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Abstract 
Proteogenomic studies of cancer samples have shown that copy number variation           
can be attenuated at the protein level, for a large fraction of the proteome, likely due                
to the degradation of unassembled protein complex subunits. Such interaction          
mediated control of protein abundance remains poorly characterized. To study this           
we compiled genomic, (phospho)proteomic and structural data for hundreds of          
cancer samples and find that up to 42% of 8,124 analyzed proteins show signs of               
post-transcriptional control. We find evidence of interaction dependent control of          
protein abundance, correlated with interface size, for 516 protein pairs, with some            
interactions further controlled by phosphorylation. Finally, these findings in cancer          
were reflected in variation in protein levels in normal tissues. Importantly, expression            
differences due to natural genetic variation were increasingly buffered from          
phenotype differences for highly attenuated proteins. Altogether, this study further          
highlights the importance of post-transcriptional control of protein abundance in          
cancer and healthy cells. 
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Introduction 
 

Cancer cells can harbor large number of somatic DNA alterations ranging           
from point mutations to gene copy changes that can occur from deletion or             
amplification of small regions or whole chromosomes. While these events are the            
source of the genetic variation that can confer a selective advantage and lead to              
cancer, large changes in gene numbers can be detrimental and cause imbalances in             
the corresponding protein levels. Several studies have shown that the majority of            
changes in gene copy number will propagate to changes in the corresponding            
protein levels ​(Dephoure et al., 2014; Pavelka et al., 2010; Stingele et al., 2012)​.              
However, models of aneuploidy of different species and analysis of gene copy            
number variation (CNV) in cancer have shown that CNVs of protein coding genes             
belonging to protein complexes tend to be attenuated at protein level ​(Dephoure et             
al., 2014; Gonçalves et al., 2017; Ishikawa, Makanae, Iwasaki, Ingolia, & Moriya,            
2017)​. In addition we have shown that some complex members can act as             
rate-limiting subunits and indirectly control the degradation level of attenuated          
complex members ​(Gonçalves et al., 2017)​. These results are in-line with pulse            
chase degradation measurements showing that several complex subunits have a          
two-state degradation profile, that is compatible with a model in which they are             
expressed above the required levels and have a higher degradation rate when            
unbound from the complex ​(McShane et al., 2016)​. The attenuation of changes at             
the protein level also justifies why protein complex subunits show higher correlation            
of protein abundances than the corresponding mRNA levels ​(Ryan, Kennedy,          
Bajrami, Matallanas, & Lord, 2017; Wang et al., 2017) and why correlation analysis             
can be used to identify cancer specific interaction networks ​(Lapek et al., 2017;             
Roumeliotis et al., 2017)​. 

These results support a long standing view that protein complex formation can            
set the total amount of protein levels ​(Abovich, Gritz, Tung, & Rosbash, 1985)​. The              
degradation of unbound subunits may be due to a requirement of avoiding free             
hydrophobic interface surfaces that can be prone to aggregate ​(Young, Jernigan, &            
Covell, 1994)​. In eukaryotic species this appears to be achieved by degrading            
excess production while in bacterial and archaeal species genes coding for protein            
complexes subunits tend to occur within operon structures such that they will be             
expressed at similar levels ​(Mushegian & Koonin, 1996)​. This link between           
appropriate expression and complex formation is further emphasized by the          
preferential ordering of subunits in operons starting from the subunits that tend to             
assemble first ​(Wells, Bergendahl, & Marsh, 2016)​. 

While this phenomenon of gene dosage attenuation in protein complexes has           
been well documented we still do not understand (i) what protein properties are             
associated with the propensity for a protein to be attenuated, (ii) nor if the              
characteristics of the attenuation process are seen in non cancerous cells. Here we             
have extended on a previous analysis ​(Gonçalves et al., 2017)​, performing a            
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multi-omics study of protein level attenuation of gene dosage that combines           
genomics, (phospho)proteomics and structural data. Analysing 8,124 genes/proteins        
we observed that up to 42% of proteins show evidence of post-transcriptional            
regulation. Over 500 protein-protein interactions show indirect control of degradation          
of one subunit via physical associations, 32 of which may be further controlled by              
phosphorylation. Using structural models for 3,082 interfaces we find that a higher            
fraction of interface residues is associated with a higher degree of attenuation.            
Finally, we studied the impact of these findings on non-cancerous systems. We find             
that protein interaction mediated control of protein abundances have an impact of the             
variation of protein levels across tissues and that the degree of attenuation            
correlates with the probability that natural variation with an impact on gene            
expression may result in a phenotypic consequence. 
 
