergence between factual and counterfactual 
outcomes. Thus, the greater the value of the CF learning rate, the faster the counterfactual 
action value is assumed to diverge from the chosen action value. In our task, a machine 
associated with a high CF learning rate is a highly mutable machine: choosing this machine, 
rather than the other one, is thought to make a significant difference with respect to the 
outcome. Importantly, our results revealed that counterfactual learning was hierarchically 
organized: CF learning rates were higher for the machine than for the button, which suggests 
that participants conceived the former as being more “mutable” than the latter. In other words, 
participants considered that making a choice about the machine was more likely to make a 
difference to the world relative to making a choice about the button.  

This hierarchy in learning from factual and counterfactual action values might be well adapted 
to an environment where changes in causal influence (e.g., reversals) operate at more or less 
abstract levels of action control. Higher learning rates for the CF machine relative to the CF 
button suggest that subjects are more likely to engage in counterfactual emulation for testing 
their control at most abstract levels of action representation (the machine), and less for less 
abstract levels (the button) where direct instrumental testing is available. Should this prediction 
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be correct, such a hierarchy in counterfactual learning would be advantageous in an 
environment where instrumental divergence is maximal between machines rather than 
between buttons. We directly tested this hypothesis by simulating our CF model across two 
different environments, where maximal instrumental divergence was either between buttons or 
between machines. In line with our predictions, we found that the CF model was best suited to 
deal with an environment where the divergence was set at the most abstract level, i.e., the 
machine level (see Figure 13A).  

That individuals are more likely to engage in counterfactual emulation for the most abstract 
levels of action control is consistent with evidence from hierarchical models of action 
representation (e.g., Kilner, 2011; Chambon et al., 2017). In such models, an observer 
predicts another person’s behaviour based on beliefs derived from simulating one's internal 
model (i.e., a model of how people are likely to behave in a given context). The nature of these 
beliefs critically depends on the level at which the behaviour is represented, from the least to 
the most abstract levels (e.g., kinematic vs. motor vs. goal level). Thus, a change at the most 
abstract level (e.g., the goal level: going to restaurant vs. theatre) is assumed to have a 
greater effect on the resulting behaviour than a change made at a less abstract level (e.g., the 
kinematic level: using a power vs. precision grip to grasp a mug). Importantly, human subjects 
show greater reliance on their internal models when having to predict more and more abstract 
behaviours (e.g., going to the restaurant vs. theatre > using a power vs. precision grip) 
(Chambon et al., 2011; Chambon et al., 2017). Likewise, our results indicate that human 
subjects are more likely to emulate counterfactual alternatives when making decisions at more 
abstract levels of action control (machine > button).  

 
Control beliefs foster opportunities for learning  

Assuming a negative covariance between factual and counterfactual outcomes implies that the 
world can be divided into states that are essentially anti-correlated. In this scenario, only two 
states are possible: you are the agent or you are not. This assumption agrees with the fact that 
judgements of agency are binary in nature. Indeed, while individuals readily experience 
intermediate levels of sensorimotor control, confidence, or difficulty, they rarely, if ever, 
experience intermediate levels of agency; they can be “more or less confident”, but they do not 
feel “more or less agent” (Chambon and Haggard, 2013). The all-or-none nature of agency is 
supported further by the observation that people think of causal relationships between actions 
and outcomes in terms of “state” (is A the cause of O?) rather than in terms of “force” 
(Tenenbaum and Griffiths, 2001). We show that the CF model best fits participants’ behaviour 
because it embeds a prior that matches one’s belief about the structure of controllable 
environments in which binary and abrupt, rather than smooth and continuous, changes in 
contingencies can occur. In this sense, the CF model would be best suited to track changes in 
agency (me vs. not-me) than gradual changes due to external volatility (e.g., the light 
decreasing over the course of a day).  
We speculate that this prior about negative covariance mirrors participants’ beliefs about their 
control over machine outcomes: had their choice been different, the outcomes would also 
have been different. Importantly, participants hold this control belief even in sessions where no 
true control existed (see Experiment 1, “value” and “variance” sessions), or although 
instructions made no reference to control in the task (see Experiment 1b, Supplementary 
information). Beliefs in one’s causal power are a strong determinant of voluntary behaviours: 
individuals are more likely to enact certain behaviours when they feel or believe they can enact 
these behaviours successfully (e.g., Ajzen, 2002). Control beliefs develop early and are 
somewhat irrepressible: the need to be and feel in control is so strong that individuals would 
do whatever they can to re-establish control when it disappears or is taken away, including 
self-attributing unrelated events (Langer, 1975) or acting superstitiously in the belief that their 
action is accountable for uncontrollable outcomes (Blanco, Matute and Vadillo, 2011). 
Importantly, control beliefs would explain an enduring puzzle in causal reasoning, that is, why 
people show remarkable performance in causal inferences, which they often make effortlessly 
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and from very little data, and yet readily experience illusory control, whether in real-life 
uncontrollable situations (Matute, 1996) or in experimental settings with null contingency 
(Blanco, Matute and Vadillo, 2011). This relationship between illusory control and control 
beliefs is further corroborated by people’s tendency to self-attribute positive outcomes when 
their perceived controllability of the environment is high (Harris and Osman, 2012). 

