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Summary

We propose that humans spontaneously organize environments into clusters of states that support hierarchical planning,

enabling them to tackle challenging problems by breaking them down into sub-problems at various levels of abstraction.

People constantly rely on such hierarchical presentations to accomplish tasks big and small – from planning one’s day,

to organizing a wedding, to getting a PhD – often succeeding on the very first attempt. We formalize a Bayesian model

of hierarchy discovery that explains how humans discover such useful abstractions. Building on principles developed

in structure learning and robotics, the model predicts that hierarchy discovery should be sensitive to the topological

structure, reward distribution, and distribution of tasks in the environment. In five simulations, we show that the model

accounts for previously reported effects of environment structure on planning behavior, such as detection of bottleneck

states and transitions. We then test the novel predictions of the model in eight behavioral experiments, demonstrating

how the distribution of tasks and rewards can influence planning behavior via the discovered hierarchy, sometimes

facilitating and sometimes hindering performance. We find evidence that the hierarchy discovery process unfolds

incrementally across trials. We also find that people use uncertainty to guide their learning in a way that is informative

for hierarchy discovery. Finally, we propose how hierarchy discovery and hierarchical planning might be implemented

in the brain. Together, these findings present an important advance in our understanding of how the brain might use

Bayesian inference to discover and exploit the hidden hierarchical structure of the environment.

Keywords: chunking, hierarchy, planning, structure learning, Bayesian inference
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Figure 1. Example of hierarchical planning.

How someone might plan to get from their office in Cambridge to their favorite ice cream shop in Lugo, Spain. Circles

represent states and arrows represent actions that transition between states. Each state represents a cluster of states in

the lower level. Thicker arrows indicate transitions between higher-level states, which often come to mind first.

Introduction

Imagine you have a sudden irresistible craving for your favorite ice cream that is only made by a boutique ice cream

shop in Lugo, Spain. You must get there as soon as physically possible. What would you do? When faced with this

unusual puzzle, most people’s first response is that they will look up a flight to Spain. When asked what they would do

next, most people say that they would order a taxi to the airport, and when questioned further, that they would walk to

the taxi pickup location. Importantly, nobody says or even thinks anything like “I will get up, turn left, walk five steps,

etc.”, or even worse, “I will contract my left quadricep, then my right one, etc.”. This example illustrates hierarchical

planning (Figure 1): people intuitively reason at the appropriate level of abstraction, first sketching out a plan in terms

of transitions between high-level states (in this case, countries), which is subsequently refined in progressively lower

levels and specific steps (Wiener and Mallot, 2003). This is often done in an online fashion, with details being resolved

on-the-fly as the plan is being executed (for example, you would not ponder what snack to buy at the airport before
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actually getting there). This ability of humans (Balaguer et al., 2016) and animals (Geddes et al., 2018) to organize

their behavior hierarchically allows them to flexibly pursue distant goals in complex environments, even for novel

tasks that they may have never encountered previously.

The study of hierarchical behaviors has deep roots in psychology and neuroscience (Lashley, 1951). Much work has

been done to characterize the emergence of such behaviors in humans and animals, often focusing on the acquisition of

temporally extended action sequences or action chunks that unfold over different time scales. Action chunking occurs

after extensive training, involves a specific set of brain regions, and is thought to be essential for pursuing long-term

goals and planning (Graybiel, 1998; Smith and Graybiel, 2013).

Yet in order to leverage action chunks for planning, an agent must also be equipped with a hierarchical representation of

the environment, with clusters of states or state chunks representing parts of the world at different levels of abstraction.

In our ice cream example, the current country, city, neighborhood, building, room, and location within the room are

all valid representations of the agent’s current state and are all necessary in order to plan effectively. Correspondingly,

research shows that people spontaneously discover hierarchical structure (Wiener and Mallot, 2003; Schapiro et al.,

2013), that the discovered hierarchies are consistent with formal definitions of optimality (Solway et al., 2014a), and

that people use these hierarchies to plan (Balaguer et al., 2016). Some of these studies have uncovered distinct neural

correlates of high-level states, which are sometimes referred to as state clusters, communities, contexts, abstract states,

or state chunks (Schapiro et al., 2013; Balaguer et al., 2016). Research has also begun to uncover the neural correlates

of hierarchical planning and action selection (Balaguer et al., 2016; Ribas-Fernandes et al., 2011). Yet despite these

advances, the computational mechanisms underlying the discovery of such hierarchical representations remain poorly

understood.

In this study, we propose a Bayesian model of hierarchy discovery for planning. Drawing on the structure learning

literature (Gershman et al., 2015) and on concepts developed in robotics (Fernández and González, 2013), the model

provides a normative account of how agents with limited cognitive resources should chunk their environment into

clusters of states that support efficient planning. The central novel contributions of this paper are both empirical and
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theoretical. Our main empirical contribution is to show that the distribution of tasks (experiments one through five) and

rewards (experiments six and seven) in the environment can influence the inferred state chunks, whereas past studies

have focused exclusively on the effects of environment topology. Our main theoretical contribution is to unify these

and previous findings under a single normative model that explains why these phenomena occur, and that encompasses

a class of process models that could be leveraged to investigate the implementational details of state chunking in the

brain.

In simulations one through five, we demonstrate that the model accounts for previously reported behavioral effects of

the environment topology, such as detection of transitions across state clusters (Schapiro et al., 2013), identification of

topological bottlenecks (Solway et al., 2014a), preference for routes with fewer state clusters (Solway et al., 2014a),

and slower reaction times to transitions that violate topological structure (Lynn et al., 2018). Additionally, the model

makes specific predictions about the way in which the distributions of tasks and rewards constrain hierarchy discovery,

which in turn constrains planning. We test these novel predictions in a series of eight behavioral experiments.

Experiment one shows that the distribution of tasks encountered in the environment can induce different state clusters,

even when the topological structure of the environment does not promote any particular clustering. Experiment

two shows how this in turn could lead to either improved or hampered performance on novel tasks. Experiment

three examines the progression of inferred hierarchies as a function of which tasks participants have seen so far and

reveals that participants are sensitive to changes in both the uncertainty and the mode of the posterior distribution over

hierarchies. Experiments four and five replicate the results of experiments one and two in a fully visible environment,

showing that the effects cannot be explained by incorrect inferences about topological structure. Experiment six shows

how rewards generalize within state clusters, while experiment seven shows how rewards can induce clusters that

constrain planning even in the absence of state clusters. Finally, experiment eight demonstrates that people explore in

a way that maximally reduces uncertainty about the hierarchy, implying that people consider a probability distribution

over hierarchies rather than a single hierarchy. Together, these results provide strong support for a Bayesian account

of hierarchy discovery, according to which the brain implicitly assumes that the environment has a hidden hierarchical

structure, which is rationally inferred from observations.
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Theoretical Background

The question of how agents should make rewarding decisions is the subject of reinforcement learning (RL; Sutton

and Barto, 2018). With a long history crisscrossing the fields of psychology, neuroscience, and artificial intelligence,

RL has made major contributions to explaining many human and animal behaviors (Rescorla et al., 1972), the neural

circuits underlying these behaviors (Schultz et al., 1997), and allowing artificial agents to achieve human-level performance

on tasks that were previously beyond the capabilities of computers (Mnih et al., 2015). Approaches rooted in RL

therefore offer promising avenues to understanding decision making and planning.

Most RL algorithms assume that that an agent represents its environment as a Markov decision process (MDP), which

consists of states, actions and rewards that obey a particular conditional independence structure. At any point in time,

the agent occupies a given state, which could denote, for example, a physical location such as a place in room, a

physiological state such as being hungry, and abstract state such as whether a subgoal has been achieved, or a complex

state such as a conjunction of such states. The agent can transition between states by taking actions such as moving

or eating. Some states deliver rewards, and it is assumed that the agent aims to maximize reward. In an MDP, the

transitions and rewards are assumed to depend only on the current state and action.

Following previous authors (Solway et al., 2014a; Balaguer et al., 2016), we assume for simplicity that states are

discrete and that transitions between states are bidirectional and deterministic (although these restrictions could be

relaxed; see General Discussion). In this case, states and actions could be represented by an undirected graph G in

which the vertices correspond to states and the edges correspond to actions. We will use the graph G in place of the

transition function T that is traditionally used to characterize MDPs.

In graph theoretic notation, G = (V,E), where

• V is the set of vertices (or nodes) such that each node v ∈V corresponds to a state that the agent can occupy, and

• E : {V ×V} is a set of edges such that each edge (u,v) ∈ E corresponds to an action that the agent can take to

transition from state u to state v or vice versa.
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Figure 2. Hierarchical representations reduce the computational costs of planning.

A. Planning in the low-level graph G takes at least as many steps as actually executing the plan. All nodes and edges

are thick, indicating that they must all be considered and maintained in short-term memory in order to compute the

plan.

B. Introducing a high-level graph H alleviates this problem. At any given time during plan execution, the agent

only needs to consider the high-level path and the low-level path leading to the next cluster, recomputing the latter

on-the-fly. Gray arrows indicate cluster membership.

C. The hierarchy can be extended recursively, further reducing the time and memory requirements of planning.

In the following analysis, we use the terms node and state interchangeably. We also treat edges, actions, and transitions

as equivalent. For simplicity, we restrict our analysis to unweighted graphs, which is equivalent to assuming that all

actions carry the same cost and/or take the same amount of time (our analysis extends straightforwardly to weighted

graphs; see General Discussion). We also assume the agent has learned G, which is equivalent to model-based RL in

which the agent learns the transition function.

The task of planning to get from a starting state s to a goal state g efficiently can thus be framed as finding the shortest

path between nodes s and g in G. This is a well-studied problem in graph theory and the optimal solution in this setup
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is the breadth first search (BFS) algorithm (Cormen et al., 2009). BFS works by first exploring the neighbors of s, then

exploring the neighbors of those neighbors, and so on until reaching the goal state g. States whose neighbors haven’t

been explored yet are maintained in an active queue, with states getting removed from one end of the queue as soon

as their neighbors are added to the other end. Intuitively, this corresponds to a forward sweep that begins at s and

spreads in all directions across the edges until reaching g, akin to the way in which water might spread in a network

of pipes. Its simplicity and performance guarantees have made BFS a standard tool for planning in classical artificial

intelligence (Russell and Norvig, 2016).

However, the time and memory that BFS requires is proportional to the number of states (assuming an action space of

constant size) since the size of the active queue and the potential length of the plan grow linearly with the size of the

state space. Formally, the time and memory complexity of BFS is O(N), where N = |V | is the total number of states.

In environments in which real-world agents operate, this number can be huge; in the realm of navigation alone, there

could be billions of locations where a person has been or may want to go. Assuming that online computations such

as planning involve systems for short-term storage and symbol manipulation, this far exceeds the working memory

capacity of people who can only accommodate a few items (Miller, 1956; note that we assume the graph is already

stored in a different system for long-term storage of relational information, such as the hippocampus). Furthermore,

even without such working memory limitations, artificial agents such as robots would still take a long time to plan

the route before they can take the first step. When using a naive or “flat” representation in which the agent plans

over low-level actions (for example, individual steps or even joint actuator commands), computing a plan is at least as

complicated as actually executing it (Figure 2A), and in reality the complexity could be much larger.

To overcome this limitation, work in the field of robotics has led to the development of data structures and algorithms

for hierarchical planning (Fernández and González, 2013). Similar ideas have been put forward in other fields; see

General Discussion. The key idea is that an agent can group neighboring states from the flat low-level graph G into

state clusters (state chunks), with each cluster represented by a single node in another graph H (the high-level graph),

which will be smaller and hence easier to plan in. When tasked to get from state s to state g in G, the agent can first

plan in the high-level graph H and then translate this high-level plan into a low-level plan in G. Crucially, after finding

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/499418doi: bioRxiv preprint 

https://doi.org/10.1101/499418
http://creativecommons.org/licenses/by/4.0/


the high-level path in H, the agent only needs to plan in the current state cluster in G, that is, it only needs to plan how

to get to the next cluster (Figure 2B), and then repeat the process in the next cluster, and so on, until reaching the goal

state in the final cluster.

This can drastically reduce the working memory requirements of planning, since the agent only needs to keep track

of the (much shorter) path in H and the path in the current state cluster in G. Importantly, this also reduces planning

time, allowing the agent to begin making progress towards the goal without computing the full path in G – the agent

can now follow the high-level plan in H and gradually refine it in G on-the-fly, during execution. This approach can be

applied recursively to deeper hierarchies in which high-level states are clustered in turn into even higher-level states,

and so on until reaching a single node at the top of the hierarchy that represents the entire environment (Figure 2C).

Planning using such a hierarchical representation can be orders of magnitude more efficient than “flat” planning, and

also accords with our intuitions about how people plan in everyday life.

A particular instantiation of this form of hierarchical planning is the hierarchical breadth first search (HBFS) algorithm,

which is a natural extension of BFS (see Appendix). It can be shown that with an efficient hierarchy of depth L (that is,

consisting of L graphs, with each graph representing clusters in the lower graph), the time and memory complexity of

HBFS is O( L
√

N+L) (Fernández and González, 2013). Thus in a graph with N = 1,000,000,000 states and a hierarchy

L = 9 levels deep, HBFS will only require on the order of 19 memory and time units to compute a plan, compared to

1,000,000,000 time and memory units for BFS, or any other flat planner. Note that while executing the plan would

still take O(N) time, HBFS quickly computes the first few actions in the right direction, and can then be applied

repeatedly to keep computing the following actions in an online fashion. While it may seem that this hierarchical

scheme simply transfers the burden to the long-term storage system, which now needs to remember L graphs instead

of one, it can be shown that the storage requirements of an efficient hierarchical representation are O(N) (Fernández

and González, 2013), comparable to those of a flat representation of G alone. Following previous authors, (Botvinick

et al., 2009; Solway et al., 2014a), we restrict our analysis to L = 2 levels for simplicity, noting that our approach

extends straightforwardly to deeper hierarchies (see General Discussion).
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However, in order to reap the benefits of efficient planning, the hierarchical representation necessarily imposes a form

of lossy compression. In particular, each successive graph in the hierarchy loses some of the detail present in the lower

level graph. This could lead to hierarchical plans that correspond to suboptimal paths in G. For example, in Figure 3A,

there is a direct edge that can take the agent from starting state s to go state g in a single action. However, since the

edge is not represented by the high-level graph H, HBFS will compute a detour through the state cluster w, akin to

real-life situations in which people prefer going through a central location rather than taking an unfamiliar shortcut.

Since finding the shortest path will not always be possible, some hierarchies will tend to yield better paths than others.

The challenge for the agent is then to learn an efficient hierarchical representation of the environment that facilitates

fast planning across many tasks, without placing an overwhelming burden on working memory and long-term memory

systems. How agents accomplish this in the real world is the central question of this paper, to which we propose a

solution in the following section.

A Bayesian model of hierarchy discovery

Our proposal assumes two main computational components:

1. An online planner that can flexibly generate plans and select actions on-demand with minimal time and memory

requirements.