  
Results 
 
Protein level attenuation of gene dosage associates with distinct essentiality          
and structural features 
 

In order to study protein post-transcriptional control we collected matched          
gene copy-number, mRNA and protein expression cancer datasets made available          
by TCGA and CPTAC consortia, for breast (BRCA) ​(Cancer Genome Atlas Network,            
2012b; Mertins et al., 2016)​, ovarian (HGSC) ​(Cancer Genome Atlas Research           
Network, 2011; H. Zhang et al., 2016) and colorectal (COREAD) cancers ​(Cancer            
Genome Atlas Network, 2012a; B. Zhang et al., 2014)​. In addition we compiled             
existing protein/gene expression and copy-number data for cancer cell lines from           
Lapek et al. (BRCA) ​(Lapek et al., 2017)​, ​Roumeliotis et al. (COREAD) ​(Roumeliotis             
et al., 2017) and ​Lawrence et al. (BRCA) ​(Lawrence et al., 2015)​. In total, 368 cancer                
samples (294 tumours and 74 cell lines) were compiled in our study with matched              
gene expression, copy-number and protein abundance ( ​Figure 1A​). Principal         
component analysis (PCA) revealed the presence of confounding effects in the RNA            
and protein expression data ( ​Figures S1A and S2A​). These effects are related to             
cancer type, experimental batch, type of proteomics experiment, and also patient           
gender and age. Therefore, these potential confounding effects were regressed-out          
from the RNA and protein expression data ( ​Methods​). After correction, the           
association between the principal components and the potential confounding effects          
was removed (​Figures S1B and S2B​). 

We then investigated the impact of CNV in cancer proteomes, using the            
strategy reported in ​Gonçalves et al. ​(Gonçalves et al., 2017)​. Due to the sparseness              
of the protein data we selected genes with protein measurements in at least 25% of               
the 368 samples, comprising 8,124 genes with CNV, mRNA and protein expression.            
For each gene, we then calculated the Pearson correlation coefficient between the            
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CNV and the mRNA and the CNV and the protein, across samples. In order to               
assess the disagreement between the transcriptome and proteome regarding the          
copy number changes, we calculated an attenuation potential, corresponding to the           
difference between Pearson coefficients ( ​Methods​). A higher attenuation potential         
suggests genes that have CNVs buffered at the protein level. As previously, we then              
clustered the genes by attenuation potential using an unsupervised gaussian mixture           
model. Using this strategy, we identified 3,435 (42%) genes as attenuated at the             
protein level (2,578 low-attenuated and 857 high-attenuated) and 4,689 as          
non-attenuated ( ​Figure 1B and ​1C and Supplementary Table 1 ​). These results           
indicate that up to 42% of genes show signs of gene dosage buffering at the protein                
level, probably due to a post-transcriptional control of protein degradation, and           
robustly recapitulates previous findings on a smaller set of 6,418 genes ​(Gonçalves            
et al., 2017) ​. In line with previous findings, the list of attenuated genes is strongly               
enriched in well characterized protein complex members, and notably in members of            
large complexes ( ​Figure S3​). More, the attenuation potential is correlated with the            
number of subunits in a protein complex, indicating that members of large complexes             
have higher attenuation than those of small complexes ( ​Figure S3E​). Attenuated           
genes are also expected to show increased ubiquitination after proteasome          
inhibition, which was confirmed here using previously published data with 3 different            
proteasome inhibitors - MG-132, epoxomicin and bortezomib ​(Higgins et al., 2015;           
W. Kim et al., 2011; Udeshi et al., 2013; S. A. Wagner et al., 2011) ( ​Figure S4A​).                 
Having defined a comprehensive list of genes/proteins with different degrees of           
attenuation we then set out to characterize their physical and genetic properties. 