One explanation for assuming control as a default belief – whether illusory or not – is learning. 
Indeed, control beliefs would be particularly adapted to controllable environments, whose 
latent causal structure can be learnt to maximize rewards in the long run (Lake et al., 2016). In 
a structured environment, enacting actions, relative to not acting, is advantageous on average 
as the reward/punishment ratio can be turned in favour of rewards though implementing 
appropriate actions. In this situation, agents would be better off holding the belief that their 
actions are efficient means for attaining desired outcomes. In sum, the detrimental 
consequences of assuming control as a default belief would be offset by opportunities for 
learning the causal structure of the world, and therefore by the ability to flexibly switch 
preferences when reversals occur, which ultimately reduced the cost associated with missing 
opportunities (Koechlin, 2016). Importantly, control beliefs, such as self-efficacy, play a major 
role in general health and wellbeing (Bobak et al., 2000). A lowered sense of causation is 
associated with lower self-esteem, greater mood disorders and greater depressive symptoms 
(Bandura, 1997). Depressed individuals perceive their environment as being more random 
than non-depressed people. In the depressed view (so-called “depressive realism”), the 
reward/punishment ratio is evenly balanced, which substantially reduces opportunities for 
learning and ultimately makes any action pointless (Nettle and Bateson, 2012). This account 
agrees with clinical reports of greater passivity in depressed people, that is, a reduced ability 
to initiate voluntary actions (Blanco, Matute, & Vadillo, 2012). Acting with less frequency would 
make depressed individuals exposed to fewer incidental associations between actions and 
action-contingent events (reduced “action-density” bias, see Matute et al., 2015), which might 
in turn impede learning instrumental contingencies and aggravate depressive symptoms in the 
long run.  

The strength of the CF model stems from the simplicity with which it embeds the participant’s 
prior beliefs about control. This prior amounts to assuming relative (i.e., context-dependent) 
divergence between factual and counterfactual worlds. We argue that this simple prior allows 
the model to rapidly and flexibly switch preferences when a reversal occurs, as demonstrated 
by its robust learning curves and performances in both experiments, relative to more 
sophisticated models such as those aiming at statistical optimality (e.g., the BC model). We 
believe that simplicity is required to account for the ease with which resource-bounded agents 
learn instrumental contingencies but also to explain how strong control beliefs can be 
sustained as a default backdrop to our normal mental life. As mentioned above, a pervasive 
belief in one’s causal power can make instrumental learning sometimes depart from statistical 
optimality, which results in illusions of control and an inflated perception of one’s own efficacy. 
The influence of such a pervasive belief would explain why learning action-outcome causal 
relationships seems not to suffer the same biases as other forms of causal learning that are 
based on passive observation (Morris et al., 2017; Chambers et al., 2017). Ultimately, strong 
control beliefs in human agents could account for why reasoning about external causes differs 
from reflecting upon one’s own causal power both in terms of underlying computations, 
normative principles and optimal behaviour.    
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Conclusions 
We designed a series of experiments that required participants to continuously monitor their 
causal influence over the task through discriminating changes that were caused by their own 
actions from changes that were not. Comparing different models of choice, we found that 
participants’ behaviour was best explained by a model (CF) deriving the consequences of the 
forgone action from the current action taken and assuming relative divergence between both. 
Importantly, this model agrees with the intuitive way of construing causation as “difference-
making” and further endorses the long-held view that goal-directed actions are divergent in 
nature: they make a difference to the world and can hence be implemented as efficient means 
for pursuing desirable outcomes. In the CF model, difference-making was explicitly accounted 
for by assuming negative covariance between factual and counterfactual action values. Based 
on this prior, the CF model directly emulated counterfactual action values through a subjective 
reference point that aligned with the actual structure of the task environment. Crucially, we 
found that counterfactual emulation was more likely to occur at most abstract levels of action 
control, in line with evidence from hierarchical models of goal-directed actions. Finally, we 
suggest that the CF model outperformed all competitors because it closely mirrors people’s 
beliefs in their causal power, which are beliefs that are well suited to learning action-outcome 
associations in controllable environments. We speculate that control beliefs may be part of the 
reason why reflecting upon one’s own causal power fundamentally differs from reasoning 
about external causes.  
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Appendix A 
 