2. An off-line (and possibly computationally intensive) hierarchy discovery process that, through experience,

incrementally builds a representation of the environment that the planner can use.

The focus of this paper is the second component, which must satisfy the constraints imposed by the first component.

For the first component, we use HBFS in order to link the hierarchy to behavior, noting that any generic hierarchical

planner will make similar predictions. Note that we assume only the online planner is constrained by working memory

limitations and time demands – as in the ice cream example, the high-level sketch of a plan is often computed within

seconds of the query. In contrast, the hierarchical representation that supports this computation – a rich abstraction of

the world, with knowledge of particular locations that belong to cities that belong to countries connected by flights –
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A

B C D

Figure 3. Generative model for environments with hierarchical structure.

A. Example low-level graph G and high-level graph H. Colors denote cluster assignments. Black edges are considered

during planning. Gray edges are ignored by the planner. Thick edges correspond to transitions across clusters. The

transition between clusters w and z is accomplished via the bridge bw,z = (u,v).

B. Generative model defining a probability distribution over hierarchies H and environments G. Circles denote random

variables. Rectangles denote repeated draws of a random variable. Arrows denote conditional dependence. Gray

variables are directly observed by the agent. Uncircled variables are constant.

C. Incorporating tasks into the generative model. The rest of the generative model is omitted for clarity.

D. Incorporating rewards into the generative model. The rest of the generative model is omitted for clarity.
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has been refined through years of experience and is deeply ingrained in long-term memory.

One approach to deriving an optimal hierarchy discovery algorithm would be to define the constraints of the agent,

such as memory limitations and computational capacity, its utility function, and the constraints of the environment,

such as the expected structure and tasks. Here we adopt an alternative approach, motivated by the literature on structure

learning which has been used to successfully account for a wide range of phenomena in the animal learning literatire

(Gershman et al., 2015). The key idea is that the environment is assumed to have a hidden hierarchical structure

that is not directly observable, which in turn constrains the observations the agent can experience. The agent can

then infer this hidden hierarchical structure based on its observations and use it to plan efficiently. Assuming that

some hierarchies are a priori more likely than others, this corresponds to a generative model for environments with

hierarchical structure, which the agent can invert to uncover the underlying hierarchy based on its experiences in the

environment.

Formally, we represent the observable environment as an unweighted, undirected graph G = (V,E) and the hidden

hierarchy as H = (V ′,E ′,c,b, p′, p,q), where:

• V is the set of low-level nodes or states, corresponding to directly observable states in the environment,

• E : {V ×V} is the set of edges, corresponding to possible transitions between states via taking actions,

• V ′ is the set of high-level nodes or states, corresponding to clusters of low-level states,

• E ′ : {V ′×V ′} is the set of high-level edges, corresponding to transitions between high-level states,

• c : V →V ′ are the cluster assignments linking low-level states to high-level states,

• b : E ′→ E are the bridges which link high-level transitions back to low-level transitions,

• p′ ∈ [0,1] is the density of the high-level graph,

• p ∈ [0,1] is the within-cluster density of G,

• q ∈ [0,1] is the across-cluster density penalty of G.
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Together, (V ′,E ′) define the high-level graph, which we also refer to as H for ease of notation. Each low-level state u is

assigned to a cluster w = cu. Each high-level edge (w,z) has a corresponding low-level edge (the bridge) (u,v) = bw,z,

such that cu = w and cv = z (see Figure 3A). Bridges (sometimes referred to as bottlenecks or boundaries) thus specify

how different clusters are connected in H. Bridges are the only cross-cluster edges considered by the hierarchical

planner; all other edges between nodes in different clusters are ignored, leading to lossy compression that improves

planning complexity but could lead to suboptimal paths. In contrast, all edges within clusters are preserved. The

purpose of the cluster assignments c is to translate the low-level planning problem in G into an easier high-level

planning problem in H. The purpose of the bridges is to translate the solution found in H back into a low-level path

in G. For a detailed description of how HBFS uses the hierarchy to plan, see Appendix. For simplicity, we only allow

a single bridge for each pair of clusters, noting that our approach generalizes straightforwardly to multigraphs (i.e.,

allowing multiple edges between pairs of nodes in E and E ′) and maintains its performance guarantees as long as the

maximum degree of each node is constant (that is, the size of the action space is O(1)).

Informally, an algorithm that discovers useful hierarchies would satisfy the following desiderata:

1. Favor smaller clusters.

2. Favor a small number of clusters.

3. Favor dense connectivity within clusters.

4. Favor sparse connectivity between clusters (Cowan, 2001), with the exception of the bridges that connect

clusters.

Intuitively, having too few (for example, one) or too many clusters (for example, each state is its own cluster) creates a

degenerate hierarchy that reduces the planning problem to the flat scenario, and hence medium-sized clusters are best

(desiderata 1 and 2). Additionally, the hierarchy ignores transitions across clusters, which could lead to suboptimal

paths generated by the hierarchical planner. It is therefore best to minimize the number of cross-cluster transitions

(desiderata 3 and 4). The exception is bridges, which correspond to the links between clusters.
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These desiderata can be formalized as a generative model for hierarchies and environments (Figure 3B):

c∼CRP(α) cluster assignments (1)

p′ ∼ Beta(1,1) density in H (2)

Pr[(w,z) ∈ E ′] = p′ edges in H (3)

Pr[bw,z = (u,v) | (w,z) ∈ E ′,cu = w,cv = z] =
1

nwnz
bridges (4)

p∼ Beta(1,1) within-cluster density in G (5)

q∼ Beta(1,1) cross-cluster density penalty in G (6)

Pr[(u,v) ∈ E | cu = cv] = p within-cluster edges in G (7)

Pr[(u,v) ∈ E | cu 6= cv] = pq cross-cluster edges in G (8)

Pr[(u,v) ∈ E | bcu,cv = (u,v)] = 1 bridge edges in G (9)

Where nw = |{u : cu = w}| is the size of cluster w and CRP is the Chinese restaurant process, a nonparametric prior

for clusterings (Gershman and Blei, 2012).

Eq. 1 fulfills desiderata 1 and 2, with the concentration parameter α determining the trade-off between the two: lower

values of α favor few, larger clusters, while higher values of α favor more, smaller clusters. Eq. 2 and Eq. 3 generate

the high-level graph H, with higher values of p′ making H more densely connected. Eq. 4 generates the bridges by

connecting a random pair of nodes (u,v) for each pair of connected clusters (w,z). Eq. 5 and Eq. 7 fulfil desideratum

3 by generating the low-level edges in G within each cluster, with higher values of p resulting in dense within-cluster

connectivity. Eq. 6 and Eq. 8 fulfill desideratum 4 by generating the low-level edges across clusters, with higher values

of q resulting in more cross-cluster edges. Note that pq < p and hence the density of cross-cluster edges will always

be lower than the density of within-cluster edges. Finally, Eq. 9 ensures that each bridge edge always exists.

This generative model captures the agent’s subjective belief about the generative process that gave rise to the environment

and the observations. This belief could itself have been acquired from experience or be evolutionarily hardwired. The
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assumed generative process defines a joint probability distribution P(G,H) = P(G|H)P(H) over the observable graph

G and the hidden hierarchical structure H that generated it. Importantly, the generative process is biased to favor

graphs G with a particular “clustered” structure. In order to discover the underlying hierarchy H and to use it to plan

efficiently, the agent must “invert” the generative model and infer H based on G.

Formally, hierarchy discovery can be framed as performing Bayesian inference using the posterior probability distribution

over hierarchies P(H|G):

P(H|G) =
P(G|H)P(H)

P(G)

∝ P(E|c,b, p,q)P(p)P(q)P(b|E ′,c)P(E ′|p′)P(p′)P(c) (10)

This predicts that states which are more densely connected will tend to be clustered together. We assess this prediction

in simulations one through five.

Task distribution

Previous studies have demonstrated that people discover hierarchies based on topological structure (simulations one

through five). However, other factors may also play a role. In particular, the distribution of tasks that an agent faces in

the environment may make some hierarchies less suitable than others (Fernández and González, 2013), independently

of the graph topology. For example, if the agent has to frequently navigate from state s to state g in the graph G in

Figure 3A, then the current hierarchy H would clearly be a poor choice, even if it captures the topological community

structure of G well. Since hierarchical planning is always optimal within a cluster, one way to accommodate tasks is

to cluster together states that frequently co-occur in the same task.

Casting hierarchy discovery as hidden state inference allows us to formalize this intuition with a straightforward

extesion to our model. Following previous authors (Solway et al., 2014b; Balaguer et al., 2016), we assume the agent

faces a sequence of tasks in G, where each task is to navigate from a starting state s ∈ V to a goal state g ∈ V . We
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assume the agent prefers shorter routes. Defining tasks = {taskt} and taskt = (st ,gt), we can extend the generative

model with (Figure 3C):

p′′ ∼ Beta(1,1) cross-cluster task penalty (11)

Pr[st = u] =
1
N

starting states (12)

Pr[gt = v | st = u] ∝


1 if cu = cv

p′′ otherwise

goal states (13)

where N = |V | is the total number of states. Eq. 12 expresses the agent’s belief that a task can start randomly in any

state. Eq. 13 expresses the belief that tasks are less likely to have goal states in a different cluster, with p′′ controlling

exactly how much less likely that is.

If we denote the observable data as D = (tasks,G), the posterior becomes:

P(H|D) ∝ P(D|H)P(H)

= P(tasks|G,H)P(G|H)P(H)

=

[
∏

t
P(gt |st , p′′,G,H)P(st |G,H)

]
P(p′′)P(G|H)P(H), (14)

where the last two terms are the same as in Eq. 10.

The model will thus favor hierarchies that cluster together states which frequently co-occur in same tasks. This predicts

that, in the absence of community structure, hierarchical planning will occur over clusters delineated by task start and

goal states. This is a key novel prediction of our model which we assess in experiments one through five.
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Reward distribution

Besides topology and tasks, another factor that may play a role in hierarchy discovery is the distribution of rewards

in the environment. In accordance with RL, we assume that each state delivers stochastic rewards and the agent aims

to maximize the total reward (Sutton and Barto, 2018). Hierarchy discovery might account for rewards by clustering

together states that deliver similar rewards. This is consistent with the tendency for humans to cluster based on

perceptual features (Balaguer et al., 2016) and would be rational in an environment with autocorrelation in the reward

structure (Srivastava et al., 2015; Schulz et al., 2018; Wu et al., 2018).

We can incorporate this intuition into the generative model by positing that states in the same cluster deliver similar

rewards (Figure 3D):

θw ∼N (θ̄ ,σ2
θ ) average cluster rewards (15)

µv ∼N (θcv ,σ
2
µ) average state rewards (16)

rv,t ∼N (µv,σ
2
r ) rewards (17)

where w ∈V ′ and v ∈V . θ̄ is the average reward of all states, θw is the average reward of states in cluster w, µv is the

average reward of state v, rv,t is the actual reward delivered by state v at time t, and σ2
r is the variance of that reward.

The observable data thus becomes D = (r, tasks,G) and the posterior can be computed as:

P(H|D) ∝ P(D|H)P(H)

= P(r|tasks,G,H)P(tasks|G,H)P(G|H)P(H)

=

[
∏

v

[
∏

t
P(rv,t |µv)

]
P(µv|θcv ,H)

][
∏
w

P(θw|H)

]
P(tasks|G,H)P(G|H)P(H) (18)

The model will thus favor hierarchies that cluster together states which deliver similar rewards. This predicts a certain

pattern of reward generalization, with states inheriting the rewards of other states in the same cluster. Importantly,
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this implies that boundaries in the reward landscape will induce clusters that in turn will influence planning. This is

another key novel prediction of our model which we assess in experiments six and seven.

Inference

We approximated Bayesian inference using Markov chain Monte Carlo (MCMC) sampling (see Appendix) to draw

samples approximately distributed according to P(H|D). We simulate each participant by drawing a single hierarchy

H (the sampled hierarchy) from the posterior and then using it to make decisions. This is equivalent to assuming

participants perform probability matching in the space of hierarchies.

In all simulations, we assume perfect (lossless) memory for the observations D = (r, tasks,G). While the process

of learning the graph structure and the task and reward distributions is interesting in its own right, our focus is on

inferring the hidden hierarchy H. We thus aim to develop a computational-level theory (in the Marrian sense; Marr

and Poggio, 1976) of hierarchy discovery that remains agnostic of the particular algorithmic and implementational

details but rather instantiates an entire class of process models that could approximate the ideal Bayesian observer.

Choices

For simulations one through five, we simulate choices based on H using linking assumptions analogous to those used

by the authors of the original studies. For experiments one through five and experiment seven, we simulate hierarchical

planning based on H using HBFS. For experiment six, we assume participants prefer the state with the highest expected

reward. For experiment eight, we assume participants prefer to reduce the entropy of the posterior as much as possible.

In order to account for choice stochasticity, for each decision, we simulate the appropriate choice as dictated by the

model with probability ε , or choose randomly with probability 1− ε . We picked all model parameters by hand based

on simulations one through five and based on the design for experiments six and seven. We used the same parameters

throughout all simulations and experiments (Table 1).

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/499418doi: bioRxiv preprint 

https://doi.org/10.1101/499418
http://creativecommons.org/licenses/by/4.0/


Parameter Range Role Value

α [0,+∞) CRP concentration parameter: larger values favor more clusters 1

ε [0,1] choice stochasticity: larger values lead to more deterministic choices 0.6

# samples [1,+∞) number of MCMC iterations per simulated participant 10000

θ̄ (−∞,+∞) average reward of entire graph 15

σθ (−∞,+∞) standard deviation of average cluster rewards around θ̄ 10

σµ (−∞,+∞) standard deviation of average state rewards 10

σr (−∞,+∞) standard deviation of state rewards 5

Table 1. Model parameter settings. These were held constant across all simulations and experiments.

Simulations

Simulation one: bottleneck transitions

Schapiro et al. (2013) demonstrated that people can detect transitions between states belonging to different clusters in

a graph with a particular topological structure, such that nodes in certain parts of the graph are more densely connected

with each other than with other nodes. This type of topology is also referred to as community structure (Figure 4A),

with the clusters built into the graph topology referred to as communities. Thirty participants viewed sequences

of stimuli representing random walks or Hamiltonian paths in the graph. Participants were instructed to press a

key whenever they perceived a natural breaking point in the sequence. The authors found that participants pressed

significantly more for cross-community transitions than for within-community transitions (Figure 4B). Participants

did this despite never seeing a bird’s-eye view of the graph or receiving any hints of the community structure.

Following experiment 1 from Schapiro et al. (2013), for each simulated participant, we sampled a hierarchy H based

on the graph G and performed 18 random walks of length 15 initiated at random nodes, and 18 random Hamiltonian

paths. For simplicity, we simulated key presses deterministically. In particular, we counted a transition from node u

to node v as a natural breaking point if and only if the nodes belonged to different clusters in the inferred hierarchy
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Figure 4. Detecting transitions between communities.