We first asked if the level of attenuation relates to distinct essentiality            
features, based on gene essentiality defined by CRISPR-Cas9 screens ​(Meyers et           
al., 2017) ​. Highly-attenuated proteins showed higher gene essentiality than low and           
non-attenuated proteins ( ​Figure S4B​) (Wilcoxon rank-sum test p-value < 2.2e-16,          
highly- vs non-attenuated proteins). This result is likely to be driven by the             
enrichment of protein complex members of essential complexes, such as the           
ribosome and spliceosome. We then studied the physical characteristics of these           
proteins such as length and structural properties. We found that the           
highly-attenuated proteins tend to have a smaller size ( ​Figure 1D​) (Wilcoxon           
rank-sum test p-value < 2.2e-16; highly- vs non-attenuated proteins), suggesting a           
size-dependent buffering mechanism. For the structural analysis, we considered a          
total of 2,392 proteins having structurally defined interface models ​(Mosca, Céol, &            
Aloy, 2012)​. We illustrate this analysis with the COP9 signalosome complex ( ​Figure            
1E ​) where we noticed a trend in which the subunits with a larger surface buried in                
interfaces had the strongest attenuation ( ​Figure 1F​). This trend was seen across all             
proteins, with the average fraction of residues at interfaces increasing from the            
non-attenuated to the highly-attenuated proteins (​Figure 1G​). 
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Figure 1 - Features of proteins showing gene dosage buffering at the protein             
level. (A) Number of samples with CNV, mRNA and protein measurements, by            
cancer type and batch. ​(B) Scatter plot representing the correlation between the            
CNV and mRNA (x-axis) and the CNV and protein (y-axis), for each gene. The colors               
represent the attenuation levels. From light blue to dark blue: non-attenuated,           
lowly-attenuated and highly-attenuated. ​(C) Number of proteins by attenuation level.          
(D) Protein length (log10 of number of residues) by attenuation level. ​(E)            
Representation of COP9 signalosome complex. ​(F) Scatter plot representing the          
correlation between the attenuation potential (x-axis) and the fraction of residues at            
interfaces in the complex (y-axis), for the 8 protein subunits from the COP9             
signalosome complex represented in figure E. ​(G) Percentage of residues at protein            
interfaces by attenuation level. 
 

Protein interaction-dependent control of degradation depends on interface size 

 
The features of highly attenuated proteins suggest that protein interactions          

are an important determinant of a protein’s susceptibility of having gene dosage            
attenuation. It has been suggested that some members of protein complexes can act             
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as scaffolding or rate-limiting subunits. We have previously analyzed a set of 58,627             
protein interactions among complexes curated in CORUM database and identified a           
set of 48 interactions in which a protein can indirectly control the abundance of an               
interacting partner ​(Gonçalves et al., 2017)​. Here we set out to expand this analysis              
to all currently reported human physical interactions in the BioGRID database           
( ​Methods​). In total, we collected 572,856 physical interactions and identified          
proteins whose CNV changes correlate with the protein abundance of interacting           
proteins once their mRNA levels are taking into account ( ​Methods​). For an            
interaction pair of proteins X and Y, we used a linear regression model, where we               
predict the protein levels of protein Y using the CNV of X, discounting the mRNA of Y                 
and the impact of other covariates ( ​Methods​). Correlating molecular changes with           
DNA variation such as CNVs ensures the correlations found are most likely causal             
and in the direction of DNA changes to the molecular changes. Copy number             
alterations in cancer most often occur in large segments leading to co-amplification            
or co-deletion of multiple co-localized genes. For proteins with two or more            
interacting partners that are genomically co-localized, we selected only the top           
ranking association to avoid spurious “passenger” associations (​Methods​). 

