
Violating the normality assumption may be the lesser of two evils 
 
 
Ulrich Knief1,* & Wolfgang Forstmeier2 
 
 
1 Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, 
82152 Planegg-Martinsried, Germany 
 
2 Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for 
Ornithology, 82319 Seewiesen, Germany 
 
* Address for correspondence: Ulrich Knief, Division of Evolutionary Biology, Faculty of Biology, 
Ludwig Maximilian University of Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, 
Germany, Phone: 0049-89-2180-74101, Fax: 0049-89-2180-74104, E-mail: knief@biologie.uni-
muenchen.de 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key-words: hypothesis testing, linear model, normality, regression 
Running header: Consequences of violating the normality assumption 
Word count: ca 3200 
Figures & Tables: 1 figure 
References: 31 
Supplementary Material: 4 figures, 2 tables 
Data availability: all scripts bundled in the R package “TrustGauss”

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/498931doi: bioRxiv preprint 

https://doi.org/10.1101/498931
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 1 

1. Researchers are often uncertain about the extent to which it may be acceptable to violate the 2 

assumption of normality of errors, which underlies the most-frequently used tests for statistical 3 

significance (regression, t-test, ANOVA, and linear mixed models with Gaussian error). 4 

2. Here we use Monte Carlo simulations to show that such Gaussian models are remarkably robust to 5 

even the most dramatic deviations from normality. 6 

3. We find that P-values are generally reliable if either the dependent variable Y or the predictor X are 7 

normally distributed and that bias only occurs if both are heavily skewed (resulting in outliers in both 8 

X and Y). In the latter case, judgement of significance at an α-level of 0.05 is still safe unless sample 9 

size is very small. Yet, with more stringent significance criteria as is used when conducting numerous 10 

tests (e.g. α = 0.0001) there is a greater risk of making erroneous judgements. 11 

4. Generally we conclude that violating the normality assumption appears to be the lesser of two evils, 12 

when compared to alternative solutions that are either unable to account for levels of non-13 

independence in the data (most non-parametric tests) or much less robust (e.g. Poisson models which 14 

require control of overdispersion and sophisticated resampling). We argue that the latter may pose a 15 

more substantial threat to the reliability of research findings when pragmatically acknowledging that, 16 

in the majority of publications, statistical expertise is limited. 17 

 18 

Introduction 19 

In the biological, medical and social sciences, the validity of research findings is generally assessed 20 

via statistical significance tests. Valid significance tests ensure the trustworthiness of scientific results 21 

and should reduce the amount of random noise entering the scientific literature. Brunner and Austin 22 

(2009) even regard this as the “primary function of statistical hypothesis testing in the discourse of 23 

science”. A P-value of < 0.05 is usually accepted as sufficiently low for rejecting the null hypothesis. 24 

However, the validity of parametric significance tests depends on the whether model assumptions are 25 

violated. 26 

 27 
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In a growing body of literature, researchers express their concerns about irreproducible results (Open 28 

Science Collaboration 2015; Ebersole et al. 2016; Camerer et al. 2018; Silberzahn et al. 2018) and it 29 

has been argued that the inappropriate use of statistics is a leading cause of irreproducible results 30 

(Forstmeier, Wagenmakers & Parker 2017). Yet researchers may often be uncertain about which 31 

statistical practices can be considered as safe and which are prone to yield overconfident conclusions. 32 

Searching the literature, we found relatively little pragmatic advice (Box & Watson 1962; Mardia 33 

1971; Lumley et al. 2002; Gelman & Hill 2007; O'Hara 2009; Zuur, Ieno & Elphick 2010) on the 34 

question of whether and when it may be safe to violate the assumption of normality of errors, which 35 

underlies the most commonly used tests for statistical significance (linear models “lm” and linear 36 

mixed models “lmm” with Gaussian error, which includes the often more widely known techniques of 37 

regression, t-test, and ANOVA). How much deviation is tolerable under which circumstances (in 38 

terms of sample size and α-threshold)? 39 

 40 

We here use Monte Carlo simulations to explore how violations of the normality assumption affect 41 

the probability of drawing false-positive conclusions (the rate of type I errors), because these are the 42 

greatest concern in the current reliability crisis (Open Science Collaboration 2015). We aim at 43 

deriving simple rules of thumb, which researchers can use to judge whether the violation may be 44 

tolerable and whether the P-value can be trusted. Furthermore, we provide an R package 45 

