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Abstract

Large-scale association analyses based on observational health care databases such as
electronic health records have been a topic of increasing interest in the scientific community.
However, challenges of non-probability sampling and phenotype misclassification associated
with the use of these data sources are often ignored in standard analyses. In general, the ex-
tent of the bias that may be introduced by ignoring these factors is not well-characterized. In
this paper, we develop a statistical framework for characterizing the bias expected in associ-
ation studies based on electronic health records when disease status misclassification and the
sampling mechanism are ignored. Through a sensitivity analysis approach, this framework
can be used to obtain plausible values for parameters of interest given results obtained from
standard näıve analysis methods. We develop an online tool for performing this sensitivity
analysis. Simulations demonstrate promising properties of the proposed approximations.
We apply our approach to study bias in genetic association studies using electronic health
record data from the Michigan Genomics Initiative, a longitudinal biorepository effort within
Michigan Medicine.

Keywords: non-probability sampling, electronic health records, outcome misclassification, Phe-
WAS, GWAS

1 Introduction

Genome-wide genotype data linked with electronic health records (EHR) are becoming increas-
ingly available through biorepository efforts at academic medical centers, health care organi-
zations, and population-based biobanks [1]. A common use of these linked data is to explore
the association between a phenotype, D, with a risk factor of interest, G, after adjusting for
potential confounders, Z. Analysis using a regression model for D|G,Z may be repeated for
millions of risk factors or genetic variants with a given D of interest (as in a genome-wide
association study (GWAS)) or for thousands of phenotypes derived from the content of the
EHR with a given variant G of interest (as in phenome-wide association studies (PheWAS)).
Association analyses embedded within large observational databases have gained popularity
in recent years, and the use of and interest in such analyses continues to increase [1, 2, 3].
However, unlike curated and well-designed population-based studies, data obtained from large
observational databases are often not originally intended for research purposes, and additional
thought is needed to understand potential sources of bias. In this paper, we focus on the par-
ticular association setting with D being a single EHR-derived phenotype and G being a single
genetic marker or a polygenic risk score, but the methods and conceptual framework developed
in this paper can be applied quite broadly to general estimation problems using observational
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databases.
One potential source of bias in EHR-based studies is misclassification of derived disease

status variables. Large-scale agnostic studies using EHR often define patient disease status
(phenotypes) based on international classification of disease (ICD) codes or aggregates thereof
called “PheWAS codes” or “phecodes” to define phenotypes in an automated and reproducible
way [4]. In practice, EHR-derived phenotype definitions are used to represent the underlying
‘true’ disease status. However, these ICD-based phenotype classifications can be erroneous in
capturing the ‘true’ disease status for a variety of reasons. For example, psychiatric diseases can
be difficult to diagnose, and diagnosis can often be subjective [5]. ICD code-based diagnoses
may be an incomplete representation of a patient’s health state, which may also be recorded in
doctor’s notes and elsewhere in the EHR. In response to this problem, there exists an extensive
literature on using other structured and unstructured content of the EHR to define phenotypes
more accurately [6, 7, 8, 9, 10]. Additionally, human validation can be used to evaluate phe-
notyping algorithms [11]. These existing phenotyping approaches can be effective in reducing
misclassification given the information available in the EHR, but even the most sophisticated
phenotyping algorithms cannot capture diagnoses that were never recorded in any form in the
EHR. Secondary conditions may not always be entered into the EHR, and symptoms occurring
between visits may not always be reported. The EHR cannot adequately capture diseases that
a patient had prior to entry into the EHR (outside the observation window). The chance of
correctly capturing a disease is inherently dependent on the length of stay in the EHR or the
observation/encounter process for a given patient. We often have a systematic source of mis-
classification (that we will call “observation window bias”) due to a lack of comprehensiveness of
the EHR in capturing diagnoses or medical care obtained from outside sources (e.g. at another
health care center). Together, these various factors can lead to a potentially large degree of
misclassification, particularly due to underreporting of disease.

Several authors have proposed statistical methods for addressing misclassification of bi-
nary phenotypes in EHR-based studies. The extent of misclassification can be described using
quantities such as sensitivity and specificity, but these quantities can vary from population to
population and from phenotype to phenotype [12]. Huang et al. [13] proposes a likelihood-
based approach that integrates over unknown sensitivity and specificity values but requires
some limited prior information about the sensitivity and specificity. Wang et al. [14] proposes
an approach for incorporating both human-validated labels and error-prone phenotypes into the
estimation, but this approach will not account for observation window bias. Duffy et al. [15] and
Sinnott et al. [16] expand on results in the measurement error literature to relate parameters in
the model for the true outcome with the model for the misclassified outcome, but Duffy et al.
[15] focuses on outcome misclassification with binary risk factors, and Sinnott et al. [16] focuses
on the setting in which the probability of having observed disease is explicitly modeled using a
variety of information in the EHR. Additionally, all of these methods do not directly address
the sampling mechanism.