Out of 572,856 physical interactions we had data to test associations for            
411,591 with this model, finding 516 protein-protein associations as significant using           
CNV and mRNA (FDR < 5%) ( ​Figure 2A ​and Supplementary Table 2 ​). In this set of                
associations, we classified the proteins as ​controlling (423) - those capable of            
controlling the protein levels of their interactions partners; ​controlled (353) - whose            
abundance levels depends on their interactions; and ​both ​(60), as the proteins with             
the two characteristics ( ​Figure 2B​). Out of 423 ​controlling proteins, 62 had at least              
two interactions. The top ​controlling protein was TCP1, which was predicted to            
control the protein abundance of 7 complex partners, including CCT3, CCT5, CCT7            
and CCT8 ( ​Figure 2D​). As expected, the ​controlled proteins had higher attenuation            
potential, a consequence of the post-transcriptional regulation of their protein levels           
( ​Figure 2C ​) (Wilcoxon rank-sum test p-value < 4.8e-6; ​controlled vs ​controlling           
proteins). The ​controlled proteins also show a smaller size (Wilcoxon rank-sum test            
p-value < 9.8e-6; ​controlled vs ​controlling proteins), which corroborates the          
hypothesis that protein size is important for the buffering mechanism ( ​Figure 2E​).            
These results increased the evidence of interactions and regulators that may act as             
drivers of protein complex assembly. 

We hypothesized that protein interaction-dependent control of degradation        
could depend on the protein interfaces size. To test this, we identified 60 significant              
associations with available structural models ( ​Methods​) and correlated the protein          
interface size with the effect-size (beta value) and significance (FDR) of the            
respective protein association pairs ( ​Figure 2F​). We found that both statistics are            
positively and significantly correlated with interface size (CNV beta - Pearson’s r:            
0.36; p-value: 4.5e-3; -log10 FDR - Pearson’s r: 0.46; p-value: 2.0e-4). We selected             
two examples to illustrate the observed differences ( ​Figure 2G​). Post-transcriptional          
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regulation of TRMT61A by TRMT6, that form the tRNA         
(adenine-N1-)-methyltransferase enzyme, is the second strongest association found        
in our analysis, and the interface formed between these two proteins covers a total of               
72 residues. In contrast, a weaker association between CSNK2A1 and CSNK2B may            
be explainable by a much smaller interface of 13 residues. 

These results show that interface sizes are an important determinant of the            
protein interaction mediated control of protein degradation. This may be due to an             
effect of binding affinity or differences in the recognition of exposed interfaces of             
different sizes by the degradation machinery. 
 
 

 
 
Figure 2 - Physical protein associations. (A) ​Volcano plot of CNV beta (x-axis)             
and FDR (y-axis) for 411,591 protein pairs. Non-significant associations (FDR > 5%)            
are represented in light-blue, and significant associations (FDR < 5%) in dark blue.             
Associations also found to be significant (FDR < 5%) in the mRNA model and filtered               
by genomic co-localization are highlighted with a darker border (516). ​(B) Number of             
proteins by control status. ​(C) Distribution of attenuation potential by control status.            
(D) Examples of protein associations between TCP1 ( ​controlling protein) and CCT3,           
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CCT5, CCT7 and CCT8 ( ​controlled proteins). The boxplots show the relation           
between the CNV changes of TCP1 and the protein residuals (log2FC) of the             
interacting partners. The scatter plots show the same relation with the protein            
abundance of TCP1. ​(E) Protein length (log10 of number of residues) by control             
status. ​(F) Scatter plots displaying the correlation between the protein association           
statistics (beta and FDR) with the protein interface size (number of residues at the              
protein interface, measured in the ​controlled protein). Each dot is a protein            
association. Two representative associations between CSNK2A1 - CSNK2B (small         
interface) and TRMT6 - TRMT61A (big interface) are denoted in red. ​(G)            
Representation of protein interactions between CSNK2A1 and CSNK2B and TRMT6          
and TRMT61A. The ​controlled proteins are coloured in yellow (CSNK2B and           
TRMT61A) and the ​controlling proteins are coloured in ​grey (CSNK2A1 and           
TRMT6). The interface area is represented in red. 
 

Identification of phosphorylation sites that may modulate protein complex         
assembly 

The role of phosphorylation in modulating protein binding affinities has been           
well described ​(Beltrao et al., 2012; Betts et al., 2017; Nishi, Hashimoto, &             
Panchenko, 2011)​. We reasoned we could use the multi-omics datasets to find            
protein interactions affected by phosphorylation, which in turn could impact complex           
assembly and protein degradation. Out of 368 samples with CNV, mRNA and protein             
measurements, 170 also have quantifications at the phosphosite level ( ​Figure 3A​).           
For this analysis we used proteins and phosphosites measured in at least 50% of the               
170 samples, corresponding to 8,546 proteins and 5,733 phosphosites. 