(“TrustGauss”) that researchers can use to explore the effect of specific distributions on the reliability 46 

of P-values. Counter to intuition, we find that violations are rarely problematic, and we argue that the 47 

commonly recommended solutions to the problem (e.g. using non-parametric tests, generalized linear 48 

models) may represent a greater threat to the reliability of conclusions because of their lower 49 

flexibility or robustness. 50 

 51 

The linear regression model and its assumptions 52 

At this point we need to briefly introduce the notation for the model of least squares linear regression. 53 

In its simplest form, it can be formulated as Yi = a + b × Xi + ei, where each element of the dependent 54 

variable Yi is linearly related to the predictor Xi through the regression coefficient b (slope) and the 55 
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intercept a. ei is the error or residual term, which describes the deviations of the actual from the true 56 

unobserved (error) or the predicted (residual) Yi and whose sum equals zero (Sokal & Rohlf 1995; 57 

Gelman & Hill 2007). An F-test is usually employed for testing the significance of regression models 58 

(Ali & Sharma 1996). 59 

 60 

Basic statistics texts introduce (about) five assumptions that need to be met for interpreting all 61 

estimates from linear regression models safely (validity, independence, linearity, homoscedasticity 62 

and normality; Gelman & Hill 2007). Recall that these criteria are concerned with the dependent 63 

variable Y, or — to be more precise — the regression error e. The predictor X is usually not 64 

considered. We refrain from revisiting all criteria in detail, but want to specifically focus on the 65 

normality assumption here, which is usually tested via inspecting the distribution of the dependent 66 

variable or of the residuals (Zuur, Ieno & Elphick 2010). Both visual approaches (probability or QQ-67 

plots) and formal statistical tests (Shapiro-Wilk) are commonly applied. Formal tests for normality 68 

have been criticized because they have low power at small sample sizes and almost always yield 69 

significant deviations from normality at large sample sizes (Ghasemi & Zahediasl 2012). Thus, 70 

researchers are left with their intuition to decide how severely the normality assumption is violated 71 

and how robust regression is to such violations. 72 

 73 

Normally distributed errors are generally assumed to be the least important (yet probably the most 74 

widely known) out of the five regression assumptions (Gelman & Hill 2007). Deviations from 75 

normality do not bias regression coefficients (Williams, Grajales & Kurkiewicz 2013) and usually do 76 

not impair hypothesis testing (no inflated type I error rate, e.g. Bishara & Hittner 2012; Puth, 77 

Neuhauser & Ruxton 2014; Ives 2015; Szöcs & Schäfer 2015; Warton et al. 2016) even at relatively 78 

small sample sizes, and with large sample sizes ≥ 500 the Central Limit Theorem guarantees that the 79 

test statistic is on average normally distributed (Lumley et al. 2002). Importantly, the robustness of 80 

regression methods to deviations from normality of the regression errors e does not only depend on 81 

sample size, but also on the distribution of the predictor X (Box & Watson 1962; Mardia 1971). 82 

 83 
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Simulations to assess effects on P-values 84 

To illustrate the consequences of violating the normality assumption, we performed Monte Carlo 85 

simulations on five continuous and five discrete datasets that were severely skewed, platy- and 86 

leptokurtic or zero-inflated (distributions D0–D9; Figure 1A left column), going beyond previous 87 

studies that examined less dramatic violations (Bishara & Hittner 2012; Puth, Neuhauser & Ruxton 88 