Generative model 
 

As mentioned in the main text, the generative model was a Bayesian learner that updated 
beliefs associated with each possible action on each trial. Specifically, the model (either BM or 
BC) aims to infer the correct action mapping between the four possible mappings (or states). 
We further define a state-function 𝑓 specifying the underlying reward distribution for a given 
action 𝑎!,…,! and state 𝑧, as follows: 

State 1:  𝑓 𝑎!;  𝑧 = 1 =  𝐺!, 𝑓 𝑎!; 𝑧 = 1 =  𝐺!, 𝑓 𝑎!; 𝑧 = 1 =  𝐺!, 𝑓 𝑎!; 𝑧 = 1 =  𝐺!  
State 2:  𝑓 𝑎!; 𝑧 = 2 =  𝐺!, 𝑓 𝑎!; 𝑧 = 2 =  𝐺!, 𝑓 𝑎!; 𝑧 = 2 =  𝐺!, 𝑓 𝑎!; 𝑧 = 2 =  𝐺!  
State 3:  𝑓 𝑎!; 𝑧 = 3 =  𝐺!, 𝑓 𝑎!; 𝑧 = 3 =  𝐺!, 𝑓 𝑎!; 𝑧 =  3 =  𝐺!, 𝑓 𝑎!; 𝑧 = 3 =  𝐺! 
State 4:  𝑓 𝑎!; 𝑧 = 4 =  𝐺!, 𝑓 𝑎!;  𝑧 = 4 =  𝐺!, 𝑓 𝑎!; 𝑧 = 4 =  𝐺!, 𝑓 𝑎!; 𝑧 = 4 =  𝐺! 

where 𝑎!,…,! corresponds to each possible action (among the 4 possible combinations 
of button and machine), 𝐺! is the distribution associated with having selected the best-
rewarding button of the controlled machine, 𝐺! is the distribution associated with having 
selected the least-rewarding button of the controlled machine, and 𝐺! is the distribution 
associated with having selected the non-controlled machine (see respectively green, red, and 
grey distributions of Figure 4, top panel). We assume the rewards to be drawn from Gaussian 
distributions, as they were in the task (see Figure 5A).  

The analytical model used to infer the state on each trial is a hidden Markov model, defined as 
follows: 

𝑧! ~ 𝑈𝑛𝑖𝑓 {1, 2, 3, 4}  
𝑧!|𝑧!!!, 𝜏 ~ 1 − 𝜏  × 𝛿!!!!!! +  𝜏 × 𝑈𝑛𝑖𝑓({𝑘 ∈ {1, 2, 3, 4}, 𝑘 ≠ 𝑧!!!}) 

𝑟!|𝑎! , 𝑧! , 𝜇!, 𝜇!, 𝜇!, 𝜆!, 𝜆!, 𝜆! ~ 𝑁𝑜𝑟𝑚(𝑟!| 𝜇! !!;!! , 𝜆! !!;!! ) 

 where 𝑧! corresponds to the state inferred on trial t, 𝑟! corresponds to the reward 
observed on trial t, 𝑎! corresponds to the action observed on trial t, and δ is the index function, 

i.e., 𝛿!" =  1 𝑖𝑓 𝑎 = 𝑏
0 𝑖𝑓 𝑎 ≠ 𝑏. Note that the reward values 𝑟! were rescaled within the range [0,1]. 