In addition to potential bias due to misclassification of disease phenotypes, the mechanism
by which subjects are selected into the dataset can sometimes result in biased inference when not
handled appropriately. Complex sampling designs in an epidemiologic study can be addressed
using survey design techniques if the sampling strategy is known. However, the probability
mechanism for inclusion of a subject into a biorepository is not a priori fixed or defined. In-
teractions with the health care system are generated by the patient, and it can be difficult to
understand the mechanism driving sampling as well as self-selection for donating biosamples,
which may be related to a broad spectrum of patient factors including overall health. Several
authors recommend adjusting for factors such as number of health care visits or referral status
to better account for the sampling mechanism [17, 18]. Additionally, there is a belief in the lit-
erature that gene-related association study results may be less susceptible to bias resulting from
patient selection [19]. This belief stems from the assumption that an individual genetic locus is
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not usually appreciably related to selection. However, bias due to genotype relationships with
selection can still arise in certain settings [20]. Additionally, a popular topic in genetics-related
research right now is the use of polygenic risk scores, which combines information from many
genetic loci into a score to quantify a patient’s genetic risk for developing a particular disease
[21, 22]. While it may be reasonable to assume that a specific genetic locus may have little
association with selection, this assumption becomes more tenuous for an aggregate polygenic
risk score with stronger association with the underlying disease and other factors related to
selection.

As we will demonstrate, patient sampling can create substantial bias in estimating genetic
associations using EHR data in the presence of disease status misclassification. Existing statis-
tical methods for dealing with phenotype misclassification do not directly take into account the
mechanism by which patients are sampled and vice versa. Additionally, standard association
studies often do not account for either source of potential bias. It is important to understand
the implication of these sampling and observation processes on results from näıve association
analyses.

Formal characterization of the settings in which we can expect bias and their impact on resul-
tant inference may help guide study design and analysis in the future. In this paper, we develop
a statistical framework incorporating both disease misclassification and the patient selection
mechanism. We use this framework to characterize the amount of bias expected in EHR-based
association study results when misclassification and the sampling mechanism are ignored in
the näıve and commonly-used analysis approach. We focus on the particular setting in which
phenotypes are underreported (naturally occurring for EHR data due to limited observation
window bias), but we also provide an extension allowing for bidirectional misclassification. The
analytical expressions enhance our understanding of study design and phenotype characteristics
this bias may depend on. Through a sensitivity analysis approach, this framework can also be
used to obtain plausible values for parameters of interest given results from simpler analysis
methods. Simulations demonstrate promising properties of the proposed approach in capturing
the true bias. We provide an interactive online tool for performing these sensitivity analyses.
We apply our approach to study bias in genetic association studies using EHR-derived pheno-
types in the Michigan Genomics Initiative, a longitudinal biorepository effort within Michigan
Medicine.

2 Model Structure

Let the binary variable D represent a person’s true disease status. Suppose we are interested
in the relationship between D and an individual’s inherited genetic information, G, adjusting
for additional person-level information, Z. We will call this relationship the disease mechanism
as seen in Figure 1. In genetic association studies, G may represent a single SNP (single
nucleotide polymorphism) or a polygenic risk score [21]. In principle, however, G can be any
risk factor of interest. Z often contains information such as age, gender, and several principal
components for the patient’s genome-wide data. In practice, we may have many diseases or
genotypes of interest in an association study, but for now we will consider the simple setting
with single specified D and G.

In order to make inference about D, we consider a large health care system-based database
with the goal of making inference about the general population. Let S indicate whether a
particular person in the population is selected into our dataset (for example, by going to a
particular hospital and consenting to share a biosample for research), where the probability of
a person in the population being included in the current dataset may depend on the underlying
disease status, D, along with additional covariates, W , and perhaps even G. We may often
expect the sampled and non-sampled subjects to have different rates of the disease, and other
factors such as patient age, residence, access to care and general health state may also impact
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whether subjects are sampled into the study dataset or not. We will call this the sampling
mechanism.

Instances of the disease are recorded in hospital or administrative records. We might expect
factors such as the patient age, the length of follow-up, and the number of hospital visits to
impact whether we actually observe/record the disease of interest for a given person. Define
the observed disease status as D∗. D∗ is a potentially misclassified version of D. We will call
the mechanism generating D∗ the observation mechanism. There may be additional patient
and provider-level predictors related to the true positive (sensitivity) and the false positive (1-
specificity) rates, denoted X and Y respectively.