A. Graph from Schapiro et al. (2013). Colors visualize the communities of states. Participants never saw the graph or

received hints of the community structure.

B. Results from Schapiro et al. (2013), experiment 1, showing that participants were more likely to parse the graph

along community boundaries. Participants indicated transitions across communities as “natural breaking points” more

often than transitions within communities. Error bars are s.e.m. (30 participants).

C. Results from simulations showing that hierarchy inference using our model is also more likely to parse the graph

along community boundaries. Error bars are s.e.m. (30 simulations).
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Figure 5. Detecting bottlenecks states

A. Graph from Solway et al. (2014a), experiment 1, with colors indicating the optimal decomposition according to

their analysis.

B. Results from Solway et al. (2014a), experiment 1, showing that people are more likely to select the bottleneck nodes

as bus stop locations. Gray circles indicate the relative proportion of times the corresponding node was chosen. Inset,

proportion of times either bottleneck node was chosen. Dashed line is chance (40 participants).

C. Results from simulations showing that our model is also more likely to pick the bottleneck nodes since they are

more likely to end up as endpoints of a bridge. Notation as in B. Inset error bars are s.e.m (40 simulations).

H, that is, if cu 6= cv, where c are the cluster assignments in H. This recapitulated the empirical results (Figure 4C;

random walks: t(58) = 7.35, p < 10−9; Hamiltonian paths: t(58) = 7.32, p < 10−9, two sample, two-tailed t-tests).

The inferred hierarchies for several simulated participants are shown in Figure 4D.

The dense connectivity within communities and sparse connectivity across communities drives the posterior to favor

hierarchies with cluster assignments similar to the true underlying community structure. This arises due to Eq. 7

and Eq. 8 in the generative model, corresponding to desiderata 3 and 4, respectively. This posits that, during the

generative process, edges across clusters are less likely than edges within clusters, resulting in a posterior distribution

that penalizes alternative hierarchies in which many edges end up connecting nodes in different communities.
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Simulation two: bottleneck states

Solway et al. (2014a) performed several experiments demonstrating that people spontaneously discover graph decompositions

that fulfill certain formal criteria of optimality. Similarly to Schapiro et al. (2013), in their first experiment, forty

participants were trained on a graph with community structure (Figure 5A). As before, participants never saw the full

graph or were made aware of its community structure but instead had to to rely solely on transitions between nodes.

Participants were then asked to designate a single node in the graph as a “bus stop”, which they were told would

reduce navigation costs in a subsequent part of the experiment. Participants preferentially picked the two bottleneck

nodes on the edge that connects the two communities (Figure 5B), which are the optimal subgoal locations under these

constraints. This suggests that participants were able to infer the graph topology based on adjacency information only,

and to decompose it in an optimal way.

As in simulation one, for each participant we sampled a hierarchy H based on the graph G used in the experiment.

Since participants were asked to identify three candidate bus stops, we randomly sampled three nodes among all

nodes that belonged to bridges in H, i.e. {u : bw,z = (u,v), for some (w,z) ∈ E ′ and u ∈ V}, where the b and E ′ are

the bridges and edges in the sampled hierarchy, respectively. This replicated the empirical result (Figure 5C; 65%

of choices, p < 10−20, right-tailed binomial test), with most simulated participants inferring hierarchies respecting

the underlying community structure (Figure 5D). Similarly to simulation one, this was due to the higher connectivity

within communities than across communities.

Simulation three: hierarchical planning

In their second experiment, Solway et al. (2014a) trained 10 participants to navigate between pairs of nodes in a

different graph (Figure 6A). On some trials, participants were asked to indicate a single node that lies on the shortest

path between two nodes in different communities. They found that participants overwhelmingly selected the bottleneck

node between the two communities (Figure 6B), suggesting that they not only discovered the underlying community

structure, but also leveraged that structure to plan hierarchically, “thinking first” of the high-level transitions between

clusters of states.
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Figure 6. Planning transitions across communities first

A. Graph from Solway et al. (2014a), experiment 2, with colors indicating the optimal decomposition according to

their analysis. The nodes labeled s and g indicate an example start node and goal node, respectively.

B. Results from Solway et al. (2014a), experiment 2, showing that people are more likely to think of bottlenecks states

first when they plan a path between states in different communities. Notation as in Figure 5B (10 participants).

C. Results from our simulation demonstrating that our model also shows the same preference. Using the hierarchy

identified by our model, the hierarchical planner is more likely to consider the bottleneck state first, since it is more

likely to end up as the endpoint of a bridge connecting the two clusters. Error bars are s.e.m (10 simulations).
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As in simulations one and two, we sampled H based on the graph G for each participant. We then used the hierarchical

planner to find 50 hierarchical paths between random start locations in the left community and random goal locations

in the right community. For each such path, we counted the first node that belongs to a bridge as the response on the

corresponding trial, since this is the first node considered by the planner and is therefore the closest approximation to

what a participant would think of first (see definition of HBFS in the Appendix). This replicated the empirical results,

with a strong tendency for the bottleneck location to be selected (Figure 6C; 60% of choices, p < 0.001, right-tailed

Monte Carlo test). The discovered hierarchies resembled the underlying community structure for the same reason as

in simulations one and two (Figure 6D), resulting in the bottleneck node frequently becoming part of a bridge that all

paths between the two communities would pass through.

Simulation four: shorter hierarchical paths

In their final experiment, Solway et al. (2014a) demonstrated hierarchical decomposition and planning in the Towers

of Hanoi task, which can be represented by a graph (Figure 7A) in which each node is a particular game state and

each edge corresponds to move that transitions from one game state to another. They leveraged the fact that there

are two different shortest paths between some pairs of states (for example, the start and goal states in Figure 7A), but

those paths cross a different number of community boundaries as defined by their optimal decomposition analysis.

Hierarchical planning predicts that participants will prefer the path which crosses fewer community boundaries, and

this is indeed what the authors found (Figure 7B).

After choosing a hierarchy H for each simulated participant as in the previous simulations, we then used the hierarchical

planner to find paths between the six pairs of states that satisfy the desired criteria. In accordance with the data, this

resulted in the path with fewer community boundaries being selected more frequently (Figure 7C; 71.4% of choices,

p < 10−10, right-tailed binomial test). Similarly to the previous simulations, the model tended to carve up the graph

along community boundaries (Figure 7D). Since the planner first plans in the high-level graph, it prefers the path with

the fewest clusters, and hence with the fewest cluster boundaries.
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Figure 7. Preferring paths with fewer community boundaries

A. Graph representing the Towers of Hanoi task used in Solway et al. (2014a), experiment 4. Vertices represent game

states, edges represent moves that transition between game states. The start and goal states (s,g) show an example

of the kinds of tasks used in the experiment. Colored arrows denote the two shortest paths that could accomplish the

given task, with the red path passing through two community boundaries and the green path passing through a single

community boundary.

B. Results from Solway et al. (2014a), experiment 4, showing that participants preferred the path with fewer

communities, or equivalently, the path that crosses fewer community boundaries. Bar graph shows fraction of

participants (35 participants). Dashed line is chance.

C. Results from simulations showing that our model also exhibits the same preference. Bar graph shows the fraction

of simulations that chose the path with fewer community boundaries. Error bar is s.e.m. (35 simulations).
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Figure 8. Slower reactions to cross-cluster transitions

A. Graph used in Lynn et al. (2018). Each node (white) is connected to its neighboring nodes and their neighbors

(green). Blue nodes are 2 transitions away from the white node, while red nodes are 3 or 4 transitions away.

B. Results from Lynn et al. (2018) showing that, on the test trial, participants were more slower to respond to long

violations than to slow violations. Change in RT is computed with respect to average RT for no-violation transitions.

Error bars are s.e.m (78 participants). RT, reaction time.

C. Results from simulations showing that long violations are more likely to end up in a different cluster, which would

elicit a greater surprise and hence a slower RT, similar to crossing a cluster boundary.

Simulation five: cross-cluster jumps

In our final simulation, we considered a study performed by Lynn et al. (2018), in which participants experienced a

random walk along the graph shown in Figure 8A and had to respond to each stimulus (node) after each transition.

A small subset of transitions violated the graph structure and instead “teleported” the participant to a node that is not

connected to the current node. Importantly, there were two types of violations: short violations of topological distance

2 and long violations of topological distance 3 or 4. The authors found that participants were slower to respond to

longer than to shorter violations, suggesting that participants had inferred the large scale structure of the graph.

Like in the previous simulations, we sampled H for each participant and then simulated a random walk along the graph

G, with occasional violations as described in Lynn et al. (2018). In order to model reaction times (RT’s), we assumed

a bimodal distribution of RT’s, with fast RT’s for transitions within clusters and slow RT’s for transitions across
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Figure 9. Hierarchy discovery is sensitive to the task distribution

A. (Left) graph used in experiment one with no topological community structure. Colors represent clusters favored by

the training protocol (right). Numbers serve as node identifiers and were not shown to participants. “Rand” denotes

a node that is randomly chosen on each trial. (Middle) trial instruction (top) and screenshot from the starting state

(bottom).

B. Results from experiment one showing that, on the test trial, participants were more likely to go to state 5 than to

state 7, indicating a preference for the route with fewer cluster boundaries. Dashed line is chance. Error bars are s.e.m.

(87 participants)

C. Results from simulations showing that our model also preferred the transition to state 5. Notation as in B.

clusters, consistent with the notion that cross-cluster transitions are more surprising. Instead of actually simulating

RT’s, we simply counted the number of cross-cluster transitions during the random walk. This revealed a greater

number of cross-cluster transitions for long violations than for short violations, consistent with the data (Figure 8B;

t(154) = 4.50, p = 0.00001, two-sample t-test). This occurs because nearby nodes are more likely to be clustered

together (Figure 8D), and hence violations of greater topological distance increase the likelihood that the destination

node would be in a different cluster than the starting node, resulting in a greater surprise and a slower RT.
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Experiments

Experiment one: task distributions

In our first experiment, we sought to validate the prediction of our model that clusters could be induced by the

distribution of tasks alone, even when the graph topology does not favor any particular clustering. In particular,

our model predicts that states which frequently co-occur in the same task should be clustered together, since the

hierarchical planner is optimal within clusters.

Participants

We recruited 87 participants (28 female) from Amazon Mechanical Turk (MTurk). All participants received informed

consent and were paid $3 for their participation. We reasoned that paying participants a fixed amount would incentivize

them to complete the experiment in the least amount of time possible, which entails balancing path length with

planning time in a way that is characteristic of many real-world tasks. The experiment took 17 minutes on average.

All experiments were approved by the Harvard Institutional Review Board.

Design

We asked participants to navigate between pairs of nodes (“subway stops”) in a 10-node graph (the “subway network”,

Figure 9A, left). The training trials (Figure 9A, right) were designed to promote a particular hierarchy: the task to

navigate from node 1 node 3 would favor clustering nodes 1,2,3 together; the task to navigate from node 4 to node 6

would favor clustering nodes 4,5,6 together; and the task to navigate from node 10 to node 7 would favor clustering

nodes 7,8,9,10 together (Figure 9A, left). The normative reason for this is that hierarchical planning is always optimal

within a cluster. In the generative model, this is taken into account by Eq. 13, which leads to a preference to cluster

together start and goal states from the same task. The purpose of the tasks with random start and goal states was to

encourage participants to learn a state representation for efficient planning and not simply to respond habitually.

In order to test the model prediction, after training, we asked participants to navigate from node 6 node 1. Note that

the two possible paths are of the same length and a planner with a flat representation of the graph would show no
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preference for one path over the other. Furthermore, since there is no community structure and the graph is perfectly

symmetric, any clustering strategy based on graph structure alone would not predict a preference. Conversely, our

model predicts that participants will tend to choose the path through node 5 since it passes through a single cluster

boundary, whereas the path through node 7 passes through two cluster boundaries.

Procedure

The experiment was implemented as a computer-based game similar to Balaguer et al. (2016) in which participants

had to navigate a virtual subway network. At the start of each trial, participants saw the names of the starting station

and the goal station. After 2 s, they transitioned to the navigation phase of the trial, during which they could see the

name of the current station in the middle of the screen, surrounded by the names of the four neighboring stations, one

in each cardinal direction. If there was no neighboring station in a particular direction, participants saw a filled circle

instead of a station name. The name of the goal station was also indicated in the top left corner of the screen as a

reminder. The navigation phase began with a 3-s countdown during which participants could see the starting station

and its neighbors but could not navigate. Participants were instructed to plan their route during the countdown. After

the countdown, participants could navigate the subway network using the arrow keys. Transitions between stations

were instantaneous. Once participants reached the goal station, they had to press the space bar to complete the trial.

This was followed by a 500-ms “success” message, after which the trial ended and the instruction screen for the next

trial appeared. Pressing the space bar on a non-goal station resulted in a “incorrect” message flashing on the screen.

Attempting to move in a direction without a neighboring station had no effect. Following Balaguer et al. (2016),

stations were named after cities, with the names randomly shuffled for each participant.

The subway network corresponded to the graph in Figure 9A. In order to assign arrow keys to edges, we first embedded

the graph in the Cartesian plane by assigning coordinates to each vertex, which resulted in the planar graph shown in

the figure. Then we assigned the arrow keys to the corresponding cardinal directions. For each participant, we also

randomly rotated the graph by 0◦, 90◦, 180◦, or 270◦. Participants performed 80 training trials (20 in each condition;

Figure 9, right) in a random order. After the training trials, we showed a message saying that now the subway system
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was unreliable, so that some trips may randomly be interrupted midway. This was followed by the test phase, during

which participants performed the test trial 6→ 1 and two additional test trials. In order to prevent new learning during

the test phase, all test trials were interrupted immediately after the first valid keypress. The two additional test trials

were not included in the analysis or any of the following experiments. We used the destination of the first transition

on the test trial as our dependent measure in the analysis. We reasoned that the direction in which participants attempt

to move first is along what they perceive to be the best route to the goal station. Since participants were paid a fixed

fee for the whole experiment, they were incentivized to complete it as fast as possible, which can be best achieved by

planning the shortest route during the 3-s countdown and then following it.

Results and discussion

In accordance with our model predictions, more participants moved to state 5 on the test trial, rather than to state 7

(Figure 9B; 58 out of 87, p = 0.003, two-tailed binomial test). Notice that this could not be explained by habitual

responding: while participants may have learned action chunks that solve the corresponding tasks (for example,

pressing right and down from state 1 to state 3), the actions from state 6 to its neighboring states were never reinforced

as part of a stimulus-response association or as part of a longer action chunk. In particular, state 6 is never a starting

state or an intermediary state, except possibly in the random tasks, in which both directions have equal probability

of being reinforced. The effect cannot be explained by state familiarity either, since participants experienced states

5 and 7 equally often, on average. Finally, it is worth noting that a model-free RL account would make the opposite

prediction, since state 7 would on average have a higher value than state 5, as it gets rewarded directly.