Using the compendium of physical interactions (572,856 protein interactions),         
we tested whether the changes of a phosphosite Xp from protein X is associated              
with the protein levels of the interacting protein Y. As before we used a linear               
regression model where the protein abundance of protein Y is predicted using the             
phosphosite levels of protein X (Xp), while taking into account the protein and CNV              
levels of protein X, the RNA of protein Y, and other covariates ( ​Methods​). Out of               
315,772 phosphosite-protein pairs tested with this model, 11,672 associations were          
significant (FDR < 5%). To ensure the associations are directional, we overlapped            
these associations with the 516 protein-protein associations found with the CNV and            
mRNA models, identifying 32 overlapping associations ( ​Figure 3B​, listed in          
Supplementary Table 3 ​). Our interpretation of these associations is that these           
phosphosites can regulate the protein interaction and thereby modulate the          
degradation of the complex subunits. 

The 32 associations involve 28 phosphosites, and of these 2 phosphosites           
are already known to regulate interactions (POLD3 S458 and MYH9 S1943) and an             
additional case (EIF3A S492) is not yet known to regulate protein interactions but is              
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at the interface with other complex members ( ​Figure 3C​). EIF3A is predicted here to              
be a “rate-limiting” subunit of the eukaryotic initiation factor 3 complex and has been              
previously experimentally implicated in the control of protein levels of several of the             
other subunits ​(S. Wagner, Herrmannová, Malík, Peclinovská, & Valášek, 2014)​.          
One phosphosite of EIF3A (S492) showed a strong association with the protein            
levels of two other complex subunits (EIF3D and EIF3E). In line with this, we find               
that the copy number of EIF3A correlates with the residual protein levels of EIF3D              
(i.e. after regressing out EIF3D mRNA levels) and that the phosphosite levels of             
EIF3A S492 correlates better with EIF3D protein residual than the EIF3A total            
protein levels ( ​Figure 3D​). These results suggest that EIF3A S492 may have an             
impact on protein complex assembly. 
 

 
Figure 3 - Identification of phosphorylation sites with a potential role in            
regulating protein interactions. (A) Number of samples with CNV, mRNA and           
phospho(protein) measurements, by cancer type/batch. ​(B) Volcano plot of phospho          
beta (x-axis) and FDR (y-axis). Each dot is a phosphosite-protein association,           
between a putative regulatory phosphosite Xp and a regulated protein Y. All            
associations (438) are significant in the CNV and mRNA models, between the            
putative regulatory protein X and the regulated protein Y. 32 associations (FDR <             
5%) are also significant in the phospho model (dark blue). ​(C) Representation of             
EIF3 complex in two orientations. The arrow points to the phosphosite S492 (serine             
492) at EIF3A subunit. ​(D) Significant association between EIF3A/EIF3A S492 and           
EIF3D. The boxplots show the agreement between the CNV changes of EIF3A and             
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the protein residuals (log2FC) of EIF3D. The scatter plots show the same relation             
with the protein and phosphosite (S492) abundances of EIF3A. 
 

Protein attenuation mechanisms found in cancer are observed in normal          
tissues. 

 
The study of the impact of CNVs in cancer proteomes indicates that up to ~40% of                
genes have copy number changes that are buffered at the protein level. Such             
post-transcriptional regulatory processes should not be specific to cancer, however,          
the extent that these effects are observed in normal cellular states is still largely              
unknown. To address this question we analyzed gene and protein expression           
datasets for normal tissues, made available by the Genotype-Tissue Expression          
(GTEx) and Human Protein Map (HPM) projects. In total, we collected expression for             
5,239 proteins and genes, across 14 tissue types (​Methods​). 