The diagram in Figure 1 shows the conceptual model structure, expressed as follows:

Conceptual Model (1)

Disease Mechanism : logit(P (D = 1|Z,G; θ)) = θ0 + θGG+ θZZ

Sampling Mechanism : P (S = 1|D,W,G;φ)

Observation Mechanisms : P (D∗ = 1|D = 1, S = 1, X,G;β) (Sensitivity)

P (D∗ = 1|D = 0, S = 1, Y,G;α) (1− Specificity)

This framework allows for misclassification of the true disease status in either direction
(subjects with the disease may be missed and subjects may be listed as diseased who aren’t).
Moving forward, however, we will restrict our focus to the particular setting where disease status
misclassification comes through underreporting. In other words, we will assume perfect
specificity with P (D∗ = 1|D = 0, S = 1, Y,G;β) = 0 for all patients. This assumption may
be reasonable for some EHR-derived phenotypes, particularly cancer, where we expect the rate
of overdiagnosis of disease to be generally low. We consider the more general setting with
imperfect specificity in detail in Section S3. We make the following assumptions:

Assumption 1: S ⊥ G|D,W and D∗ ⊥ G|D,S = 1, X
Assumption 2: X† ⊥W †|D,G,Z, S = 1
Assumption 3: X† ⊥ G|D,Z, S = 1
Assumption 4: W † ⊥ G|D,Z

where W † and X† correspond to the predictors in W and X not included in Z.
The first assumption implies that G is not an independent predictor of S and D∗.

This seems reasonable, especially when G represents a single SNP. A possible exception to this
is in the case where G represents a rare, highly penetrant mutation. In this case, the SNP
could conceivably be independently related to sampling. This is an important assumption,
and our proposed methods may often under-estimate the bias of näıve analysis when this first
assumption is violated. The second assumption states that the factors related to sampling
and related to sensitivity that are not adjusted for in the disease model are independent given
D, G, and Z on the sampled subjects. Importantly, this independence assumption conditions
on D, G, and Z, and Z often includes common information such as patient age, gender, and
the first few principal components of the genetic information. Conditionally, we may expect
this assumption to be reasonable for many EHR settings. The third assumption implies that
G is unassociated with the factors related to misclassification given D and Z on the sampled
subjects. X is expected to contain information relating to a patient’s observation process, and
this will generally not be driven by a patient’s genetic information given Z and D. These first
three conditional independence assumptions, therefore, may often be reasonable in typical EHR
data analysis settings.

The fourth assumption is the strongest, as it implies that G is independent of factors
related to sampling not included in the disease model given D and Z. Suppose,
however, that sampling is related to a secondary disease, D′. This may often be the case for
EHR data. If D′ is independent of G, then this dependence will not create a problem and the
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fourth assumption will be satisfied. However, if D′ is independently related to G (given Z and
D), the fourth assumption is violated. An example of this would be the setting of pleiotropy,
where a particular SNP may be related to multiple phenotypes, which could each contribute to
sampling. This setting has been explored extensively in the literature on secondary analyses
of case-control sampled data [e.g. 23, 24]. Importantly, the fourth assumption will be trivially
satisfied if we include D′ and other factors related to sampling as adjustment factors in the
simple analysis model. Therefore, the proposed methods can be applied to characterize bias of
näıve analysis even in the setting with sampling related to secondary diseases if we adjust for
these secondary diseases in the simple analysis model. We discuss this challenge in more detail
in Section S5.

3 Approximating Bias Resulting from Standard Analysis

3.1 Approximating the Bias

Suppose that G, Z, X, and W are observed if and only if S = 1. We further require that assump-
tions 1-4 hold. In standard analyses, we often fit a simple logistic regression for D∗|G,Z, S = 1
(analysis model) with the goal of making inference about θ from the target model as follows:

Analysis Model : logit(P (D∗ = 1|Z,G, S = 1)) = θ
(simple)
0 + θ

(simple)
G G+ θ

(simple)
Z Z

Target Model : logit(P (D = 1|Z,G)) = θ0 + θGG+ θZZ

In general, θG and θ
(simple)
G may be unequal. As shown in the Supplementary Section

S2, we can relate the analysis model to the conceptual model in (1) as follows:

P (D∗ = 1|G,Z, S = 1; θ(simple)) =
P (D = 1|G,Z; θ)c1(Z;β)r(Z;φ)