This result was consistent with the model predictions (Figure 9C; 57 out of 87, p = 0.005, two-tailed binomial test),

suggesting that people form hierarchical representations for planning in a way that tends to cluster together nodes that

co-occur in the same tasks.
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Figure 10. Different task distributions can induce different hierarchies in the same graph

A. (Left) graph used in experiment two with colors representing clusters favored by the training protocol in the “bad”

(left) and “good” (middle) condition. (Right) training and test protocols for all three conditions.

B. Results from experiment two showing that, on the test trial, participants were more likely to go to state 5 than to

state 7 in the bad condition, leading to the suboptimal route. The effect was not present in the control condition or in

the good condition. Dashed line is chance. Error bars are s.e.m. (78, 87, and 76 participants, respectively).

C. Results from simulations showing that our model exhibited the same pattern. Notation as in B.
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Experiment two: task distributions and suboptimal planning

Since both paths on the test trial in the previous experiment were of equal length, the bias that participants developed

would make no difference for their performance on that task. Next we asked whether such a bias would occur even if

it might lead to suboptimal planning, as the hierarchical planner would predict. For example, most of us have had the

experience of navigating between two locations through other, more familiar location, even though a shorter but less

familiar route might exist (see also Huys et al., 2015).

Participants

We recruited 241 participants (112 female) from MTurk. Of those, 78 were assigned to the “bad” clusters condition,

87 were assigned to the “control” condition, and 76 were assigned to the “good” clusters condition. Participants were

paid $2.50 for their participation. The experiment took 15 minutes on average.

Design and procedure

We used the same paradigm as experiment one, with the only difference that node 10 was removed from the graph

(Figure 10A, left). Now the analogous training regime (Figure 10A, right) would promote “bad” clusters that lead to

suboptimal planning on the test trial. We also performed a control version of the experiment with different participants

using random training tasks only, as well as a “good” condition with a third group of participants that promotes clusters

that lead to optimal planning on the test trial (Figure 10A).

Results and discussion

On the test trial, participants preferred the suboptimal move from 6 to 5 in the “bad” clusters condition (Figure 10B;

53 out of 78, p = 0.002, two-tailed binomial test), significantly more than the control condition (χ2(1,165) =

6.52, p = 0.01, chi-square test of independence) and the “good” condition (χ2(1,154) = 10.4, p = 0.001). This was

in accordance with the model predictions (Figure 10C; 58 out of 78 simulated participants, p = 0.00002, in the bad

condition; χ2(1,165) = 18.2, p = 0.00002 for bad vs. control condition; χ2(1,154) = 30.0, p < 10−7 for bad vs. good

condition). This suggests that participants formed clusters based on the distribution of tasks and used these clusters for
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hierarchical planning, even when that was suboptimal on the particular test task. Somewhat surprisingly, there was no

difference between the control condition and the good condition in the data (χ2(1,163) = 0.6, p = 0.5), and the model

showed the same pattern (χ2(1,163) = 2.2, p = 0.14), suggesting that in this particular scenario the “good” clusters

have a relatively weaker effect.

Experiment three: learning effects

While the experiments so far demonstrate the key predictions of our model, they only test asymptotic behavior and

as such do not assess how beliefs about hierarchy evolve over the course of learning. Further, these results could

conceivably be explained by simpler, non-hierarchical accounts, such as a bidirectional association forming between

states 5 and 6 due to the frequent transition from 5 to 6 during training. The goal of our next experiment was to rule

out such "flat" associative explanations and to study the dynamics of learning.

Participants

We recruited 127 participants (54 female) from MTurk. Participants were paid $8.50 for their participation. The

experiment took 47 minutes on average.

Design

We trained participants on the same graph experiment one, but using a different training regimen, with two stages of

training and multiple probe trials (Figure 11A). The first stage of training (trials 1-103) promoted clustering states

2 and 3 together, separately from state 1, and similarly promoted clustering states 4 and 5 together, separately from

state 6 (Figure 11A, first panel). In order to investigate the dynamics of hierarchy discovery, we interspersed three

probe trials that tasked participants to navigate from state 6 to state 1 throughout the first stage, expecting participants’

preferences to become stronger over time. Note that predictions on the probe trials are the opposite of predictions on

the test trial in experiment one: the path from 6 to 1 through state 5 now crosses three cluster boundaries, whereas the

path through state 7 crosses only two cluster boundaries, so participants should prefer the path through state 7. This

cannot be explained by a naive associative account since state 6 is no more likely to co-occur with state 7 than with
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Figure 11. Learning dynamics.

A. Experiment three used the same graph as experiment one, with main difference that training (right panel) took part

in two stages that promoted different hierarchies (first and second panel), with probe trials interspersed throughout

training. Notation as in Figure 9A.

B. Results from experiment three showing that (1) the first stage of training makes participants more likely to go to

state 7 on the probe trials, which could not be explained by a “flat” associative account, (2) this tendency appears

gradually as participants accumulate more evidence, and (3) this preference is reversed during the second stage of

training. Error bars are s.e.m. (127 participants).

C. Results from simulations showing that our model exhibited the same learning dynamics. Notation as in B.
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state 5.

To further assess learning, which sought to reverse this effect during the second stage of training which promoted the

same clusters as experiment one (Figure 11A, second panel). Our prediction was that, in accordance with the results

of experiment one, this would eliminate participants’ preference for going to state 7 on the probe trials in favor of state

5, since the path through state 5 now crosses a single cluster boundary.

Procedure

We used the same procedure as experiment one, with the following changes. First, there was no information indicating

to participants that something had changed between stages (i.e., between trials 103 and 104). Additionally, instead of

having a test stage in the end, we interspersed six probe trials 6→ 1, spaced evenly throughout training (trials 34, 68,

103 during the first stage and trials 150, 197, 246 during the second stage). Unlike the test trials in experiment one,

probe trials were indistinguishable from training trials and were not interrupted after the first move. Another difference

from experiment one was that instead of being rotated, the graph was randomly flipped horizontally and/or vertically

for each participant. Finally, unlike experiment one, participants did not see the names of adjacent stations but instead

saw arrowheads indicating they could move in the corresponding direction (Figure 11A, third panel).

Results and discussion

Consistent with our predictions, participants showed a significant preference for moving to state 7 on the last probe

trial of the first stage (Figure 11B, probe trial 3; 75 out of 127 participants, p = 0.05, two-tailed binomial test). This

effect was modulated by the amount of training, with the smallest effect on the first probe trial and the largest effect on

the third probe trial (slope = -0.27, F(1,379) = 3.96, p = 0.05, mixed effects logistic regression with probe trials 1-3).

The effect was reversed during the second stage (slope = 0.73, F(1,252) = 8.10, p = 0.005, mixed effects logistic

regression with probe trials 3-4).

These results were consistent with the model predictions (Figure 11C). The model preference for state 7 on the third

probe trial (98 out of 127 simulated participants, p< 10−9, two-tailed binomial test) is once again due to the preference
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of the hierarchical planner for paths with fewer state clusters. As in our empirical data, this effect became stronger over

time (slope = -0.41, F(1,379) = 6.82, p = 0.009, mixed effects logistic regression with probe trials 1-3). The reason

is that, as the hierarchy inference process observes more tasks, it accumulates more evidence (i.e., more terms in the

product in Eq. 14) which sharpens the posterior distribution P(H|D) around its mode (i.e., the most probable hierarchy,

Figure 11A, first panel). This corresponds to a decrease in the uncertainty over H, which makes it more likely that

the sampler will draw the hierarchy in Figure 11A, first panel, and plan according to it. Hence this effect of learning

occurs due to the decrease in uncertainty resulting from the additional observations. Finally, like our participants, the

model reversed its preference during the second stage of training (slope = 2.73, F(1,252) = 76.03, p < 10−10, mixed

effects logistic regression with probe trials 3-4). This effect occurs because tasks during the second stage of training

shift the mode of the posterior (Figure 11A, second panel). Together, these results rule out simple, nonhierarchical

associative accounts and demonstrate that our model can account for learning dynamics due to changes in uncertainty

and changes in the mode of the posterior distribution over hierarchies.

Experiment four: perfect information

One downside of experiments one and two is that effects of memory confound hierarchy inference and planning. In

particular, it is unclear that participants are able to learn and represent the full graph G. This is most evident in the

control condition of experiment two (Figure 10B), in which our model predicts that participants should be better than

chance, when in fact they are not, thus questioning whether they are learning the graph or planning efficiently in the

first place. Note that this does not pose a significant challenge to our hierarchy discovery account; people’s choices

could still be accounted for without invoking a hierarchical planner, for example by assuming a preference to remain

in the same cluster (moving to state 5) rather than crossing a cluster boundary (moving to state 7). Nevertheless, we

sought to overcome this limitation by ensuring participants know the full graph G.

Participants

We recruited 77 participants (33 female) from MTurk. Participants were paid $2.00 for their participation. The

experiment took 10 minutes on average.
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Figure 12. Hierarchy discovery based on task distribution in fully visible graphs

A. (Left) experiment four used the same graph as experiment one, however this time the graph was fully visible on

each trial (middle). Notation as in Figure 9A.

B. Results from experiment four showing that, like in experiment one, participants were more likely to go to state 5 on

the test trial. Dashed line is chance. Error bars are s.e.m. (77 participants)

C. Results from simulations showing that our model also preferred the transition to state 5. Notation as in B.

Design

We used the same graph and training protocol as experiment one, except this time participants could see the whole

graph at any given time (Figure 12A). This put participants on an equal footing with the hierarchy inference and

hierarchy planning algorithms, both of which assume perfect knowledge of the graph G.

Procedure

The procedure was similar to experiment one, with the main difference that participants had a bird’s-eye view of the

entire subway network throughout the experiment (Figure 12A, middle panel). Subway stations were represented by

squares connected by lines which represented the connections between stations. The current station was highlighted

with a thick border and the goal station was in green font.

Since planning is significantly easier in the setting, we removed the 3-s countdown, so that participants could start

navigating immediately after the 2-s instruction. Additionally, instead of rotating the map, we randomly flipped it
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horizontally for half of the participants. We also omitted the “unreliable trips” warning before the test phase since

participants now only saw a single test trial, which was immediately interrupted after the first move. The experiment

took 10 minutes on average and participants were paid $2.00.

Results and discussion

We found that, even with full knowledge of the graph, participants still developed a bias (Figure 12B; 51 out of 77

participants, p = 0.0014, right-tailed binomial test), consistent with the predictions of our model (Figure 12C; 55

out of 77, p = 0.0002, two-tailed binomial test). This provides strong support for our hierarchy discovery account,

suggesting tasks constrain cluster inferences above and beyond constraints imposed by graph topology, which in turn

constrain hierarchical planning on novel tasks.

Experiment five: perfect information and suboptimal planning

We next asked whether hierarchy discovery could lead to suboptimal planning even when the full graph is visible.

Participants

We recruited 386 participants (175 female) from MTurk. Of those, 119 were assigned to the “bad” clusters condition,

90 were assigned to the “control 1” condition, 88 were assigned to the “control 2” condition, and 89 were assigned to

the “good” clusters condition. Participants were paid $2.00 for their participation. The experiment took 9 minutes on

average.

Design and procedure

We used the same graph and training protocol as experiment two, except this time participants could see the whole

graph at any given time (Figure 13A), as in experiment four. Additionally, we included two control conditions, one

with 20 training trials (“control 1”) and one with 80 training trials (“control 2”). The first control condition ensured

participants received the same number of random tasks as the bad and good conditions, while the second control

condition ensured that participants received the same total number of tasks as in the bad and good conditions. We used
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Figure 13. Task distributions can bias hierarchical planning even in fully visible graphs

A. (Left) experiment five used the same graph as experiment two, however this time the graph was fully visible on

each trial. Notation as in Figure 10A.

B. Results from experiment five showing that participants were still biased by the training tasks in the bad condition,

performing worse on the test trial compared to the other conditions. Dashed line is chance. Error bars are s.e.m. (119,

90, 88, and 89 participants, respectively).

C. Results from simulations showing that our model exhibited the same pattern. Notation as in B.
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the same experimental procedure as experiment four.

Results and discussion

As in experiment two, inducing “bad” clusters still led to significantly worse performance on the test trial than either

control condition (Figure 13B; χ2(1,209) = 9.35, p = 0.002 for bad vs. control 1; χ2(1,207) = 7.7, p = 0.006 for bad

vs. control 2, chi-square test of independence). Inducing “good” clusters (89 participants) led to significantly better

performance than “bad” clusters (χ2(1,208) = 9.03, p = 0.003 for bad vs. good), although not significantly better than

the control conditions (χ2(1,179) = 0.002, p = 0.96 and χ2(1,177) = 0.05, p = 0.8 for good vs. control 1 and good

vs. control 2, respectively). This accords with our model predictions (Figure 13C; χ2(1,209) = 10.1, p = 0.002 for

bad vs. control 1; χ2(1,207) = 4.8, p = 0.03 for bad vs. control 2; χ2(1,208) = 17.7, p = 0.00003 for bad vs. good)

and strongly suggests that people default to hierarchical planning over clusters influenced by the task distribution, even

in simple, fully observable graphs. Notice that in both control conditions, participant preferred the shorter path (21 out

of 90 participants, p < 10−6 for control 1; 22 out of 88 participants, p < 10−6 for control 2, two-tailed binomial tests),

indicating that they were indeed able to plan effectively when given the full graph without tasks to bias them towards

particular clusters, thus overcoming the limitation of experiment two.

One notable difference between our model predictions and the empirical data is that our model predicts a preference

for state 5 in the “bad” condition (78 out of 119 simulated participants, p = 0.0009, two-tailed binomial test), whereas

participants did not show significant preference (52 out of 119 participants, p = 0.2, two-tailed binomial test). We

believe this occurs because the task is much simpler when the graph is fully visible and participants could easily

perform optimal “flat” planning, rather than having to resort to hierarchical planning. This effect could be captured

straightforwardly using a mixture of BFS and HBFS for planning, rather than just HBFS.

Experiment six: reward generalization

In this experiment, we tested the prediction that rewards generalize within clusters. While this prediction is not unique

to our model and could be accounted for by Gaussian processes over graphs (Kondor and Lafferty, 2002; Wu et al.,
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Figure 14. Reward generalization within clusters.

A. Graph used in experiment six. Numbers indicate state identifiers and were not shown to participants. Participants

were told that states deliver 15 points on average and that, on a given day, state 4 (green) delivered 30 points. They

were then asked which of the two gray nodes (states 3 and 7) they would choose.

B. Results from experiment six showing that participants preferred state 3, which is in the same topological cluster as

state 4, suggesting they generalized the reward within the cluster. Error bars are s.e.m (32 participants).

C. Results showing that the model exhibited the same pattern. Notation as in B.
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2018) or by the successor representation (Stachenfeld et al., 2017; Dayan, 1993), the idea that clusters generate similar

rewards is a core assumption of our model that we sought to validate before assessing how clusters inferred based on

rewards could influence planning (experiment seven).