Let the parameters be 𝜃 = 𝜏, 𝜇!, 𝜇!, 𝜇!, 𝜆!, 𝜆!, 𝜆! . The analytical model to infer the parameters 
on the first trial, given their prior hyperparameters, is the following: 

𝜏 ~ 𝐵𝑒𝑡𝑎 𝑎!, 𝑏!  
𝑝(𝜇! 𝜇! ∝  𝑁𝑜𝑟𝑚 𝜇! 𝜇!!, 𝜆!!   × 1[𝜇! > 𝜇!] 
𝑝(𝜇! 𝜇! ∝  𝑁𝑜𝑟𝑚 𝜇! 𝜇!!, 𝜆!!  × 1[𝜇! > 𝜇!] 

𝜇! ~ 𝑁𝑜𝑟𝑚 𝜇! 𝜇!!, 𝜆!!   
𝜆! ~ 𝐺𝑎𝑚𝑚𝑎 𝜆! 𝛼!,𝛽! ,∀𝑔 ∈ 1,2,3   

 where 𝜏 is the volatility parameter, and 𝜇! and 𝜆! are the mean and precision of the 
Gaussian 𝐺! for 𝑔 ∈ 1,2,3 . To obtain conjugate distributions, we used Gaussian precisions 
rather than their standard deviations. We assumed the same hyper-parameters for the 
precisions of the three Gaussians. These hyper-parameters led to the less informative priors 
possible and were set to the following values: 𝒂𝟎 = 1; 𝒃𝟎 = 9; 𝝁𝟏𝟎 = 0.58; 𝝁𝟐𝟎 = 0.42; 𝝁𝟑𝟎 = 0.50; 
𝝀𝟏𝟎 = 𝝀𝟐𝟎 = 𝝀𝟑𝟎 = 20; 𝜶𝟎 = 80;  𝜷𝟎 = 0.8. 
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The goal of the inference algorithm is to predict the state of the next trial: 

𝑝 𝑧!!! 𝑎!:! , 𝑟!:!  

Let us have 𝐼 = 1,000 samples (𝑧!!!!)!∈ !,…,!  distributed under the distribution 𝑝 𝑧!!! 𝑎!:! , 𝑟!:!). 
A Monte Carlo approximation of the integral gives: 

𝑝 𝑧!!! = 𝑘 𝑎!:! , 𝑟!:! =
1
𝐼

𝛿! !!!!!

!

!!!

 

To perform inference, we used a Gibbs algorithm sampling iteratively the latent states and the 
parameters.  

Regarding the sampling of the latent states, for the first trial, the posterior distribution on the 
hidden state takes the following form: 

𝑝 𝑧! 𝜃, 𝑎!, 𝑟! ∝ 𝑁𝑜𝑟𝑚 𝑟! 𝜇! !!;!! , 𝜆! !!;!! 𝑝(𝑧!)  

Then, the forward recursion from trial 𝑖 − 1 to trial 𝑖 leads to: 

𝑝 𝑧!!!, 𝑧! 𝜃, 𝑎!:! , 𝑟!:! ∝ 𝑁𝑜𝑟𝑚 𝑟! 𝜇! !!;!! , 𝜆! !!;!! 𝑝 𝑧! 𝑧!!!, 𝜏  𝑝 𝑧!!! 𝜃, 𝑎!:!!!, 𝑟!:!!!   
with 𝑝 𝑧!!! 𝜃, 𝑎!:!!!, 𝑟!:!!! =   𝑝 𝑧!!!, 𝑧!!! 𝜃, 𝑎!:!!!, 𝑟!:!!!!!!!  