P (D = 1|G,Z; θ)[1− c1(Z;β)]r(Z;φ) + P (D = 0|G,Z; θ)

c1(Z;β) =

∫
f(D∗ = 1|D = 1, X†, Z, S = 1;β)f(X†|D = 1, Z, S = 1)dX† = Sensitivity

r(Z;φ) =

∫
P (S = 1|D = 1,W †, Z;φ)f(W †|D = 1, Z)dW †∫
P (S = 1|D = 0,W †, Z;φ)f(W †|D = 0, Z)dW †

= Sampling Ratio

We can view D∗ as a noisy diagnostic for the true value of D with potentially imperfect
sensitivity, where c1(Z;β) represents the average sensitivity of D∗ for D in the sampled sub-
jects. We consider the more general setting with imperfect specificity in Section S3.1. r(Z;φ)
represents the average sampling ratio comparing subjects with D = 1 and D = 0. These expres-
sions may both depend on Z. However, c1(Z;β) and r(Z;φ) depend on distinct parameters,
so they can vary independently conditional on Z. These functions depend on various covariate
distributions, but we will not need to specify these distributions in practice.

We assume that covariates Z are centered so that they have mean zero and that the data
are modeled as in (SuppEq. 1.1). Let c̄1 and r̄ be the above expressions evaluated at Z̄ = 0. As
shown in Supplementary Section S2.1, we use Taylor series approximation to obtain expres-
sions for the intercept and coefficient for G in the analysis model as functions of parameters in
the target model. We consider two different cases with two types of genetic variables G.
Case 1: G is a SNP Suppose that G represents a single genetic locus or SNP (single nu-
cleotide polymorphism), coded 0/1/2 to represent the number of copies of the minor allele for
each patient at a bi-allelic locus. Let MAF denote the minor allele frequency in the population.
We can express the analysis model parameters as a function of the target model parameters as
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follows:

θ
(simple)
0 ≈θ0 + log(c̄1) + log(r̄)− log

(
eθ0+2θGMAF [1− c̄1]r̄ + 1

)
+ 2θGMAF

[
eθ0+2θGMAF (1− c̄1)r̄

eθ0+2θGMAF (1− c̄1)r̄ + 1

]
θ
(simple)
G ≈

[
1

eθ0+2θGMAF (1− c̄1)r̄ + 1

]
θG (2)

Here, we approximate the sample MAF with the population MAF as discussed in Supplemen-
tary Section S3.1.
Case 2: G is a Polygenic Risk Score Suppose instead that G is a continuous predictor such
as a polygenic risk score (as discussed in Dudbridge [25]) and suppose G has been centered to
have mean zero. In this setting, we can express the analysis model parameters as follows:

θ
(simple)
0 ≈θ0 + log(c̄1) + log(r̄)− log

(
eθ0 [1− c̄1]r̄ + 1

)
θ
(simple)
G ≈

[
1

eθ0(1− c̄1)r̄ + 1

]
θG (3)

Simulations exploring the correspondence between the approximations in (2) and (3) and näıve
estimated parameters can be found in Figure S2. These simulations indicate an excellent
ability of these expressions to recover bias observed in simulated data.

3.2 Understanding the Structure of the Bias

We can use expressions (2) and (3) to develop some intuition for settings in which we expect
greater or less relative bias when performing the “simple” routine analysis. Table 1 describes

the general impact of the various model parameters on the bias of θ
(simple)
G , the parameter

associated with G in the simple analysis model. As expected under assumptions 1-4, there is

no bias in estimating θ
(simple)
G when we have perfect sensitivity. This may not be the case if one

or more of these assumptions are violated. Suppose instead that c̄1 < 1. In this case, we expect

bias in θ
(simple)
G , and the absolute bias will depend on the sensitivity, the disease sampling ratio

r̄, the population prevalence of the disease, the magnitude of θG, and (in case 1) the MAF of
the genetic locus of interest.

Suppose we assume that the sampling ratio is 1 or 5, so diseased and non-diseased people are

sampled at a 5:1 or 1:1 ratio on average respectively. Figure 2 shows the value for θ
(simple)
G we

may obtain if we fit a model for D∗|G,Z using the sampled data with a minor allele frequency
of 0.2 and true θG either 0.5 or 0.1. As the sensitivity decreases, the “simple” estimate of
θG becomes increasingly biased (relative and absolute bias) toward the null. The level of bias
depends strongly on the population prevalence of the disease. For less common diseases (e.g.
less than 10% of the population), we may expect to observe relatively low relative bias in
estimating θG even with low sensitivity for observing D in the sampled patients. Additionally,
we expect the absolute bias to be generally small when we have lower true values for θG. For
moderate to large values of θG, misclassification and sampling can have a substantial impact