Participants

We recruited 32 participants from the MIT undergraduate community. The experiment took around 3 minutes and

participants were not paid for their participation.

Design

We showed participants the graph (“network of gold mines”) in Figure 14A and told them that in the past, states

delivered an average reward of 15 (“grams of gold”), but today, state 4 (green) delivered a reward of 30. We then asked

participants to choose one between state 3 and state 7 (“mines to explore”).

Procedure

Each participant was given a sheet of paper with instructions and the graph in Figure 14A, without node identifiers.

The instructions were as follows:

You work in a large gold mine that is composed of multiple individual mines and tunnels. The layout of the mines is

shown in the diagram below (each circle represents a mine, and each line represents a tunnel). You are paid daily,

and are paid $10 per gram of gold you found that day. You dig in exactly one mine per day, and record the amount of

gold (in grams) that mine yielded that day. Over the last few months, you have discovered that, on average, each mine

yields about 15 grams of gold per day. Yesterday, you dug in the blue mine in the diagram below, and got 30 grams of

gold. Which of the two shaded mines will you dig in today? Please circle the mine you choose.

Half of the participants were given a version in which the graph was flipped horizontally, i.e. the topological cluster

was on the right side.
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Results and discussion

Participants preferred state 3, the state in the same topological community as state 4 (Figure 14B; 24 out of 32

participants, p= 0.007, two-tailed binomial test), as the model predicts (Figure 14C; 24 out of 32 simulated participants,

p = 0.007). Topological structure is the only driver of hierarchy discovery in this case, since there is only a single

reward and no tasks. The structure of the graph favors clustering state 4 together with state 3 since they belong to

the same community. The higher-than-average reward of state 4 then drives up the average reward θ for that cluster,

which in turn drives up average reward µ for the states that belong to it, and in particular for state 3. In contrast, state

7 often ends up in a separate cluster which is not influenced by the reward of state 3 and thus has an expected reward

of 15, the average θ̄ for the entire graph.

Experiment seven: rewards and planning

While the results of experiment six validated the reward assumptions of our model, they could also be accounted

for by alternative models, such as the successor representation (Stachenfeld et al., 2017; Dayan, 1993) or a Gaussian

process with a diffusion kernel (Kondor and Lafferty, 2002; Wu et al., 2018). We therefore sought to test the unique

prediction of our model that, in the absence of community or task structure, hierarchical planning will occur over

clusters delineated by boundaries in the reward landscape of the environment.

Participants

We recruited 174 participants (68 female) from MTurk. Participants were paid $0.50 plus a bonus equal to the number

of points earned on a randomly chosen trial in cents (up to $3.00). This encouraged participants to do their best on

every trial. The experiment took 9 minutes on average.

Design

We asked participants to navigate a graph (“network of gold mines”) with the same structure as in experiments one and

four (Figure 15A). Unlike the previous experiments, participants performed a mix of randomly shuffled free choice
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Figure 15. Rewards induce clusters that influence planning.

A. (Left) Experiment seven employed the same graph as in experiments one and four, with the difference that clusters

were induced via the reward rather than the task distribution. (Middle) screenshots from free choice and forced choice

trials. (Right) training and test protocol. “Rand” indicates that a random state was chosen on each trial, while the

asterisk indicates a free choice trial (i.e., the participant was free to choose any node).

B. Results from experiment seven showing that participants were more likely to prefer the path with fewer reward

cluster boundaries. Error bars are s.e.m. (174 participants).

C. Results from simulations showing that the model exhibited the same preference. Notation as in B.
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and forced choice trials. On free choice trials, participants started in a random node and could navigate to any node

they chose. Once they reached their target node, they collected the reward (“grams of gold”) from that node. On

forced choice trials, participants had a specified random target node and they could only collect reward from that node,

similarly to the tasks in experiments one through five. Free choice trials encouraged participants to learn the reward

distribution, while forced choice trials encouraged planning and prepared participants for the test trial, which was

also a forced choice trial. Crucially, the rewards favored a clustering like the one in experiments one and four: states

1,2,3 always delivered the same reward, as did states 4,5,6 and states 7,8,9,10. Similarly to experiments one and four,

participants were tested on a forced choice task from node 6 to node 1.

Procedure

Participants were told they would navigate a virtual network of gold mines. The graph layout was identical to

experiment four (Figure 15A) and participants could see a bird’s-eye view of the entire graph, with each node

representing a mine and each edge representing a tunnel between mines. Each mine delivered a certain number of

points, which were displayed inside the node of the corresponding mine. Similarly to experiment four, participants

could navigate between mines using the arrow keys and choose a mine using the space bar, after which they were

informed how many points they earned from the chosen mine and immediately began the next trial. Mines always

delivered deterministic points as indicated on each mine. Only points earned from the chosen mine counted.

On free choice trials, any mine could be chosen. On forced choice trials, only a single target mine was available and all

other minds are grayed out (Figure 15A, right). Attempting to select a different mine resulted in a “incorrect” message

flashing and did not change the current mine. There were 60 free and 40 forced choice training trials, starting at random

states. The target state on the forced choice trials during training was also random. In order to prevent participants

from developing a model-free bias towards one side of the graph based on reward magnitude (for example, because

states there happened to be more rewarding), we randomly resampled the points of all states with probability 0.2 on

every free choice trial. All reward values were sampled uniformly between 0 and 300.
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Results and discussion

As in experiments one and four, participants showed a preference for the route with fewer cluster boundaries (Figure 15B;

102 out of 174 participants, p = 0.03, two-tailed binomial test). The model made same prediction (Figure 15C; 108

out of 174 participants, p = 0.001, two-tailed binomial test). However, this time the clusters were inferred solely based

on rewards (Figure 15D), rather than topological structure or task distributions. This shows that the reward distribution

in the environment can affect hierarchy discovery and consequently planning over that hierarchy, in accordance with

our model predictions.

Experiment eight: uncertainty and active learning

With the exception of experiment three, the results so far could also be accommodated by a non-Bayesian hierarchy

discovery account that simply searches for the “best” hierarchy as defined by some utility or score function (Fernández

and González, 2013). Indeed, our inference algorithm could be viewed as a form of stochastic search over the space

of possible hierarchies, with the (unnormalized) posterior simply serving the role of a score function for comparing

candidate hierarchies. Our hierarchical planner also relies on a single point estimate of the hierarchy, which raises the

question of whether a Bayesian account is warranted. While the results of experiment three show that the uncertainty

in the posterior can affect choices across participants (since the population can be seen as approximating the posterior,

with one sample hierarchy per participant), they do not address the question of whether uncertainty is represented at

the level of the individual participant.

In this experiment, we sought to explicitly validate the probabilistic aspects of our model by showing that people

can make choices based on the uncertainty of the posterior distribution over hierarchies P(H|G). Previous work has

demonstrated that both humans and animals have access to their uncertainty (Smith et al., 2003), which they can report

explicitly or leverage to direct their exploratory choices towards informative options (Gershman, 2018). Most related

to our study is work on active learning (Bramley et al., 2015; 2017) showing that people choose to learn in a way

that maximally reduces their uncertainty about the hidden structure of the environment. Applied to our model, this

predicts that people would choose to learn about aspects of the graph that maximally reduce their uncertainty over the
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Figure 16. Uncertainty about hierarchy guides active learning.

A. The seven graphs shown to participants in experiment eight. Dashed lines indicate edges whose status was unknown.

Numbers are graph identifiers.

B. Results from experiment eight showing what fraction of participants chose to learn about edge A in graphs 1-4 (left)

and what fraction chose to learn about edge B in graphs 5-7 (right). Dashed line is chance. Error bars are s.e.m. (40

participants).

C. Results from simulations showing that the model exhibited similar preferences. Notation as in B.
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hierarchy, which we operationalize as the entropy of the posterior (see Appendix).

Participants

We recruited 40 participants from the Harvard community. The experiment took around 5 minutes and participants

were not paid for their participation.

Design

We presented 40 participants with 7 graphs (“subway networks”; Figure 16A). In each graph, all but two or three

of the edges were observable (those edge were described as “tracks possibly under construction”). We then asked

participants to indicate which of the currently unobservable edges they would like to observe (i.e., to learn whether the

edge is present or not). Participants could only pick a single edge for each graph.

Procedure

Each participant was given a sheet of paper with instructions and the graphs in Figure 16A. The graphs were presented

in a different order. The instructions were as follows:

Imagine that you are a tourist visiting a new city and want to use the subway system to get around. Unfortunately, the

subway map you have is out of date, and several tracks on it are marked as “Under Repair”. As it might help get you

around faster, you decide to ask a passer-by if any of these tracks have finished repair work. Each of the images below

represent a subway network, with the circles as stations and lines as tracks. For each subway system, there are 2 or 3

tracks in red, representing tracks that are possibly under construction. Circle ONE track whose repair status you want

to find out about the most. There is no need to think too hard about each map!

Results and discussion

If participants only care about the flat graph G, then they should be indifferent between the available choices since they

all yield exactly one bit of information. Furthermore, if participants maintain a single point estimate of the hierarchy
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without keeping track of uncertainty, they would have no basis to estimate how informative each choice is for the

purposes of hierarchy discovery. In contrast, we found that participants showed a strong preference in 5 of the 7

graphs (Figure 16B; p < 0.02 for graphs 1,2,4,5,6; binomial tests, Bonferroni corrected for 7 comparisons).

The simulated choices of our model were in agreement with the empirical results (r = 0.76, p = 0.05, Pearson

correlation). This suggests that people explore their environment in a way that facilitates hierarchy discovery, in

accordance with our Bayesian account. The main discrepancy between our model predictions and the participants’

choices was for graphs 1 and 7. This is likely due to other factors also playing a role in human choices, such as graph

geometry or connectivity. In addition, since the model parameters were tuned based on simulations of previous studies

that did not assess the effects of uncertainty, it could be that the model weighs various aspects of the graph differently

from participants when computing the posterior, which would result in different uncertainty estimates. We leave the

fine-tuning of model parameters as the subject of future work.

Neural implementation

Finally, we speculate about how the computational processes proposed here might be implemented in neural circuits,

and which brain regions might perform the computations. We also simulate within-trial and across-trial neural signals

that could be used to identify the key brain areas involved in hierarchy discovery and hierarchical planning.

First, consider the flat graph G only. A straightforward way to encode G in a neural circuit would be to have a single

unit (a neuron, such as a place cell, or an ensemble of neurons) represent each node u ∈ V and excitatory synapses

between pairs of units (u,v) represent the edges E (Figure 17A, bottom). The graph structure could be learned via

local Hebbian plasticity: when two units are activated right after each other (for example, during a transition between

the corresponding states), the synapse between them is potentiated. In order to perform (flat) BFS to find the shortest

path from node s to node g, an external input can successively probe each neighbor of s by transiently activating

the corresponding unit, triggering a “forward sweep” of activation that propagates through the circuit until it reaches

and activates the unit of the goal state g. The neighbor of s that activates g in the least amount of time is the next

node along the shortest path to g, so the agent can then physically transition to that state and repeat the process
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Figure 17. Hierarchy discovery and hierarchical planning in the brain.

A. Example neural circuit encoding the low-level graph G (bottom), the high-level graph H (top), and the cluster

assignments c from experiment one (Figure 9A). Circles denote units representing graph nodes. Lines denote

bidirectional excitatory synapses representing edges and cluster assignments. Number are unit identifiers.

B. Example (idealized) circuit activity during the test trial 6→ 1. Each row represents the activity of the corresponding

unit over the course of the trial. States along the X-axis denote the current state following a transition. Gray denotes

intermediate levels of activation representing the current state of the agent, akin to hippocampal place cell activity.

Black denotes high levels of activation during planning, akin to hippocampal preplay.

C. (Top) Example (idealized) “start” activity at the initiation of each action chunk in dorsolateral striatum (DLS), with

action chunks assumed to fall within the boundaries of the state chunks (clusters) in A. (Bottom) For comparison,

primary motor cortex (M1) activity at key presses corresponding to transitions. Time course corresponds to B.

D. Example neural circuit illustrating hierarchy discovery via local Hebbian plasticity. (Left) Low-level graph with a

single edge (1,2) has nodes 1 and 2 assigned to cluster 4 and node 3 is assigned to cluster 5. (Right) Observing edges

(1,3) and (2,3) causes transient activation of nodes 1,2,3 and cluster 4, strengthening the connection between node 3

and cluster 4 and hence reassigning node 3 to cluster 4.

E. Simulated Bayesian update of the (approximate) posterior P(H|D) over the course of learning the graph from

simulation four (Figure 7A), which could take place in posterior parietal cortex (PPC).

F. Representational dissimilarity matrix showing the difference in the (approximate) posterior P(H|D) between pairs

of trials during the same simulation as in E.
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again and again, until finally reaching the goal state g. Assuming some form of short-term synaptic depression or ion

channel inactivation that prevents the sweep from going backwards (Dobrunz et al., 1997), this implements precisely

BFS. Similar schemes have been proposed to support forward trajectory planning in the hippocampus (Erdem and

Hasselmo, 2012; Gönner et al., 2017).

The hierarchical graph H could then be incorporated into the circuit by designating its own set of units and synapses,

corresponding to the nodes V ′ and edges E ′, respectively. The cluster assignments c could also be implemented as

synapses between the units of G and the units of H. In an elegant way, the inferred hierarchy would be isomorphic

to the neural circuit that represents it (Figure 17A). This could straightforwardly extend to deeper hierarchies and is

consistent with the presence of place cells and grid cells with different receptive field sizes in the hippocampus and

entorhinal cortex (Jung et al., 1994; Kjelstrup et al., 2008). HBFS can be implemented in the exact same way as BFS,

with the difference that now the forward sweep can take “shortcuts” through the higher levels of the hierarchy, thus

significantly reducing the time it would take to activate the goal unit g. Note that this performs almost the exact same

computation as HBFS, with the small difference that transitions “up” the hierarchy (i.e., computing cu and cv on line

1 in Algorithm 1) also count as transitions along the path.

The hierarchy could be learned similarly to G, with local Hebbian plasticity strengthening the synapses between units

of H (for example, during boundary transitions) as well as the synapses representing the cluster assignments between

G and H. To illustrate this, consider the example in Figure 17D (left), with units 1,2,3 representing nodes in G and

units 4,5 representing nodes in H. On the left, there is only one edge between nodes 1 and 2 and hence these two

nodes are clustered together (c1 = c2 = 4), separately from node 3 (c3 = 5). However, once the edges (1,3) and (2,3)

are observed (Figure 17D, right), this would transiently activate units 1,2,3 together, which (because of nodes 1 and 2)

would transiently activate unit 4, leading to potentiation of the synapse between 3 and 4. Assuming some form of local

homeostatic plasticity that constrains the total synaptic weight of each unit, this would weaken the synapse between 3

and 5, effectively reassigning 3 to the same cluster as 1 and 2 (c1 = c2 = c3 = 4).