Figure S1. Generative graphical model assumed by the subject. The 
variable 𝑧! corresponds to the state on trial t (shown in light blue). 𝑟! and 𝑎! 
are the observed variables (shown in grey): 𝑟!  corresponds to the reward 
observed on trial t, and 𝑎! corresponds to the action observed on trial t. The 
parameters are 𝜃 = (𝜏, 𝜇!, 𝜇!, 𝜇!, 𝜆!, 𝜆! , 𝜆!) , shown in white circles: 𝜏  is the 
volatility parameter, and 𝜇!  and 𝜆!  are the mean and the precision of the 
Gaussian 𝐺! for 𝑔 ∈ {1,2,3}. The hyperparameters are shown in white boxes. 
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The latent sample 𝑧!:! is thus obtained by drawing 𝑧! from 𝑝 𝑧! 𝜃, 𝑎!:! , 𝑟!:! , and then by 
iteratively sampling backward 𝑧!!!|𝑧!~ 𝑝 . , 𝑧! 𝜃, 𝑎!:! , 𝑟!:!  (Scott, 2002). 

For the parameter sampling step, the posterior distribution of the volatility parameter 𝜏 
depends on the number of switches predicted by the sampling trajectory 𝑧!:!. Let us define 
𝑁!"#$%! = 𝑐𝑎𝑟𝑑(𝑖 ∈ 2,… , 𝑡  | 𝑧! ≠ 𝑧!!!). The posterior distribution of the volatility parameter is 
updated as follows: 

𝜏|𝑧!:! , 𝑎!:! , 𝑟!:!  ~ 𝐵𝑒𝑡𝑎 𝑎! + 𝑁!"#$%! , 𝑏! + 𝑡 − 1 − 𝑁!"#$%!  

The means and precisions of the three Gaussians are also updated based on past history of 
actions and rewards. This update first requires identifying which Gaussian g each observed 
reward was drawn from. Let us define 𝐼! = {𝑖 ∈ 1,… , 𝑡  | 𝑓 𝑎!; 𝑧! = 𝐺!}. Then, the number of 
trials in which the rewards are drawn from the Gaussian g is: 𝑁! = 𝑐𝑎𝑟𝑑(𝐼!), and the average 
reward observed for the Gaussian g is: 𝑟! =  !

!!
𝑟!!∈!! . 

To sample from the mean of 𝐺!, the Gaussian associated with the non-controlled machine, 
one just computes the tractable posterior and samples from it: 

𝜇!|𝑧!:! , 𝑎!:! , 𝑟!:! ~ 𝑁𝑜𝑟𝑚 𝜇!   
𝑁!𝜆!𝑟! +  𝜆!!𝜇!!

𝑁!𝜆! +  𝜆!!
,  𝑁!𝜆! +  𝜆!!  

For the means of 𝐺! and 𝐺!, the Gaussians associated with the best- and the least-rewarding 
button of the controlled machine, the additional inequality constraint makes the posterior 
distribution intractable. We thus use Monte Carlo Markov Chain procedures within the Gibbs 
algorithm to sample from the constrained conditional distributions of 𝜇! and 𝜇!. For the 
proposal distribution of the Metropolis-Hastings algorithms implemented, we use the 
unconstrained posterior: 

𝜇!|𝑧!:! , 𝑎!:! , 𝑟!:! ~ 𝑁𝑜𝑟𝑚 𝜇!   
𝑁!𝜆!𝑟! +  𝜆!!𝜇!!

𝑁!𝜆! +  𝜆!!
,  𝑁!𝜆! +  𝜆!!  

with 𝑔 ∈ 1,2 .  

As for the posterior distributions of the precision parameters 𝜆!, they are of the form: 

𝜆!|𝑧!:! , 𝑎!:! , 𝑟!:! ~ 𝐺𝑎𝑚𝑚𝑎 𝜆!  𝛼! +
𝑁!
2
, 𝛽! +

1
2

(𝑟! −
!∈!!