We tested if the post-transcriptional control dependent on protein interactions          
observed in cancer is present in normal tissues. For this, we asked if the protein               
abundance of ​controlling-controlled protein pairs will tend to correlate more strongly           
than other protein interaction pairs. Similarly, we expected that the correlation           
between the mRNA and protein levels of ​controlled subunits would tend to be             
weaker than for non post-transcriptionally ​controlled proteins. We tested this using           
protein-protein interaction pairs measured in the tissue data with significant          
controlling-controlled relationships from cancer data (301 pairs) and all other          
161,945 protein-protein interactions pairs ( ​Methods​). Reassuringly, we observed        
that the correlation of protein abundance across tissues increased for protein pairs            
with stronger association strength, for stable mRNA-mRNA correlation values         
(Wilcoxon rank-sum test p-value = 8.96e-4 between non-significant and significant          
pairs; p-value = 8.25e-06 between non-significant and highly-significant pairs)         
( ​Figure 4A ​). Also, as predicted the protein to mRNA correlation values across            
tissues, of the ​controlled subunits, decreases with the association strength (Wilcoxon           
rank-sum test p-value = 0.022 between non-significant and significant pairs) ( ​Figure           
4A​). We provide two examples for protein interacting pairs ARCN1 and COPA, and             
TRAPPC8 and TRAPPC11 where the mRNA levels of the ​controlling subunits           
(ARCN1 and TRAPPC8) appear to dictate the protein abundance of both proteins            
( ​Figure 4B ​). These results suggest that the protein associations identified in the            
cancer datasets can also be observed in normal tissues, at least in aggregate.             
Importantly, they demonstrate that cancer data can be a useful resource to study             
protein homeostasis in normal conditions. 
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Figure 4 - Evidence of interaction mediated control of protein abundances in            
normal tissues. (A) ​Pearson correlation coefficient between the protein of the           
controlling and ​controlled genes (blue); mRNA of the ​controlling and ​controlled           
genes (grey) and mRNA and protein abundance of the ​controlled gene (yellow); for             
the non-significant associations (FDR > 5%), significant associations (1% < FDR <            
5%) and highly-significant associations (FDR < 1%). ​(B) Heatmap showing the           
agreement between the mRNA and protein expression profiles (rows) across tissues           
(columns) for two highly-significant associations: ARCN1 ( ​controlling​) ~ COPA         
( ​controlled ​) and TRAPPC8 ( ​controlling​) ~ TRAPPC11 (​controlled ​). 

Buffering of gene expression variation due to natural genetic variation 

 
If the phenomenon of interaction mediated control of protein abundances is           

important for tuning protein levels in normal cells, we then expect consequences on             
how natural variation may sometimes result in changes in mRNA but not protein and              
consequently phenotypic traits. In the context of the attenuation models studied here,            
single nucleotide polymorphisms (SNPs) associated with gene expression via         
quantitative trait loci (QTL) analysis - known as expression QTLs (eQTLs) - should             
also tend to be attenuated at protein level potentially for the same genes as those               
found in cancer. To study this, we focused on a reduced set of genes with significant                
CNV-mRNA correlation (Pearson’s r > 0.3), and analysed if protein level CNV            
buffering could affect the probability of eQTLs to have phenotypic impact and be             
associated with disease traits, as measured by tagging to SNPs linked to            
phenotypes in genome-wide association studies (GWAS) ( ​Figure 5A and ​Methods​).          
To this end we relied on ​cis ​-eQTLs reported in GTEx and compared the fraction of               
GWAS tagging eQTLs for different classes of protein attenuation ( ​Figure 5B top and             
Methods ​). We found that eQTLs corresponding to genes classified as highly           
attenuated have a lower fraction of GWAS tagging eQTLs, and that the difference             
between the degree of attenuation increases for eQTLs mapped in multiple tissues            
( ​Figure 5B top ​). A logistic model linking the GWAS tagging status of the eQTLs to               
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the attenuation score of the corresponding ​cis genes confirms that variation with            
impact on expression of attenuated proteins will tend to be buffered and have a              
lower chance of causing a phenotypic effect (​Figure 5B bottom​). 