on the absolute bias for θ
(simple)
G . This provides some support to the notion that absolute

bias in GWAS studies (where the θG values are expected to be generally small) may be less
of a concern, particularly when we are studying a less common disease. However, if we are
studying a disease that has higher population prevalence or larger values for θG (for example,
a highly penetrant SNP), we may be more concerned about the potential for absolute bias
induced by ignoring disease misclassification and/or sampling. As shown in Table S1, the bias
has a more complicated relationship with disease prevalence and sensitivity in the presence of
disease overreporting. We created an online RShiny tool called SAMBA-EHR (Sampling And
Misclassification Bias Analysis for EHR-based association studies) for exploring the impact of
the various parameters on the bias for both the intercept and association parameters, available
at http://shiny.sph.umich.edu/SAMBA-EHR/.
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3.3 Sensitivity Analysis

An alternative use of the proposed model is in a sensitivity analysis in a reverse direction, where
we can obtain reasonable values of θG across plausible values of r̄ and c̄1 based on the parameter

estimates from the “simple analysis.” Suppose we have an estimate for θ
(simple)
G and that G is

a single genetic locus. This estimate can be based on direct data analysis or can be obtained
from published summary statistics. Using information from the population to obtain reasonable
values for θ0, we can explore plausible values for θG by solving (2) for θG. In practice, θ0 itself
may not be known. In this setting, we propose performing the sensitivity analysis for a plausible
window of θ0 using a rough estimate for the population prevalence, P (D = 1). Alternatively,

suppose that θ
(simple)
0 is also available. In this case, we can obtain θG by solving

θ
(simple)
G ≈ c̄1 − eθ

(simple)
0 (1− c̄1)

c̄1 − eθ
(simple)
0 (1− c̄1) [1− e2θGMAF ]

θG (4)

for θG. In this case, predicted θG will be a function of c̄1 and θ(simple) but not r̄. Similar
expressions for predicting θG when G is a PRS can be found in Section S2.2, and the setting
with imperfect specificity is considered in Section S3.2. In some settings, these expressions may
have no solution for given values of r̄ and c̄1. When this happens, it usually corresponds to a
setting that is implausible given the observed data. For reasonable combinations of parameters,
however, these expressions can be used in a sensitivity analysis after the primary analysis has
been completed to explore the potential impact of ignoring misclassification and the sampling
mechanism.

4 Simulations Evaluating Proposed Sensitivity Analysis

The usefulness of the expressions in (2) and (3) relies on the accuracy of the Taylor series
approximations used to derive them. In Section S6, we demonstrate strong concordance
between (2) and (3) and estimates from simulated data. One use of the approximations in
(2) and (3) is to guide a sensitivity analysis after θ(simple) has already been estimated, and we
describe how this can be done in Section 3.3.

Here, we present results from a simulation study in which we compare the correspondence
between true values of θG and values predicted by the sensitivity analysis in different settings.
We will focus on the setting where G is a genotype on a single marker as this setting is more
complicated than the PRS setting. A detailed description of the simulation procedure can be
found in Section S6. Briefly, we simulate data under different combinations of c̄1, r̄, and
P (D = 1|G = 0, Z = 0) (100 datasets each).

Figure 3 shows predictions for θG (from solving (4) for θG) across several simulation settings.

These predictions assume θ
(simple)
0 is available and do not depend on r̄. Each subplot corresponds

to a different combination of true c̄1 (denoted by the bolded boxplot) and P (D = 1|G = 0, Z =
0) for the setting where r̄ = 5. The boxplot for predicted θG corresponding to the true sensitivity
(bolded) always includes the true value of θG, and the corresponding median for the predicted
θG is generally close to the true value of 0.5. These boxplots illustrate how a small population
prevalence for the disease of interest is associated with greater robustness of inference (or good

similarity between θG and θ
(simple)
G ) across sensitivity values. Figures S3-S6 show predicted

θG (from solving (2) for θG) when we assume that a rough value for θ0 is available. These
simulations again demonstrate the ability of the proposed sensitivity analysis to recover the
true θG when evaluated at the true values for r̄ and c̄1. We emphasize, however, that we cannot
use these sensitivity explorations to determine or estimate the “correct” values of r̄ and c̄1 as

they cannot be identified independently knowing only θ
(simple)
G and θ0 or θ

(simple)
0 . However, we

can explore around reasonable values of r̄ and c̄1 based on our understanding of the data to
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determine a range of plausible values for θG.