𝜇!)!  

with 𝑔 ∈ 1,2,3 .  
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Appendix B 
 

Experiment 1b: Methods and Results 
 
20 participants (11 females, age 21-29) took part in the experiment. The task (stimuli, timeline, 
and trial structure) was identical to that used in experiment 1. The only differences were the 
instructions and the order of sessions. The verbal and written instructions did not make any 
reference to a controlled machine or to a best-rewarding button. Thus, participants were only 
instructed to choose the option that would maximize their total reward while being reminded 
that they would always win the sum of the two machines on each trial. The order of the three 
experimental sessions was fully randomized so that participants could begin by any of the 
three sessions (dependency, value, or variability). 

Experiment 1b comprised the same number of episodes as in experiment 1, with similar length 
and same number of button and/or machine reversals. The same four models (RL, CF, BC, 
BM) were fitted to participants’ choices and simulated over all three sessions with their best-
fitting parameters. 

The results replicated the experiment 1. Participants discriminated well between the two 
buttons of the controlled machine in the dependency session only (best- and least-rewarding 
buttons: 0.33 vs. 0.20, t(19)= 3.96, p < 0.001) while choosing equally button 1 and button 2 of 
the non-controlled machines in all sessions (all t’s < 2.16 , all p’s > 0.12). Second, we tested 
whether participants showed a preference for one machine over another within each session, 
by comparing choice proportion for each machine against the chance level (0.5). As again 
expected, we found that participants showed a significant preference for the controlled 
machine in the dependency session (t(19) = 1.98, p < 0.05) and a marked preference for the 
best-rewarding machine in the value condition (t(19) = 5.97, p < 0.001). In contrast to 
experiment 1, however, they only showed a tendency to prefer the low-variable machine in the 
variance condition (t(19) = 1.2, p = 0.19). 

As in the previous experiment, we compared “button” preferences across all sessions by 
subtracting choice for one button from choice for the other button within each preferred 
machine. The one-way ANOVA confirmed that “button” preferences differed across the 3 
sessions (F(2,57)=12.23, p < 0.001, η2

p = 0.30). Thus, participants discriminated between 
buttons of the preferred machine in the dependency session to a greater extent than in the 
value and variance sessions (post hoc tests: all p’s < 0.001). We then compared the 
proportion of choice for the preferred machine across all 3 sessions. The one-way ANOVA 
revealed that “machine” preferences differed across the 3 sessions (F(2,57)=17.95, p < 0.001, 
η2

p = 0.38), Thus,  participants chose the best-rewarding machine (“value” session, 0.65) more 
than the controlled machine (“dependency” session, 0.54), and more than the low-variable 
machine (“variance” session, 0.52) (post hoc tests, all p’s < 0.001). Finally, participants were 
able to adjust to machine and/or button reversals, on average reaching the plateau of 
performance around 10 trials after reversal. 

Again, replicating experiment 1, the CF model best predicted participants’ choices than all 
other models in the set (RL, BM or BC), in all three sessions (exceedance probability > 92%) 
(see Table 1). 

 

Experiment 1b: Preliminary discussion 
Most of the results from the previous experiment were replicated. As expected, participants 
exhibited a strong preference for high rewards and preferentially chose low-variable machines, 
regardless of their overall value. We also found that participants were able to discriminate 
between causally efficient actions (the two buttons) and to identify where in the task 
environment choosing one action rather than another made a difference to the outcome (the 
controlled machine), and where it did not (the non-controlled machine). Importantly, this 
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pattern of choice preference could neither be explained by the session order nor by the 
instructions. In this experiment, participants could as well start with the “dependency” as with 
the “value” or the “variability” sessions. Furthermore, participants were only instructed to make 
choices that maximized their rewards over both machines and time. Finally, in this experiment 
as in the previous one, we found that a model based on a simple context-dependent 
counterfactual rule (CF) outperformed all competing models, including a pure reinforcement 
learner (RL) and a model that explicitly aimed at maximizing reward by means of Bayesian 
inference (BM).  
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Appendix C 
 

Experiment 2: Supplementary figures 
 
  