Note that this implements a kind of “soft” hierarchy, with the same node potentially being strongly associated with one
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cluster and weakly associated with other clusters. This could be one way to take into account a probability distribution

over hierarchies rather than a single point estimate. Indeed, allowing all synaptic weights to have continuous values

rather than forcing them to be binary can keep track of probability distributions over the edges E and E ′ as well. In fact,

this could also allow the neural circuit to take into account stochastic transitions: transitions that have low probability

will simply have the corresponding synapses potentiated less often, resulting in weaker weights. This addresses the

limitation of our graph-theoretic approach to only support deterministic transitions, thus extending the framework to

support regular MDPs. The continuous range of the synaptic weights would naturally be taken into account by our

“neural” HBFS algorithm: the forward sweep will simply be less likely to propagate through weaker synapses. In

effect, this will perform a kind of simultaneous, parallel sampling of an entire set of possible trajectories in a way that

is drastically more efficient than sampling trajectories one by one (linear versus exponential time). Investigating the

theoretical properties of such a mechanism could be the subject of future work.

A neural circuit with the above-mentioned properties could naturally be implemented in the hippocampus and the

surrounding cortex. Hippocampus has long been known to encode locations in physical space (O’Keefe, 1976) and

has been hypothesized to encode a cognitive map that applies across various non-spatial domains (O’Keefe and Nadel,

1978). Recent studies have shown that this is indeed the case, with encoding of non-spatial task-relevant variables such

as sound frequency in rodents (Aronov et al., 2017) and even abstract conceptual domains in humans (Constantinescu

et al., 2016). The units we hypothesize could thus be implemented in the hippocampus-entorhinal circuit, with HBFS

taking the form of hippocampal preplay (Figure 17B) which is known to occur at decision points and is predictive of

future behavior (Dragoi and Tonegawa, 2011).

While our model only discovers state chunks, action chunking could straightforwardly be incorporated by caching (or

memoizing) the output of BFS and/or HBFS for regularly occurring subgoals (see Future directions). The acquisition

of action chunks after extensive training in animals is associated with the emergence of characteristic start/stop signals

in basal ganglia circuits (Graybiel, 1998; Barnes et al., 2005; Jin and Costa, 2010; Jin et al., 2014; Geddes et al., 2018).

Our model makes the distinct prediction that action chunks and the corresponding start/stop signals will fall within

state chunk boundaries (Figure 17C), rather than be dictated purely by the temporal statistics of action sequences. This
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prediction could be validated empirically by subjecting animals to similar training and test protocols as our participants

while measuring neural activity in dorsolateral striatum.

If the probability distribution over hierarchies is implicitly encoded in synaptic weights, as proposed above, then it

would be difficult to read it out directly from neural activity. Alternatively, the distribution could be encoded in neural

activity patterns, for example using probabilistic population codes or neuronal sampling (Pouget et al., 2013) . This

would be consistent with our previous work (Tomov et al., 2018) which found a neural signature of the Bayesian

update of the posterior over hidden structures in a frontroparietal network of brain regions, as well as representations

of the full posterior in several brain areas. Our model falls within the framework of structure learning and is thus

likely to recruit the same underlying neural mechanisms. This prediction can be tested by generating regressors that

track Bayesian updates of the posterior P(H|D) during learning (Figure 17E) and using them to identify neurons

or brain areas that might implement the actual hierarchy discovery process. In addition, representational similarity

analysis (Kriegeskorte et al., 2008) could be used to identify areas that maintain the (approximate) posterior P(H|D)

(Figure 17F).

General Discussion

In this study, we proposed a Bayesian model for discovering state hierarchies based on a generative model of the

topological structure, rewards, and tasks in the environment. Building on the Bayesian brain hypothesis (Dayan et al.,

1995; Chater et al., 2006; Clark, 2013) and on principles developed in structure learning (Gershman et al., 2015)

and robotics (Fernández and González, 2013), it postulates that the brain learns useful hierarchical representations by

inverting this generative model to infer the hidden hierarchical structure of the world. These representations can be

subsequently used to plan efficiently and flexibly in the face of changing task demands. The model accounts for a

number of phenomena previously reported in the literature and makes new predictions which we verified empirically.

The model goes beyond previous accounts of clustering states in the environment both in the scope of findings it

can explain and in the predictions it makes. Schapiro et al. (2013) proposed a recurrent neural network that learns

community structure based on the temporal statistics of the environment. Their model and other event segmentation
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HH
HHH

HHH
Result

Model Efficient state space modularization

(McNamee et al., 2016)

Optimal behavioral hierarchy

(Solway et al., 2014a)

Temporal community structure

(Schapiro et al., 2013)

Simulation one: bottleneck transitions YES YES YES

Simulation two: bottleneck states YES YES YES

Simulation three: hierarchical planning YES YES

NO

(representations not

suitable for planning)

Simulation four: shorter hierarchical paths YES YES

NO

(representations not

suitable for planning)

Simulation five: cross-cluster jumps YES YES YES

Experiment one: task distributions YES
NO

(fixed task distribution)

NO

(no task distribution)

Experiment two: task distributions

and suboptimal planning
YES

NO

(fixed task distribution)

NO

(no task distribution)

Experiment three: learning effects
NO

(no uncertainty)

NO

(fixed task distribution)

NO

(no task distribution)

Experiment four: perfect information YES
NO

(fixed task distribution)

NO

(no task distribution)

Experiment five: perfect information

and suboptimal planning
YES

NO

(fixed task distribution)

NO

(no task distribution)

Experiment six: reward generalization
NO

(no reward distribution)

NO

(no reward distribution)

NO

(no reward distribution)

Experiment seven: rewards and planning
NO

(no reward distribution)

NO

(no reward distribution)

NO

(no reward distribution)

Experiment eight: uncertainty and

active learning

NO

(no uncertainty)

NO

(no uncertainty)

NO

(no uncertainty)

Table 2. Model comparison. Summary of which results could potentially be accounted for by alternative models and

which results rule out certain models.
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models (Zacks and Swallow, 2007) can learn to predict stimuli that tend to co-occur, such as states in the same

community, and can detect boundaries when those predictions are violated, for example after a transition to a new

community. While this could explain the effects of simulations one through five and possibly experiments one and

two, it will be challenged by experiments four, five, six and eight, in which the environment is fully visible in all

stimuli co-occur together. More importantly, these models make no predictions regarding action selection, and it is

not clear how the learned representations can be used for planning. Solway et al. (2014a) offer a formal definition

of an optimal hierarchy; however, as the authors themselves point out, their analysis is not a plausible account of

how hierarchy is learned, because it assumes the agent already knows the optimal solution to all possible tasks in the

environment, which defeats the purpose of learning a hierarchy in the first place. A detailed comparison between our

model and alternative candidate models that make similar claims is shown in Table 2.

The problem of planning has been studied extensively both for biological as well as artificial agents. Correspondingly,

our work resonates with several important strands of research, which we discuss in turn below.

Cognitive architectures

The earliest attempts to develop a formal theory of planning date back to the work of Newell and Simon (Newell

et al., 1958; 1972) who laid the foundational concepts of planning and problem-solving both in human and in artificial

intelligence research. Simon (1978) framed problem-solving as an interaction between the participant and the environment,

and planning as a search through a state space that represents the structure of the problem, with operators (or actions)

performing transitions between states. In parallel, the seminal work of Miller et al. (1960) highlighted the hierarchical

organization of human action plans, which they linked to people’s highly structured representations of the world.

Miller et al. (1960) also proposed the existence of a fast-access, limited-capacity working memory that loads information

from a large-capacity “dead storage” system, concepts later formalized as the short-term and long-term memory stores

in Newell et al. (1972)’s production systems. These earlier attempts led to the development of contemporary cognitive

architectures such as Soar (Newell, 1992; Laird, 2012) and ACT-R (Anderson, 1993; Anderson et al., 2004), which

aim to capture all aspects of human cognition. Both of these systems can perform hierarchical problem-solving in
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complex domains based on subgoals, however the subgoals have to be supplied manually. Chunking (referred to as

compilation in ACT-R) is implemented by caching or memoizing the solutions to these subgoals (Laird et al., 1986).

Our approach builds on concepts developed in this tradition. In our model, hierarchical behavior directly arises from

the hierarchical representation of the environment. The two memory systems we assume also mirror the short-term/long-term

memory stores in these earlier cognitive accounts. Additionally, the form of action chunking we propose as a future

addition to the model (see Future directions) is similar in spirit to the chunking mechanisms in Soar and ACT-R.

In principle, our hierarchy discovery method could be integrated with these production systems to allow them to

decompose the problem space and identify subgoals automatically.

Model-based and model-free reinforcement learning

In psychology, planning and goal-directed behavior, which selects actions based on their outcomes, is often contrasted

with habitual behavior, which selects actions automatically (Dolan and Dayan, 2013). The dichotomy between these

two kinds of action selection strategies – fast, reflexive, habitual, unconscious responding (also referred to as System

1) on one hand, and slow, reflective, goal-directed, conscious deliberation (also referred to a System 2) on the other

– has permeated the field for over a century (Thorndike, 1911; Tolman, 1948), has been reincarnated in many forms

(Dickinson et al., 1983; Kahneman and Egan, 2011; Stanovich and West, 2000), and is realized in distinct neural

circuits (Yin et al., 2004; 2005; Balleine and Dickinson, 1998; Balleine, 2005). In RL, habitual and goal-directed

behaviors have been associated with model-free and model-based algorithms, respectively (Doya et al., 2002; Daw

et al., 2005).

In model-free algorithms, the agent learns a value function for each state and/or each action by trial-and-error, and

then chooses actions with respect to the learned values. In model-based RL, the agent learns the reward and transition

structure of the environment and combines that information to find actions leading to reward. Model-free RL is

associated with fast, reflexive responding because it myopically considers the value of the current state/action only,

while model-based RL is associated with slow, reflective responding because it considers the transitions and rewards

of multiple states/actions ahead. Despite the superficial similarity of these two systems and the two computational
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components we propose – a fast online planner, and a slow offline representation learner – there is a profound

difference. Both model-free and model-based RL (as well as other versions of habitual and goal-directed strategies)

perform online action selection, with agents having to rely on one or the other to solve a particular task. In contrast,

our planner makes decisions about which actions to select in a particular task, while the hierarchy discovery process

works offline, outside the context of a particular task. In a way, our planner is more like model-based RL in that it

performs deliberate, goal-directed computations based on its internal model of the world (the “model” in model-based

RL). The purpose of the hierarchy discovery process is to learn such an internal representation that can be used by

a planner with limited computational resources. Indeed, the cognitive limitations inherent in this type of reflective

decision-making (Kahneman and Egan, 2011) are the foundational assumptions behind our approach.

Notice that we only invoke a model-based planner in order to motivate hierarchy discovery and to link the hierarchy to

decision-making, without committing to the particular HBFS algorithm. While hierarchy discovery can be justified in

this way without invoking a model-free system, we certainly do not exclude the possibility of such a system existing

and operating in parallel with the planner. A model-free component could easily be incorporated into our framework,

for example by having a parallel model-free system which learns the values of states and actions. During decision

making, the agent can use a meta-cognitive process to arbitrate between the planner and the model-free system (Kool

et al., 2017). Like the planner, the model-free system could also operate at different levels of abstraction, learning

values for the clusters in addition to the low-level states. This could account for effects of reflexive responding that we

explicitly controlled for in our experiments.

Another distinguishing feature of our approach is that, by leveraging the deterministic nature of the transition structure,

our planner can rely on simple shortest path algorithms to find solutions to tasks. In contrast, traditional approaches to

model-based RL involve computationally costly operations such as value iteration or sampling of candidate trajectories,

both of which scale poorly with the size of the state space. Even though the combinatorial explosion of sampling could

be managed by heuristics such as pruning of decision trees (Huys et al., 2012; 2015), such approaches are unnecessary

in the deterministic domains often considered in planning problems.

57

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2019. ; https://doi.org/10.1101/499418doi: bioRxiv preprint 

https://doi.org/10.1101/499418
http://creativecommons.org/licenses/by/4.0/


It is worth highlighting that our results cannot be explained by standard model-free or model-based RL algorithms. In

experiments one, two, four, and five, model-free RL would have learned high values for states 3, 6, and 7, and hence

would prefer the transition 6→ 7 on the test trial. In experiments one and four, model-based RL would be indifferent

between the two possible trajectories on the test trial due to the symmetry of the graph. In experiments two and five,

model-based RL should actually favor the shorter path via 6→ 7. All of these predictions go against our participants’

tendency to pick the transition 6→ 5.

The two systems in our proposal might also bear superficial resemblance to the Dyna architecture in RL (Sutton,

1991) in which a slow, offline model-based simulator trains a fast, online model-free system to respond adaptively to

situations it has never experienced before. This process is reminiscent of hippocampal replay (Shohamy and Daw,

2015) and is particularly useful when the environment changes too often for trial-and-error learning to be effective. In

contrast, we propose an offline inference process for learning representations (the “model” in model-based RL) that a

model-based system can use to plan in previously unseen tasks. If our proposal is extended with a separate model-free

component as suggested above, it could be integrated with Dyna, which would in turn use the model-based system to

train the model-free system.

Hierarchical reinforcement learning

A long-standing challenge for traditional RL has been the combinatorial explosion that occurs when planning and

learning take place over long time horizons. This challenge been addressed by hierarchical RL (HRL), which breaks

down the problem into sub-problems at multiple levels of abstraction. One influential approach to HRL extends the

agent’s action repertoire to include options (Sutton et al., 1999) which consist of sequences of actions (the option

policy) that accomplish certain subgoals (for example, exiting a room). When an option is selected, the corresponding

action sequence is executed as a single behavioral unit. Options are also referred to as skills, subroutines, partial

policies, macro-actions, or policy chunks, while the original actions are sometimes referred to as primitive actions.

As with regular or “flat” RL, HRL also comes in two distinct flavors (Botvinick et al., 2009): model-free HRL and

model-based HRL. Like model-free RL, model-free HRL (Dezfouli and Balleine, 2012; Holroyd and McClure, 2015;
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Rasmussen et al., 2017) learns a value function; however, in this case the value function is additionally defined for

options. Error-driven learning occurs both on the high level by learning which options lead to rewarding outcomes,

as well as on the lower level by learning the best option policy for each option. Importantly, there is no notion of

a transition function which could be used for planning, and hence model-free HRL could not exhibit the behaviors

predicted by our model. Although a model-free component could be incorporated into our framework as discussed

above, it would not account for the results of experiments one through five. The only options that could conceivably

have been learned by model-free HRL are the ones corresponding to the training tasks (for example, 1→ 3, 4→ 6,

and 10→ 7 for experiment one). This set of options could not explain the results of the test trial which requires going

in the opposite direction.