5 Bias Exploration in the Michigan Genomics Initiative

The Michigan Genomics Initiative (MGI) is a longitudinal biorepository effort within Michigan
Medicine linked to EHR containing over 30,000 patients with matched genotype and phenotype
information. We have strong reason to believe that sampling in MGI is somehow related to
patient characteristics and, in particular, underlying disease status. Firstly, all patients in
MGI are people who visited Michigan Medicine. Patients may go to the doctor when they
feel sick or for other personal reasons, and these reasons are often unknown. Additionally,
patients are largely recruited into MGI from the pool of subjects having surgery at Michigan
Medicine. Patients in MGI tend to be sicker and have a greater number of diagnoses than
the general Michigan population and even the Michigan Medicine population [1]. Due to its
sampling mechanism, MGI is strongly enriched for cancer cases, as shown in Beesley et al.
[1] and reproduced in Table S2. The large number of cancer cases makes MGI an attractive
dataset for exploring associations between cancer diagnosis and genetics.

We are interested in associations between true underlying cancer status and genetic factors.
When we have perfectly classified phenotypes (so there is no observation window bias and no
under- or over-reporting of disease status), simple association analyses may produce reasonable
results. However, when disease status is potentially misclassified, disease-related sampling (r̄ 6=
1) can result in biased estimates from the target model.

Previous analyses have explored associations between single genetic markers and polygenic
risk scores with phenotypes for patients in MGI using simple analysis methods involving fitting
a model for D∗|G,Z, S = 1 [1, 21]. These analyses ignore the potential bias induced by the
sampling and phenotype misclassification mechanisms. We are interested in evaluating the
potential impact of the sampling and misclassification mechanisms on inference. Below, we
perform the proposed sensitivity analyses to study to robustness of SNP-phenotype and PRS-
phenotype associations in MGI for different assumed sampling and phenotype misclassification
mechanisms. Since we are interested in cancer phenotypes, which may only rarely be incorrectly
diagnosed, we assume perfect specificity for these analyses.

5.1 Genetic association analysis using individual markers

Following Beesley et al. [1], we perform a breast cancer GWAS using a cohort of over 38,000
patients in MGI. This analysis was performed on a matched subset of patients based on age
and the first four principal components of the genome-wide data, and our results also adjusted
for age and the principal components. The phenotype generation, locus pruning, and GWAS
analysis were performed following Beesley et al. [1]. The breast cancer phenotype was defined
using phecodes based on ICD codes using the R package PheWAS [4].

We first compare our simple GWAS results in MGI (θ
(simple)
G ) with reported associations

from the NHGRI-EBI GWAS catalog (θG), which combines results from meta-analysis of the
largest and highest quality studies. We treat NHGRI-EBI GWAS catalog as a comparative gold
standard. As shown in Figure S7, the association results using MGI data are generally similar
to results in the GWAS catalog, but there are some specific SNPs for which the results differ.
We focus our attention on 6 individual loci for which the GWAS catalog estimate (θG) differs

appreciably from the MGI estimate (θ
(simple)
G ). For this exploration, we fix θ0 = logit(0.124),

using the US female population lifetime rate of breast cancer [1].
In Figure 4, we explore plausible values of θG in MGI across different potential sampling

ratios and sensitivities. We obtain rough intervals for θG for fixed values of r̄ and c̄1 using the
upper and lower 95% confidence interval limits of the MGI GWAS estimate for each locus. In
Supplementary Section S8, we describe one approach for getting a sense of plausible values
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for the sampling ratio. As either the sensitivity or sampling ratio goes to 1, the interval shown
in the figure gets closer to the 95% confidence interval for the corresponding GWAS estimate

in MGI. We note that, in principle, we expect some bias in θ
(simple)
G when we have imperfect

sensitivity, but we see very little absolute bias when r̄ is small. This is primarily due to the

small estimates for θ
(simple)
G . Bias in θ

(simple)
G is expected to be proportional to the true value of

θG, and for small θG, we may not see much absolute bias even for very low sensitivity when the
sampling ratio is near 1. As the sampling ratio increases, however, the relative and absolute
biases increas, and the predicted θG becomes more extreme. For the sake of comparison, we
present an example for which the association in MGI and the GWAS catalog are nearly identical
in the Figure S8. These results suggest that even GWAS results can potentially be impacted by
sampling and misclassification. However, we note that comparison across multiple association
tests within a GWAS study should have similar sampling ratios and misclassification rates.
Therefore, we may have greater confidence in comparisons across association tests rather than
in the absolute estimated effect for a particular association. We will explore this issue further
in future work.