2014; Ives 2015; Szöcs & Schäfer 2015; Warton et al. 2016). We explored these 10 distributions 89 

across a range of sample sizes (N = 10, 25, 50, 100, 250, 500, 1000). Starting with the normal 90 

distribution D0 for reference, we sorted the remaining distributions D1–D9 by increasing tendency to 91 

produce strong outliers (calculated as the average distance of the maximum or minimum from the 92 

sample mean relative to the standard deviation of the sample for the case of N = 100). We used these 93 

data both as our dependent variable Y and as our predictor variable X in linear regression models, 94 

yielding 10 × 10 = 100 combinations of Y and X for each sample size (see Figure S1 for distributions 95 

of the independent variable Y, the predictor X, and residuals).   96 

 97 

We assessed the significance of the models via an F-test wherever possible and used a likelihood ratio 98 

test otherwise. We fitted these models to 50,000 datasets for each combination of the dependent and 99 

predictor variable. We did not simulate any effect, which means that both the regression coefficient b 100 

and the intercept a were on average zero. This enabled us to use the frequency of all models that 101 

yielded a P-value ≤ 0.05 as an estimate of the type I error rate at an α-level of 0.05. The null 102 

distribution of P-values is uniform on the interval [0,1] and because all P-values are independent and 103 

identically distributed, we constructed confidence intervals using a beta-distribution (cf. Casella & 104 

Berger 2002; QQ-plots of expected vs observed P-values are depicted in Figure S1). We assessed the 105 

deviation of observed from expected -log10(P-value) at an expected value of 3 (P = 10-3) and 4 (P = 106 

10-4) and by estimating the scale shift parameter υ = σobserved / σexpected (Lin 1989), where σ is the 107 

variance in -log10(P-value).  108 

 109 

Since some of the predictor variables were binary rather than continuous, our regression models also 110 

comprise the situation of classical two-sample t-tests, and we assume that the results would also 111 
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generalize to the situation of multiple predictor levels (ANOVA), which can be decomposed to 112 

multiple binary predictors. To demonstrate that our conclusions from univariate models (involving a 113 

single predictor) generalize to the multivariate case (involving several predictors), we fitted the above 114 

models with a sample size of N = 100 to the same 10 dependent variables with three normally 115 

distributed predictors and one additional predictor sampled from the 10 different distributions. We 116 

further fitted the above models as mixed-effects models using the lme4 R package (v 1.1-14; Bates et 117 

al. 2015). For that we simulated N = 100 independent samples each of which was sampled twice, such 118 

that the single random effect “sample ID” explained roughly 30% of the variation in Y. We encourage 119 

readers to try their own simulations using our R package “TrustGauss”. 120 

 121 

Results 122 

The rate at which linear regression models with Gaussian error structure produced false-positive 123 

results (type I errors) was very close to the expected value of 0.05 (Figure 1B). When sample size 124 

was high (N = 1000), type I error rates ranged only between 0.044 and 0.052, across the 100 125 

combinations of distributions of the dependent variable Y and the predictor X. Hence, despite of even 126 

the most dramatic violations of the normality assumption (see e.g. distributions D4 and D9 in Figure 127 

1A), there was no increased risk of obtaining false-positive results. At N = 100, the range was still 128 

remarkably narrow (0.037–0.058), and only for very low sample sizes (N = 10) we observed 4 out of 129 

100 combinations which yielded notably elevated type I error rates in the range of 0.086 to 0.11. 130 

These four cases all involved combinations of the distributions D4 and D9, which yield extreme 131 

outliers. For this low sample size of N = 10, there were also cases where type I error rates were clearly 132 

too low (down to 0.015, involving distributions D1–D3 where extreme values are rarer than under the 133 

normal distribution D0; for details see Table S1). 134 

 135 

Next we examine the scale shift parameter (Figure 1C) which evaluates the match between observed 136 

and expected P-values across the entire range of P-values (not only the fraction at the 5% cut-off). 137 

Whenever either the dependent variable Y or the predictor X was normally distributed, the observed 138 

and expected P-values corresponded very well (first row and first column in Figure 1C). 139 
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Accordingly, the P-values fell within the 95% confidence bands across their entire range (rightmost 140 

column in Figures S1). This observation was unaffected by sample size (Table S2). However, if both 141 

the dependent variable Y and the predictor X were heavily skewed, consistently inflated P-values 142 

outside the confidence bands occurred, yet this was almost exclusively limited to the case of N = 10 143 

(Figure 1C). For larger sample sizes only the most extreme distribution D9 produced somewhat 144 

unreliable P-values (Figure 1C). This latter effect of unreliable (mostly anti-conservative) P-values 145 

was most pronounced when judgements were made at a very strict α-level (Figure 1D α = 0.001 and 146 