In model-based HRL (Botvinick and Weinstein, 2014), as in model-based RL, the agent separately learns a transition

function and a reward function. Additionally, the agent is furnished with an option model that specifies the initiation

states (for example, locations within a room), termination states (subgoals; for example, doors), average duration,

and average reward of each option. The agent can thus plan over options rather than primitive actions, essentially

performing mental “jumps” in the state space, allowing it to first form a high-level plan between subgoals reachable

via options and then refining that plan on the lower level by simply following the corresponding option policies. This

form of saltatory model-based HRL is conceptually identical to our proposal. While our work builds on concepts

developed in parallel to HRL in the field of robot navigation and planning (Fernández and González, 2013), our model

can be cast in HRL terms by considering each task as equivalent to placing a positive reward in the goal state and a

small negative reward in all other states, thus encouraging the agent to find the shortest path to the goal state. Edges in

the high-level graph H can be seen as options, with subgoals specified by the endpoints of bridges and option policies

specifying how to reach the subgoals within a cluster.

Our work introduces two critical improvements to model-based HRL. First, as in model-based RL, model-based HRL

assumes planning occurs by sampling trajectories through the state space, which in our proposal is performed by

the deterministic and much more efficient HBFS algorithm. Second, as Botvinick and Weinstein (2014) point out, a

critical open question is how useful options are discovered in the first place. The approach they propose is based on
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the successor representation (Dayan, 1993) which partitions the state space along topological bottlenecks. However,

this would not predict the results of experiments one through five and experiment seven, in which clustering occurs

based on tasks and rewards only.

When framed within HRL, our approach can be viewed as a solution to the option discovery problem which has

plagued the field of HRL since its inception, as the original formulation never specified how useful options are learned

in the first place. Discovering useful subgoals and, correspondingly, useful options is critical, since an inadequate set

of options can lead to dramatically worse performance compared to regular RL (Botvinick et al., 2009). This has led

to the proliferation of a rich literature on option discovery, to which we turn next.

Option discovery

While earlier work on HRL assumed the options are supplied manually (Sutton et al., 1999), a growing number of

HRL studies have focused on the problem of discovering useful options. A detailed review of the option discovery

literature is beyond the scope of this discussion, but we highlight some of the main approaches. Most option discovery

methods fall in one of two broad categories: state abstraction and temporal abstraction methods (McGovern, 2002).

State abstraction methods first decompose the state space by identifying clusters or subgoals, and subsequently identify

options based on that decomposition (Dayan and Hinton, 1993; Vezhnevets et al., 2017). The state space could

be partitioned into clusters based on the value function (Dietterich, 2000), the state features (Hengst, 2002), or the

transition function (Machado et al., 2017; Ravindran and Barto, 2002). Other approaches designate certain states

as subgoals and learn options that lead to those subgoals, which could be defined by salient events (Chentanez

et al., 2005), object-object interactions (Kulkarni et al., 2016), frequently visited states (Stolle and Precup, 2002;

McGovern and Barto, 2001; Digney, 1996), or large changes in the reinforcement gradient (Digney, 1996). Other

subgoal discovery methods rely on graph theoretic notions to identify bottlenecks (such as “doors” between rooms;

Şimşek and Barto, 2008), the boundaries of strongly connected regions of the state space (such as the “walls” of rooms;

Menache et al., 2002), or clusters of states (such as the rooms themselves; Mannor et al., 2004; Şimşek et al., 2005) as

subgoals.
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Temporal abstraction (or policy abstraction) methods directly learn the option policies, without resorting to state

abstraction as an intermediate step. Some of these approaches identify frequently used action sequences from successful

trajectories (McGovern, 2002; Girgin et al., 2006; Vezhnevets et al., 2016). Other approaches posit a generative

model for policies that favors temporal abstraction, and then perform probabilistic inference to find the optimal policy

(Wingate et al., 2013; Daniel et al., 2016).

Viewed in HRL terms, our model falls into the state abstraction category, since it first partitions the state space into

clusters which in turn define subgoals and constrain behavior. However, our model goes beyond these previous

attempts: it unifies multiple ideas from these different approaches under a single Bayesian framework that allows

it to account for all the behavioral phenomena in our study. To the best of our knowledge, no single option discovery

method based on state abstraction would capture all of them. Option discovery methods based on temporal abstraction

would also fail to account for the results of experiments one through five, since participants were never trained to

navigate in the directions tested in the test trial.

Information-theoretic approaches

Closely related to our study is work by McNamee et al. (2016) proposing an alternative approach to hierarchically

decomposing the environment for planning under working memory limitations. Similarly to our proposal, they divide

the state space into clusters (or modules) and assume planning first occurs at a high-level (across modules), and is

subsequently refined at a lower level (within modules). They define an optimal modularization of the state space as

the one which minimizes the expected information-theoretic description length of planning trajectories. Intuitively,

this means that the average hierarchical plan in the modularized state space is as simple as possible. Unlike the

analysis of Solway et al. (2014a), this method does not require knowing the optimal behaviors in advance and can

also accommodate different task distributions. This implies that it could account for effects based on graph topology

and task distribution (see Table 2). Unlike our model, it does not account for effects of the reward distribution and

uncertainty. By framing the process of hierarchy discovery in terms of Bayesian inference, our model can be used

to make predictions about how beliefs evolve during learning (see experiment three and Future directions), and how
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plans and choices will change correspondingly. Performing Bayesian inference incrementally in this way can also be

used to investigate the neural correlates of hierarchy discovery and to understand the underlying neural computations

(Figure 17E,F). Indeed, our model does not appeal to a strict definition of optimality (in the sense of producing a

hierarchy that is provably optimal), and hence the two approaches can be seen as complementary, with our model

explaining how hierarchy is discovered and the analysis of McNamee et al. (2016) validating the hierarchies learned

by our model and by people.

Another information-theoretic method for clustering state spaces was proposed by Maisto et al. (2016). Their approach

relies on an extension of the CRP that allows clustering based on similarity between states, which can be defined via

a prespecified kernel function. Using different kernels, they demonstrate clustering based on bottlenecks, goal states,

paths, or other aspects of the graph structure. Their approach relies on algorithmic probability theory to define the

kernels (see also Donnarumma et al., 2016). This involves precomputing all possible paths between each pair of

states, which renders planning unnecessary. Nonetheless, this approach could provide a useful tool to analyze the

optimality of the hierarchies inferred by our model.

Structure learning and other notions of hierarchy

Frank and Badre (2011) proposed an alternative notion of hierarchy in terms of action rules at different levels of

abstraction (see also Collins and Frank, 2013; 2016). In their framework, low-level rules map stimuli to responses,

whereas high-level rules dictate which stimulus dimensions are relevant for the low-level rules. For example, a

low-level rule might say “if the traffic light is red, don’t walk”, while a high-level rule might say “when crossing

the street, pay attention to the color of the traffic light”. This implements a form of state aggregation, which in RL

refers to the grouping together of different states and then treating them as a single state, for example by assigning the

same values and actions to all states in the group (Moore, 1991; Singh et al., 1995). Note that this is different from state

clustering in our model, which still treats each state within the cluster as distinguishable from the rest. By determining

which stimulus dimensions are relevant for responding, the high-level rules implicitly render all states with the same

value for the particular stimulus dimension as indistinguishable for the purposes of responding according to low-level
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rules (for example, “a red light on the sunny day” versus “a red light on a rainy day” both elicit the same response).

This drastically reduces the total number of stimulus-response mappings (low-level rules) that need to be learned and

allows generalization to previously unseen stimuli.

The connectionist model proposed by Frank and Badre (2011) implements error-driven learning at these different levels

of abstraction in parallel loops that map onto the corticostriatal hierarchy, with more anterior regions representing

rules at increasing levels of abstraction. Despite its ability to account for a range of behavioral and neural data, this

approach is fundamentally restricted to learning stimulus-response mappings only, and as such falls into the category of

model-free RL since it has no notion of a transition structure over which to plan. As discussed previously, model-free

RL – even with state aggregation – cannot account for the results of experiments one through five since the predominant

response (6→ 5) was never reinforced, nor would it support the kind of goal-directed planning presented here. In fact,

state aggregation would likely not be possible in these experiments, since there is only a single stimulus dimension (the

name of the current station). In their model, the term hierarchy is used to denote a hierarchy of rules that amounts to a

compressed mapping from one stimulus to one action. This is fundamentally different from our notion of a hierarchy,

in which a hierarchy of states supports the flexible generation of multistep action plans that achieve distant goals.

It also differs from the traditional notion of HRL, which refers to a temporal hierarchy, with options consisting of

sequences of primitive actions. While in theory the notion of a high-level rule could be extended to include options,

the model they propose can only learn to ignore stimulus dimensions and as such can only compress stimulus-response

mappings, whereas to the contrary, options require an expansion of the stimulus-response space.

Partial observability

Closely related to state discovery models is work in RL on partially observable environments (Kaelbling et al., 1998).

In this scenario, the agent never directly observes its current state but must instead infer it from observations as it

interacts with the environment. Formally, the environment is represented by a partially observable Markov decision

process (POMDP) in which states, actions and rewards are represented similarly to MDPs, with the key difference

that states additionally generate observations. The agent then uses these observations to infer a probability distribution
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over states – the belief state – which it uses for decision making. Building on RL and Bayesian principles, POMDPs

provide a normative way to maximize reward under uncertainty. Correspondingly, they have been used to account for

a wide range of behavioral and neural results in the animal learning and decision making literature (Dayan and Daw,

2008; Rao, 2010). Recently, neurophysiological evidence from rodents (Starkweather et al., 2017; 2018; Babayan

et al., 2018) has shown that midbrain dopaminergic firing is consistent with a RL signal computed over such a belief

state, thus grounding the POMDP framework in the well-established brain circuits for reward-based learning.

Our model can be seen as an extension of the POMDP framework, with clusters (high-level states in H) acting as

hidden states and low-level states in G acting as observations. However, our model differs from the standard POMDP

definition in two ways. First, as latent cause models, POMDPs assume observations are independent given the state,

whereas our model relies on the relations between states (E) in order to infer the clusters. Second, unlike latent cause

models, POMDPs usually assume a prespecified state space, whereas our model allows for a theoretically unbounded

number of clusters, recruiting more clusters as dictated by the data. The second property of our model makes it

similar to an infinite POMDP (Doshi-Velez, 2009), which dynamically expands the state space as more observations

are acquired. The first way that our model differs from POMDPs suggests that the analogy between observations and

low-level states might be inappropriate, and that our model can be better thought of as a particular kind of infinite

hierarchical MDP, in which states are fully observable but there is additional hidden structure which is not observable.

Viewed in this way, our model does not support partial observability, a limitation which could be remedied by making

the low-level states unobservable and having them generate observations, which would drive inferences about the

states, which would in turn drive inferences about the clusters. While this would complicate the inference process,

it would bring our model more closely in line with the POMDP framework, making it more applicable in a world in

which agents only receive partial information about their state in the environment.

Action chunking and motor sequences

Our work is closely related to the notion of hierarchical control and motor sequencing (Rosenbaum et al., 1983;

1984; Koch and Hoffmann, 2000), which studies the behavioral effects predicted by hierarchical action plans. Our
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work speaks directly to that literature by proposing one particular way in which the representations that support such

hierarchical planning might be learned. Indeed, our hierarchical planner is reminiscent of the tree traversal process

described by Rosenbaum et al. (1983).

Our work is also intimately related to a broad literature on chunking in sequence learning (Sakai et al., 2003), also

referred to as action chunking. Action chunking refers to the “gluing” of consecutive actions that are reinforced

repeatedly into a stereotyped action sequence that is executed as a single behavioral unit. One of the most robust

findings in the animal learning literature is the emergence of such stereotyped action sequences after extensive training

on a particular task. It is thought to occur as control is transferred from a goal-directed system that chooses actions

based on their anticipated consequences to a habitual system that executes entire action sequences in response to

perceived stimuli (Dolan and Dayan, 2013).

Action chunking has a distinct neural signature, with bursts of neural activity emerging at key choice points as an

animal becomes proficient at a particular task (Graybiel, 1998; Barnes et al., 2005; Jin and Costa, 2010). This

so-called task-bracketing activity first appears in prelimbic cortex – often associated with goal-directed behavior –

and then gradually shifts to infralimbic cortex and dorsolateral striatum – often associated with habitual behavior

(Smith and Graybiel, 2013). Task-bracketing has also been measured in midbrain dopaminergic neurons that project

to striatum (Jin and Costa, 2010), with a difference between the fraction of direct and indirect pathway neurons that

code for the initiation and termination of action sequences (Jin et al., 2014). Neural activity representing action

sequence boundaries has also been measured in striatum and prefrontal cortex of macaques (Fujii and Graybiel,

2003; Desrochers et al., 2015). Similar task-bracketing activity has also been observed in songbirds (Fujimoto et al.,

2011) and humans (Tricomi et al., 2009; Herrojo Ruiz et al., 2014), suggesting a conserved neural mechanism. One

interpretation of these results is that task-bracketing activity reflects start/stop signals that gate overtrained action

sequences, particularly since it appears to be causally involved in the initiation and termination of action chunks

(Geddes et al., 2018).

Executing entire sequences as single behavioral units could be beneficial if the cost of processing the outcome of each
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action is outweighted by the benefit of acting fast at the risk of making mistakes (Dezfouli and Balleine, 2012). In its

current form, our model only captures state chunking (the creation of state clusters), however it can straightforwardly

accommodate action chunking using some form of caching or memoization (see Future directions). In fact, our model

makes a distinct prediction about the structure of action chunks, namely that they will fall within the boundaries defined

by state chunks (Figure 17C). In other words, we predict that state abstraction will drive temporal abstraction: agents

will first carve up their environment into clusters of states (state chunks), which in turn will constrain the sequences

of actions (action chunks) that are learned, which in turn will operate within the state chunks. This stands in contrast

to accounts which assume that the agent first learns useful action sequences and then learns state representations

consistent with those sequences post-hoc (Konidaris, 2016). This translates into specific predictions about the neural

activity of brain regions thought to support action chunking (see Neural implementation).

Future directions

Thus far our model only addresses the question of state chunking (how the environment is represented as discrete

states at different levels of abstraction), while leaving open the question of action chunking (how actions are stitched

together into larger behavioral units at different levels of temporal abstraction). Fitting the model into the HRL

framework described above might seem like one way to incorporate action chunking, by assuming that the options

leading to bridge endpoints are like action chunks that, when invoked, delegate behavior to a low-level controller that

executes the sequence of actions in the option policy as a single behavioral unit. Yet the metaphor of options as action

chunks is not necessarily appropriate; option policies execute in a closed-loop fashion, taking into consideration each

state they encounter before choosing the next action. In contrast, action chunks are often operationally defined as

open-loop action sequences that disregard intermediate states (Dezfouli and Balleine, 2012).