5.2 Association analysis with Polygenic Risk Scores

Previous work in Fritsche et al. [21] explored associations between polygenic risk scores (PRS)
and their corresponding EHR-derived phenotypes in MGI for several cancer phenotypes. We are
interested in exploring the robustness of these published summary statistics to different sampling
and misclassification mechanisms for six different cancer diagnoses. We treat the published PRS

association summary statistics (values listed in Table S2) as our θ
(simple)
G values, and we use

the corresponding Michigan prevalence rates reported in Beesley et al. [1] to approximate θ0 for
each of the six cancers of interest. We use the upper and lower confidence interval limits for

θ
(simple)
G to create an interval for θG.

Figure 5 shows the predicted interval for θG assuming different sampling ratios and sensi-
tivities for each of the six selected cancers. Estimates for cancer of the bladder, non-Hodgkins
lymphoma, and colorectal cancer are all very robust to different values for the sampling ratio
and sensitivity. There are two primary reasons for this phenomenon. Firstly, the population
prevalences of these three cancers are all low (less than 5%). As shown previously, we expect
to see less relative bias in this setting. Secondly, the estimated association between the PRS
and the disease is small in all of these cases. While the relative bias will not appreciably change
as θG changes, the absolute bias will be small for small θG. In contrast, breast and prostate
cancer have high prevalences, and the corresponding PRS associations are strong. For these
two PRS associations, our results suggest we may have appreciable relative bias if the sampling
ratio is moderate to large and the disease outcome is at least moderately misclassified. In an
extreme setting where the sensitivity is very low (e.g. 0.1) and the sampling fraction is fairly

high (e.g. 10), we see predicted θG nearly doubles the observed θ
(simple)
G for both breast and

prostate cancers. We explore plausible values for the sampling ratio for these cancers in MGI
in Figure S9.

In all cases in Figure 5, the confidence interval for the PRS-phenotype association is far
from zero, and adjustment for misclassification and sampling under our model would move es-
timated θG even farther from zero. Therefore, our general conclusions of a moderate or strong
association between the PRS and the phenotype of interest remain robust across scenarios.

However, we expect decreases in power for a test for θ
(simple)
G being nonzero when we have bias

toward the null. We will evaluate properties of resulting tests and decision rules in future work
exploring corrected estimation and inference techniques for θG.
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6 Discussion

The proposed modeling and sensitivity analysis framework allows us to explore the amount of
bias we might expect in large association study results when we ignore issues of disease status
misclassification and sampling related to disease and patient characteristics, as is often done
in association studies using EHR-derived outcomes. Previous literature generally suggests that
we may usually expect little bias in genotype-phenotype associations, and our statistical results
lend credence to this belief when the disease of interest has low prevalence, say less than 10%,
and sampling does not depend on the underlying disease status. When the disease of interest
has higher prevalence in the population or the phenotype misclassification rates are higher,
however, the sampling mechanism can have a substantial impact in biasing association results.
Without any misclassification of the outcome, we do not expect much bias in log-odds ratio
association parameters unless sampling is associated with both the underlying disease status
and the covariate of interest given the adjustment factors. This is a property of the logistic
regression modeling assumptions as has been explored in detail in the literature on secondary
analysis of case-control sampled data and in Section S5, and modeling disease using different
link functions may produce slightly different results [e.g. 23, 24].

We consider settings in which misclassification has perfect or imperfect specificity. As-
suming perfect specificity (no overreporting of disease), we observe a higher potential for bias
toward the null in the simple analysis for diseases with higher population disease prevalence.
This assumption may be reasonable for many EHR-derived phenotypes, where the large part
of misclassification is expected to be a result of underreporting of disease. In the setting of im-
perfect specificity, which may occasionally arise for diseases that are difficult to diagnose such
as psychiatric disorders, we may have bias either toward or away from the null, and the general
relationship between disease prevalence and bias is much less clear. The current exploration
focuses on bias in effect estimates, but we may also be interested in p-values and hypothesis
testing. We expect effect estimates biased toward the null to result in a loss of statistical power.
We will explore the issues of Type I error and power in detail in a follow-up paper focused on
estimation under the proposed model.

One advantage of the proposed modeling framework is that it does not require parametric
modeling assumptions to be made for the sampling mechanism or the observation mechanisms
(related to sensitivity and specificity). Instead, our results are guided by independence as-
sumptions made on the relationships between drivers of these various mechanisms. A strong
assumption made in the course of this paper is that the predictors related to sampling that are
not included in the simple analysis model are independent of the genetic information of inter-
est, conditional on the true disease status and adjustment factors Z. Since Z often contains
age, gender, and several principal components of the genotype information, this may often be a
reasonable assumption for EHR data. A challenging setting, however, is one in which sampling
is related to a secondary disease D′ that is independently related to G even adjusting for D
and Z (perhaps due to pleiotropy). Our results can only be applied in this setting when simple
analysis adjusts for any secondary diseases that are independently related to G. Secondary
diseases independent of G, however, do not need to be adjusted for.