Figure 1E α = 0.0001). At a sample size of N = 100, and for α = 0.001, observed -log10(P-values) 147 

were biased maximally 3.36-fold when both X and Y were sampled from distribution D9. This means 148 

that P-values of about P = 10-10 occurred at a rate of 0.001 (P = 10(-3 × 3.36) = 10-10.08; Figure 1D). At N 149 

= 100, and for α = 0.0001, the bias was maximally 4.54-fold (Figure 1E). Our multivariate and 150 

mixed-model simulations confirmed that these patterns are general and also apply to models with 151 

multiple predictor variables (Figure S3) and to models with random effects (Figures S4). 152 

 153 

In summary, P-values from such Gaussian models are highly robust to even substantial violation of 154 

the normality assumption and can be trusted, except when involving distributions with extreme 155 

outliers (distribution D9). For very small sample sizes, judgements should preferably be made at α = 156 

0.05 (rather than at more strict thresholds) and should also beware of outliers in both X and Y.  157 

 158 

Drawbacks of alternative solutions 159 

When the assumption of normality of errors is not met, it is often recommended to switch to either 160 

non-parametric tests (e.g. Spearman rank correlation, Wilcoxon signed-rank test) or to model a more 161 

specific error structure in a generalized linear model “glm” (e.g. binomial, negative binomial, Poisson, 162 

zero-inflated Poisson). How risky are these approaches in terms of yielding type I errors? 163 

 164 

In contrast to Gaussian models, for instance Poisson models are not at all robust to violations of the 165 

distribution assumption. For comparison, we fitted the above univariate models involving the five 166 

discrete distributions (D1, D2, D4, D6, D8) with a sample size of N = 100 using a Poisson error 167 
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structure. This yielded heavily biased type I error rates (at α = 0.05) in either direction ranging from 0 168 

to as high as 0.56, (Figures S2). Such inflations of type I error rates in glms have been reported 169 

frequently (Warton & Hui 2011; Ives 2015; Szöcs & Schäfer 2015; Warton et al. 2016) and this 170 

problem threatens the reliability of research whenever such models are implemented with insufficient 171 

statistical expertise. First, it is absolutely essential to control for overdispersion in the data, which may 172 

be particularly strong when Poisson errors are applied to measurements of areas (e.g. counts of pixels 173 

or mm2), latencies (e.g. counts of seconds), or concentrations (e.g. counts of molecules), besides the 174 

more classical abundances (e.g. counts of animals). Failure to account for overdispersion will 175 

typically result in very high rates of type I errors (Warton & Hui 2011; Ives 2015; Szöcs & Schäfer 176 

2015; Warton et al. 2016; Forstmeier, Wagenmakers & Parker 2017). Second, even after accounting 177 

for overdispersion, some models may still yield inflated type I error rates, therefore requiring 178 

statistical testing via a resampling procedure (Warton & Hui 2011; Ives 2015; Szöcs & Schäfer 2015; 179 

Warton et al. 2016). While most statistical experts might advocate for such a sophisticated approach 180 

to count data, we are concerned about practicability when non-experts have to make decisions about 181 

the most adequate resampling procedure. In this field of still developing statistical approaches it 182 

seems much easier to get things wrong (and obtain a highly overconfident P-value) than to get 183 

everything right. Finally, with the inclusion of random effects glmms are much more computationally 184 

intensive than lmms and often fail to converge, leading to the recommendation to model all traits as 185 

Gaussian (e.g. Ives & Garland 2014). 186 

 187 

The biggest downside of non-parametric approaches is that they are less advanced and user-friendly 188 

compared to linear (mixed) models (e.g. Akritas & Brunner 2003), such that only simple procedures 189 

are widely known and applied. The latter, however, are applicable only to the simplest and idealized 190 

scenario of fully independent data points and of only a single explanatory variable with no 191 

confounding factors or covariates to be controlled for. Real data sets rarely fulfil that condition, such 192 

that simple non-parametric tests often suffer from pseudoreplication and unaccounted confounds. 193 