An alternative way to accommodate action chunking that more closely adheres to this definition is to allow caching

of solutions to repeated calls to the planner with the same arguments (Huys et al., 2015). That way, when a certain

subpath within a cluster is traversed frequently as part of many tasks (for example, getting from your bed your bedroom

door), the corresponding action sequences could be cached and, when the subtask needs to be solved as part of a larger
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task (for example, getting from your bed to work), the action sequence can be retrieved from the cache and executed

as a single unit, thus removing the need to unnecessarily recompute it every time. Indeed, such a simple scheme could

account for phenomena such as action slips (Dezfouli and Balleine, 2012), or even be used to model task-bracketing

activity in striatum (Figure 17C). Implementing action chunking in this way could also account for the speeding up of

responses during training in our experiments.

There are several ways in which our model could be extended to support planning in richer, large-scale environments.

One way would be to allow deeper hierarchies (L> 2), which would be necessary in order to maintain the computational

efficiency of the planner as the size of the graph increases. This could be achieved by recursively clustering the

high-level states in H into higher-level states in another graph H ′, then clustering those in yet another graph H ′′, and

so on up to hierarchy depth L that could be prespecified or also inferred from the data. The hierarchical planner can

similarly extend recursively by reusing the same logic at the higher levels.

Yet even with deep hierarchies, the learned representations would pose a challenge to the planner as a number of

low-level states in G grows to the scale encountered in real life (indeed, it would also pose a challenge to the long-term

storage system). This highlights another limitation of our model, namely the use of tabular representations in which

each state is represented by a separate token. This could be overcome by recognizing that there is redundancy in

the environment (Botvinick et al., 2015) – that is, the local structure of the graph G can be highly repetitive, with

the same theme occurring over and over in different parts of the graph. For example, most cities have streets and

buildings, most buildings have rooms and hallways, and most rooms have similar layouts. Representing each and

every part of the environment would thus be wasteful, and this redundancy can be exploited by introducing templates

or modules – blueprints for clusters that can compress the hierarchical representation by extracting the shared structure

across clusters of the same type and only representing differences from some prototypical cluster. Combined with

partial observability and deeper hierarchies, this would allow the model to learn representations that support efficient

planning in environments that approach the real world in their scale and complexity. Finally, the requirements that G

is unweighted and undirected can be lifted if the planner is a hierarchical extension of a more sophisticated shortest

path algorithm, such as Dijkstra’s algorithm (Cormen et al., 2009).
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Conclusion

In summary, we propose a normatively motivated Bayesian model of hierarchy discovery for planning. The model

builds on first principles from the fields of structure learning and robotics, and recapitulates a number of behavioral

effects such as detection of boundary transitions, identification of bottleneck states, and surprise to transitions across

clusters. The novel predictions of the model were validated in a series of behavioral experiments demonstrating the

importance of the task and reward distributions in the environment, which could bias the discovered hierarchy in a way

that is either beneficial or detrimental on new tasks. We also showed that the model accounts for reward generalization

and uncertainty-based active learning in a way that is consistent with human behavior. Together, these results provide

strong support for a computational architecture in which an incremental offline process infers the hidden hierarchical

structure of the environment, which is then used by an efficient online planner to flexibly solve novel tasks. We believe

our approach is an important step towards understanding how the brain constructs an internal representation of the

world for adaptive decision making.

Appendix

Inference

We frame hierarchy discovery as computation of the posterior probability distribution P(H|D). Since computing the

posterior exactly is intractable, we approximate Bayesian inference over H using Metropolis-within-Gibbs sampling

(Roberts and Rosenthal, 2009), a form of Markov chain Monte Carlo (MCMC). We initialized H by sampling from the

prior P(H) and on each MCMC iteration, we updated each component of H in turn by sampling from its (unnormalized)

posterior conditioned on all other components in a single Metropolis-Hastings step, in the following order:

1. update the cluster assignments c using the conditional CRP prior (algorithm 5 in Neal, 2000),

2. update p,q, p′, p′′ using a truncated Gaussian random walk with standard deviation 0.1 (i.e. the proposal

distribution is a Gaussian centered on the old value, excluding values above 1 or below 0),

3. update update the hierarchical edges E ′ with a proposal distribution that randomly flips the presence or absence
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of each edge with probability 0.1,

4. update the average cluster rewards θ using a Gaussian random walk with standard deviation 1, and

5. update the average state rewards µ using a Gaussian random walk with standard deviation 1.

The samples generated in this way approximate draws from the posterior, with asymptotic convergence to the true

posterior in the limit of infinite samples. This approach can also be interpreted as stochastic hill climbing with respect

to a utility function defined by the posterior, which has been previously used to find useful hierarchies for robot

navigation (Fernández and González, 2013).

In all five simulations and experiments one through seven, for each simulated participant, we generated a Markov

chain of a given length (see Table 1) and used the final sample H to generate predictions. This can be viewed as a form

of probability matching over hierarchies, and is consistent with psychologically plausible algorithms for hypothesis

generation and updating, although elucidating the algorithmic details of hierarchy discovery is beyond the scope of

our present work.

In order to estimate entropy in experiment eight, we used a separate MCMC sampler for each graph for each participant

to generate a set of M = 50 samples, using a lag of 100 iterations and burn-in period of 5000 iterations (for a total of

10000 generated samples, as in all other simulations).

Additionally, HBFS requires that the subgraph induced in G by each cluster must form a single connected component;

that is, for every pair of states (u,v) in a cluster w= cu = cv, there must exist a path (u,x1, ...,xk,v) such that cxk =w ∀k.

To enforce this constraint, we imposed a penalty by subtracting 100 from the (unnormalized) log posterior for each

pair of states in the same cluster that are not connected by a path passing through the cluster. This is equivalent to

augmenting the generative model with the following rejection sampling procedure: draw H according to P(H|D) and

for each such pair of disconnected states, perform a Bernoulli coin flip with probability of success equal to e−100. If all

coin flips are successful, keep H, otherwise repeat the process with a new H. By imposing a “soft” constraint in this

way, we ensured that the sampling algorithm can recover from a bad initialization by incrementally adjusting pairs of
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nodes that violate the constraint. Note that this still results in a valid posterior since normalization is not necessary for

approximate inference.

Decision making

We assume choices based on H are either optimal (according to the model) with probably ε , or random with probability

1− ε . This is similar in spirit to the ε-greedy algorithm in RL, with the difference that we assume the meta-choice to

choose randomly occurs before computing the optimal answer. This is equivalent to assuming that on 1− ε of trials,

participants simply do not perform the necessary computation. Such lapses could be due to a number of reasons, such

as inattention or fatigue. While other factors such as motor variability may also contribute to choice stochasticity, we

allow those to be absorbed by the ε parameter and leave them as the potential subject of future work.

Another source of variance in choices is the sampled hierarchy H, which could be different for each simulated

participant. While our current experiments prohibit direct comparisons between hierarchies inferred by participants

and hierarchies inferred by the model, any systematic variation in the sample hierarchies (for example, due to uncertainty

of the posterior, as in experiments three and eight) would manifest when choices are aggregated across participants, as

in our analyses.

Hierarchical planning

The optimal algorithm to find the shortest path between a pair of low-level vertices (s,g) in G is breadth-first search

(BFS; Cormen et al., 2009) whose time and memory complexity is O(N) (assuming O(1) vertex degrees, i.e. |E| =

O(N)). We use a natural extension of BFS to hierarchical graphs (hierarchical BFS or HBFS; Fernández and González,

2013) that leverages H to find paths more efficiently than BFS (approximately O(
√

N) time and memory). Intuitively,

HBFS works by first finding a high-level path between the clusters of s and g, cs and cg, and then finding a low-level

path within the cluster of s between s and the first bridge on the high-level path.

In particular, HBFS first finds a high-level path (w1, ...,wm′) between cs and cg in the high-level graph H (note that

w1 = cs and wm′ = cg). Then it finds a low-level path (y1, ...,ym) between s and u in G[S] (note that s = y1 and u = ym),
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where (u,v) = bw1,w2 is the first bridge on the high-level path, S = {x : cx = cs} is the set of all low-level vertices in

the same cluster as s, and G[S] is the subgraph induced in G by S. HBFS then returns y2, the next vertex to move to

from s, or, alternatively, full the path to the next cluster, (y2, ...,ym).

In an efficient hierarchy, the number of clusters will be |V ′| = O(
√

N) and the size of each cluster w will also be

nw = O(
√

N), resulting in O(
√

N) time and memory complexity for HBFS. Note that actually traversing the full

low-level path from s to g in G still takes O(N) time; HBFS simply computes the next step, ensuring the agent

can progress towards the goal without computing the full low-level path in advance (in our simulations, we actually

computed the full path in order to simulate execution in addition to planning). HBFS can straightforwardly extend to

deeper hierarchies with L > 2, with the corresponding complexity becoming O( L
√

N +L).

Algorithm 1 HBFS(s,g,H,G)

1: path′← BFS(cs,cg,(V ′,E ′))

2: path← []

3: for all (w,z) in path′ do

4: (u,v)← bw,z

5: S←{x : cx = cs}

6: append(path, BFS(s,u,G[S]))

7: append(path, (u,v))

8: s← v

9: end for

10: S←{x : cx = cs}

11: append(path, BFS(s,g,G[S]))

12: return path

The pseudocode for HBFS used in our simulations is shown in Algorithm 1. Our particular implementation of HBFS

takes as arguments the starting state s ∈ V , the goal state g ∈ V , the hierarchy H and the low-level graph G. The

variables c and b refer to the cluster assignments and bridges in H, respectively. Note that s changes after each
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iteration. We assume the existence of a function BFS which takes as arguments a starting state, a goal state and a

graph and returns the shortest path between those states as a list of edges.

Note that we are not making any specific commitments to the cognitive plausibility of HBFS, and that any other

hierarchical planner based on shortest paths would make similar predictions. Also note that HBFS could be straightforwardly

extended to deeper hierarchies by introducing a depth level parameter l and recursively calling HBFS instead of BFS

on line 1 if l > 2. Finally, note that HBFS as implemented here still requires O(N) time and memory as it finds the

full path in G. For returning only the first few actions, the for-loop could be interrupted after the first iteration, which

would yield the O( L
√

N +L) complexity.

Rewards

To model reward generalization in experiment six, we set θ̄ = 15 and r4,1 = 30, in accordance with the experimental

instructions. The node selected by the simulation was the one with the greater (approximate) expected reward

E[rs|D]≈ θcs , where θ are the cluster rewards and c are the cluster assignments in the sampled hierarchy H.

To model cluster inferences based on rewards in experiment seven, we only simulated a single training trial and set

r1,1 = r2,1 = r3,1, r4,1 = r5,1 = r6,1, and r7,1 = r8,1 = r9,1 = r10,1, with the specific values chosen at random between

0 and 30 (we scaled down the rewards experienced by participants by a factor of 10). Since the hierarchy discovery

algorithm has no notion of maximizing reward (it merely treats rewards as features), the magnitude of the rewards

is irrelevant. We did not model the random changes of reward values throughout training, which were introduced

purely for control purposes and are irrelevant for hierarchy discovery as framed here. Note that the model could easily

accommodate dynamic rewards by assuming drifting µ’s, however this would unnecessarily complicate the model

without making substantial contributions to the core theoretical predictions. As in experiment six, we set θ̄ = 15, the

expected reward based on the instructions.
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Active learning

Drawing on the active learning framework from the causal inference literature (Murphy, 2001; Tong and Koller,

2001), we assume the agent will chose to learn about edges of G in a way that provides maximal information about

H. Maximizing information about H is equivalent to minimizing uncertainty about H, which can be quantified as the

entropy of H:

H(H|D) =− ∑
Hdisc

∫
P(H|D) logP(H|D)dHcont (19)

Where Hdisc = (V ′,E ′,c,b) are the discrete components of H, Hcont = (p′, p,q) are the continuous components of H,

and D is the data observed so far. We use H to denote the entropy of a mixed random variable with discrete and

continuous components (Nair et al., 2006).

Computing the entropy in this way is neither computationally feasible nor psychologically plausible. Following

previous authors (Steyvers et al., 2003), we assume the agent has a subjective probability distribution over possible

hierarchies H which can be represented by a set of samples [H(1), ...,H(M)] with multinomial probabilities [p(1), ..., p(M)]

(∑m p(m) = 1). If the samples are drawn from the posterior P(H|D), the agent can approximate the entropy as:

H(H|D)≈−∑
m

p(m) log p(m) (20)

Note that while this is not a proper estimate of the entropy, it can serve as a basis for rational hypothesis testing.

In our simulations, we used MCMC to generate the samples from the (approximate) posterior and set the subjective

probabilities according to p(m) ∝ P(H(m)|D) ∝ P(D|H(m))P(H(m)).

We use au,v to denote the action of observing edge (u,v), i.e. finding out whether (u,v) ∈ E. Since there is no way to

know in advance what the outcome would be, the agent has to minimize the expected entropy over the two possible

outcomes:
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H(H|D,au,v) =H(H|D,(u,v) ∈ E)Pr[(u,v) ∈ E|D]

+H(H|D,(u,v) /∈ E)Pr[(u,v) /∈ E|D] (21)

We can compute the probability of each outcome by marginalizing over H and using the sampling approximation:

Pr[(u,v) ∈ E|D] = ∑
Hdisc

∫
Pr[(u,v) ∈ E|H]P(H|D)dHcont (22)

≈ 1
M ∑

m
Pr[(u,v) ∈ E|H(m)] (23)

Where Pr[(u,v) ∈ E|H] is p or pq, according to the generative model. Pr[(u,v) /∈ E|D] is approximated analogously.

The agent then chooses the action that minimizes the expected entropy:

a = argmin
a

H(H|D,a) (24)

Neural simulations

The example within-trial circuit activations in Figure 17B were generated manually, assuming a hierarchy like the

one in Figure 17A (respondng to the decomposition in Figure 9A). We assumed HBFS is executed at every cluster

boundary and that the entire path within the cluster is traversed in a single action sequence that is executed as a single

behavioral unit, akin to an action chunk.

To generate the Bayesian update in Figure 17D, we simulated online inference on the graph from the Towers of Hanoi

puzzle (Figure 7A), using a particle filter with M = 100 particles [H(1), ...,H(M)] , each initialized from the prior P(H).

We started with an empty graph and added edges one by one, with single edge added on each trial. We approximated

the posterior P(H|D) with multinomial probabilities [p(1), ..., p(M)], where p(m) ∝ P(H(m)|D) ∝ P(D|H(m))P(H(m))

and ∑m p(m) = 1.
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Following our previous work (Tomov et al., 2018), we quantified the Bayesian update after each observed edge by

computing the Kullback-Liebler divergence between the multinomial approximation to the posterior before and after

the update. We additionally performed 10 iterations of MCMC (as described in the inference section) for each particle

after each trial in order to rejuvenate the particles (Chopin, 2002). Similar approximations to online Bayesian inference

have been used in previous studies (Abbott and Griffiths, 2011). To generate the dissimilarity matrix in Figure 17E,

as in our previous work (Tomov et al., 2018), we computed the cosine distance between the approximate posterior for

each pair of trials in the simulation.

Data and code for all simulations and experiments are freely available at https://github.com/tomov/chunking.
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