In this paper, we focus on estimation of a single genotype-phenotype association, but we
are often interested in performing such estimation for many genotype-phenotype associations.
A natural question is the extent at which this bias impacts comparison across estimated pa-
rameters in a large association study. In the case of GWAS, we perform association tests across
many genotypes for a single phenotype. Here, the sampling ratio, sensitivity, and specificity are
primarily properties of the particular disease we are interested in, and we do not expect these
values to change much across the various association tests. In contrast, association tests in a
PheWAS consider many different disease phenotypes. In this setting, we expect the sensitivity,
specificity, and sampling ratios to differ across phenotypes, and accounting for differential bias
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toward the null across the various association tests may be of particular importance. There
may be an opportunity to incorporate additional information such as the genetic architecture
and disease heritability into the assessment of comparative bias.

The proposed framework can be useful for guiding analyses exploring sensitivity to violations
of the common implicit assumptions of no outcome misclassification and ignorable sampling in
EHR-based association studies. In future work, we will develop statistical methodology to
perform parameter estimation under the proposed conceptual model. As part of the current
work, we have developed an online tool called SAMBA-EHR (Sampling And Misclassification
Bias Analysis for EHR-based association studies) available at http://shiny.sph.umich.edu/
SAMBA-EHR/. This will allow the proposed methods to be easily implemented in practice as a
part of routine sensitivity explorations for association studies using EHR-derived outcomes.
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Figure 1: Diagram of the assumed data structure

Table 1: Bias (relative and absolute) in target model parameters in the simple analysis

G is a PRS* G is a PRS or SNP

Variable Value Bias of θ
(simple)
0 Bias of θ

(simple)
G

Sensitivity (c̄1) Decreases toward 0 Bias increases Bias increases

• No underreporting (c̄1 = 1) Biased if r̄ 6= 1 or rcc 6= 1† No bias
• Underreporting (c̄1 < 1) Biased Biased

Sampling ratio (r) Increases toward ∞ Bias depends on θ0, c̄1 Bias increases if c̄1 < 1
• Sampling independent of D (r̄ = 1) Biased if c̄1 < 1 Biased if c̄1 < 1

• Sampling dependent on D (r̄ 6= 1)† Biased Biased if c̄1 < 1

Disease prevalence Increases toward 1 Bias depends on r̄, c̄1 Bias increases if c̄1 < 1

Absolute effect of G Increases toward ∞ Little or no added bias Bias increases if c̄1 < 1

*Direction of bias of θ
(simple)
0 under case 1 (G is a SNP) depends on other parameters

† We consider sampling dependent on observed case-control status, D∗, in Section S4.

Figure 2: Bias of log-odds ratio for G when we model D∗|G,Z, S = 1
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Figure 3: Predicted θG across different sensitivities using available θ
(simple)
0 . The black hori-

zontal line indicates the true value of θG = 0.5. The bolded boxplot indicates the true sensitivity.
Each boxplot represents predicted θG for 100 simulated datasets. True r̄ = 5

 
 
FIGURE USING ANALYSIS INTERCEPT 
 
 
 

 P(D=1|G=0, Z=0) = 0.01 P(D=1|G=0, Z=0) = 0.05 P(D=1|G=0, Z=0) = 0.10 

True 
Sens = 0.4 

 

True 
Sens = 0.7 

True 
Sens = 0.9 

 
 
 
 
 
 
 

0.1 0.3 0.5 0.7 0.9

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity
θ G

0.1 0.3 0.5 0.7 0.9

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

θ G

0.1 0.3 0.5 0.7 0.9

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

θ G

15

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 14, 2019. ; https://doi.org/10.1101/499392doi: bioRxiv preprint 

https://doi.org/10.1101/499392


Figure 4: Plausible breast cancer log-odds ratios (θG) in MGI for six SNPs known to be
associated with breast cancer. The NHGRI-EBI GWAS catalog (Michigan Genomics Initiative)
estimate and corresponding 95% confidence interval are shown in black (gray)
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Figure 5: Sensitivity of PRS-phenotype associations for six different cancers*
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*The MGI estimate and corresponding 95% confidence interval is shown in gray. Analyses are based on published
summary statistics from Fritsche et al. [21].
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