Pseudoreplication, i.e. overestimation of the number of truly independent replicates, results in 194 

overconfident estimates and hence is one of the leading causes of false-positive conclusions 195 
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(Forstmeier, Wagenmakers & Parker 2017). Gaussian models, in contrast, allow us to easily control 196 

for pseudoreplication by specifying the random effects that cause non-independence of data points 197 

(mixed-effects models).  198 

 199 

Finally, there is much to be gained when researchers follow a standardized way of reporting effect 200 

sizes (Lumley et al. 2002). For instance, a study that examines the effect of a single treatment on 201 

multiple dependent variables (e.g. health parameters) may often switch forth and back between 202 

reporting parametric and non-parametric test statistics depending on how strongly the trait of interest 203 

deviates from normality, rendering a comparison of effect sizes difficult. Methods of converting effect 204 

sizes for discrete traits (e.g. odds ratio from a 2×2 contingency table) into effect sizes for continuous 205 

traits (e.g. Pearson correlation coefficient) already work by violating the normality assumption (e.g. 206 

fitting a Pearson correlation through the binary data of a 2×2 table; Nakagawa & Cuthill 2007), so 207 

why not always report the Gaussian model to begin with, if the primary purpose of the test is to obtain 208 

a reliable P-value?  209 

 210 

Practical advice (for referees) 211 

In order to effectively guard against false-positive claims entering the scientific literature, violations 212 

of the normality assumption in linear models are much less of a problem than violations of the 213 

independence of data points (pseudoreplication; Schielzeth & Forstmeier 2009; Forstmeier, 214 

Wagenmakers & Parker 2017). To avoid the negative consequences of strong deviations from 215 

normality that may occur under some conditions (see Figure 1) it may be most advisable to apply a 216 

rank-based inverse normal (RIN) transformation (aka rankit scores Bliss 1967) to the data, which can 217 

approximately normalize most distributional shapes and which effectively minimizes type I errors and 218 

maximises statistical power (Bishara & Hittner 2012). 219 

 220 

In practice, we recommend the following to referees: 221 
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(1) When a test assumes Gaussian errors, request a check for outliers, particularly if very small P-222 

values are reported. Consider recommending a RIN-transformation for strong deviations from 223 

normality. 224 

(2) For Poisson, binomial and negative binomial errors, always check whether the issues of 225 

overdispersion and resampling are addressed, otherwise request an adequate control for type I errors 226 

or verification with Gaussian models. 227 

(3) Requesting a switch to non-parametric statistics is not advised, and requests for switching from lm 228 

to glm (or from lmm to glmm) should be accompanied with sufficient advice (e.g. R-code) to ensure a 229 

safe implementation. 230 

 231 

Conclusion 232 

If we are interested in statistical hypothesis testing, linear regression models with Gaussian error 233 

structure are generally robust to violations of the normality assumption. Judging P-values at the 234 

threshold of α = 0.05 is nearly always safe, but if both Y and X are skewed, we should avoid being 235 

overly confident in very small P-values and examine whether these result from outliers in both X and 236 

Y (see also Osborne & Overbay 2004). With this caveat in mind, violating the normality assumption is 237 

relatively unproblematic. Alternative solutions like Poisson models and non-parametric tests may bear 238 

a greater risk of yielding anti-conservative P-values when applied by scientists with limited statistical 239 

expertise.  240 

 241 

Data availability 242 

All functions are bundled in an R package named “TrustGauss”. The R package and all 243 

supplementary figures are accessible through the Open Science Framework (osf.io/r5ym4). 244 
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  347 
Figure 1 | P-values from Gaussian linear regression models are in most cases unbiased. (A) Overview 348 

of the ten different distributions that we simulated. Distributions D0 is Gaussian and all remaining 349 

distributions are sorted by their tendency to produce strong outliers. Distributions D1, D2, D4, D6 and 350 

D8 are discrete. The roman numbers refer to the plots in (B–E) where on the Y-axis the distribution of 351 

the dependent variable and on the X-axis of the predictor is indicated. (B) Type I error rate at an α-352 

level of 0.05 for sample sizes of N = 10, 100 and 1000. Red colours represent increased and blue 353 

conservative type I error rates. (C) Scale shift parameter, (D) the bias in P-values at an expected P-354 

value of 10-3 and (E) the bias in P-values at an expected P-value of 10-4. 355 
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