Figure S2. Top panel: Mean proportion of choice for each button of each button 
across the “value” dimension. Low, medium, high: the value of the controlled 
machine was low, medium, or high, relative to the value of the non-controlled 
machine. The numbers between brackets refer to experimental conditions shown in 
Figure 5. All error bars indicate standard error. For the sake of visibility, models’ error 
bars are not shown. Three-stars: p < 0.001. Bottom panel: Reversal curves for 
participants (solid black line) and models (colored bars), across all three levels 
of the “value” dimension. Model simulation: CF (red bars); RL (light grey); BM (light 
green bars); BC (dark green bars). Bars indicate standard error. Dashed vertical lines 
indicate reversal point. Machine reversal curves are not shown.  
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Figure S3. Top panel: Mean proportion of choice for each button of each 
button across the “variance” dimension. Low, medium, high: the variance of the 
controlled machine was low, medium, or high, relative to the variance of the non-
controlled machine. The numbers between brackets refer to experimental 
conditions shown in Figure 5. All error bars indicate standard error. For the sake of 
visibility, models’ error bars are not shown. Two-stars: p < 0.01; Three-stars: p < 
0.001. Bottom panel: Reversal curves for participants (solid black line) and 
models (colored bars), across all three levels of the “variance” dimension. 
Model simulation: CF (red bars); RL (light grey); BM (light green bars); BC (dark 
green bars). Bars indicate standard error. Dashed vertical lines indicate reversal 
point. Machine reversal curves are not shown. 
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Appendix D 
 

Parameter recovery procedure 
 
We used simulations to verify that the pattern of learning rates obtained in Experiments 1 and 
2 did not arise artificially from the parameter optimization procedure. We ran a parameter 
recovery analysis for discrete sets of parameter values. For Experiments 1 and 2, we 
simulated 36 virtual participants on our behavioural tasks (36 being the total number of 
participants in both experiments) with different patterns of learning rates (see Table S1). The 
other parameters were set to their mean fitted values across participants and conditions. The 
results of these analyses confirmed the capacity of our parameter optimization procedure to 
correctly recover the true parameters in all experimental conditions. 
 

Performance of the CF model using different parameter values 
We simulated the CF model (see “Modelling” section, main text) in two different environments, 
where divergence was maximal between buttons (‘environment 1’) or between machines 
(‘environment 2’) (see Figure 13A). We tested the performance of the model with three 
different patterns of factual and counterfactual alpha rates (‘subjects’, ‘flat’, ‘reverse’). 
Parameter values were varied according to Table S1, below. For the CF simulations (see 
Figure 13B) parameter values from the ‘subjects’ pattern were used, while for the RL 
simulations parameter values from the CF model were used (α = 0.5, 𝛽 = 0.2, 𝜌!"#!!"# = 8, 
𝜌!"##$% = 5). 
 
‘Environment 1’ corresponded to the “dependency” condition in Experiment 1, whereas 
‘Environment 2’ was similar to the “value” condition in the same experiment. For the 
simulations, we used the same task structure as the one experienced by the 16 human 
participants of our sample, but the model generated its own response, and received the 
outcome corresponding to this response, on each trial. Each model was simulated 10 times, 
for each environment and pattern. 
 

Simulations αF αCF1 αCF2 αCF3 𝑷 𝜷 𝝆𝒎𝒂𝒄𝒉𝒊𝒏𝒆 𝝆𝒃𝒖𝒕𝒕𝒐𝒏 

‘subjects’ 0.5 0.25 0.5 0.5 50 0.2 8 5 

‘flat’ 0.5 0.5 0.5 0.5 50 0.2 8 5 

‘reverse’ 0.5 0.5 0.25 0.25 50 0.2 8 5 

 
 
 
 

Table S1. Parameter recovery procedure: model parameters used to generate model’s 
performance, as shown on Figures 13A. Parameters of the model are: the (factual) 
learning rate αF, the 3 counterfactual learning rates α!"!, α!"! and α!"!, the reference 
point P, the exploitation intensity β and the 2 perseveration biases 𝜌!"#!!"# and 𝜌!"##$%. 
Note that only the values of the counterfactual learning rates differed across the ‘subjects’, 
‘flat’ and ‘reverse’ simulations. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/498675doi: bioRxiv preprint 

https://doi.org/10.1101/498675
http://creativecommons.org/licenses/by-nc-nd/4.0/