Highly attenuated genes tend to be enriched in protein complexes that are            
more essential to the cell and therefore could have specific biases as to how eQTLs               
are linked to GWAS associated traits. To account for this potential bias we replicated              
the analysis on members of protein complexes. Interestingly, this shows that the            
attenuation score has a higher impact on GWAS tagging probability for members of             
protein complexes, and more specifically for members of large protein complexes           
(>5 subunits) ( ​Figure S5​). 

These results suggest that the CNV attenuation measured in cancer cells for            
protein abundance has direct application in the ranking of potential impact of mRNA             
variation on phenotype differences and support the idea that some of these            
attenuation mechanisms may take place in multiple tissues. 
 

 
 
Figure 5 - Protein attenuation reduces cis-eQTLs impact on phenotypic traits.           
(A) ​Diagram illustrating the highest probability of cis-eQTLs from non-attenuated          
genes (red) tag GWAS hits, in comparison to cis-eQTLs from attenuated genes            
(blue). ​(B) (top) Fraction of eQTLs associated to disease traits for the three classes              
of CNV attenuation: no (light-blue), low (blue) and high (dark-blue) attenuation. The            
x-axis corresponds to the number of tissues in which an eQTL was called. (bottom)              
Log odds ratio of eQTL association with a disease trait. Values indicate the change              
in the odds ratio of eQTL association with GWAS variants for an unit increase in the                
attenuation score. 
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Discussion 
 

The joint analysis of multi-omics datasets of cancer samples suggests that a            
very significant fraction of the proteome (up to 42%) is under post-transcriptional            
control. The set of genes with protein level buffering of CNVs is enriched in              
gene-products belonging to large protein complexes. In addition, we found that the            
fraction of interface residues of a protein is a strong determinant of attenuation.             
Together with experiments on pulse chase degradation ​(McShane et al., 2016)​,           
aneuploidy ​(Dephoure et al., 2014; Pavelka et al., 2010; Stingele et al., 2012) and              
the impact of natural genetic variation on protein levels ​(Battle et al., 2015; Chick et               
al., 2016) these results implicate protein complex formation as an important factor in             
post-transcriptional control, most likely via a high degradation rate of unassembled           
subunits. However, it is likely that multiple mechanisms contribute to          
post-transcriptional control measured in the cancer samples including, for example,          
the control of protein translation rates by microRNAs or RNA binding proteins. The             
extent of post-transcriptional control that is explained by the different processes           
remains to be studied. 

We observed that the fraction of residues at the interface correlates with the             
probability that a protein shows gene dosage attenuation. Similarly, the size of the             
interface correlates with the strength of association between pairs of physical           
interactions in which one subunit appears to control the abundance level of the             
interaction partner. The size of the interface typically correlates with increasing           
binding affinity between proteins as well as larger amounts of hydrophobic residues            
that are exposed in the absence of interactions. We speculate that either of these              
consequences could play a role in the attenuation. In particular, larger fraction of             
hydrophobic regions could increase the propensity to form aggregates and in some            
cases hydrophobic regions are known to be recognized for degradation ​(Xu,           
Anderson, & Ye, 2016)​. This could represent a general mechanism for recognition of             
unassembled complex subunits. The structural analysis performed here is limited by           
the current lack of coverage for structures of protein complexes. In the future,             
additional structures may allow us to study in more detail the interface features that              
are important for the attenuation mechanism. 

We have used data from cancer samples to identify the attenuated proteins            
and physical interactions with “rate-limiting” subunits. It is still unclear if the same             
proteins and interactions will have the same post-transcriptional control in other           
systems and/or species. When studying expression variation in normal tissues and           
the association of eQTLs with phenotypes we observed that, in aggregate, the same             
proteins and interactions show signals consistent with post-transcriptional buffering         
of mRNA expression variation. Of note, we find that eQTLs are less likely to be               
linked to phenotypes in highly attenuated proteins. This is in line with studies of              
mRNA and protein QTLs in human iPSC lines, showing that genetic variation driving             
mRNA changes are more likely to be associated to genotype differences when they             
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are observed at the protein level ​(Mirauta et al., 2018)​. These findings highlight the              
importance of studying the degree of conservation of these post-transcriptional          
processes in different tissues and systems in the context of human genetics and             
disease. 

 
Methods 
 
Multi-omics data collection 
 
Proteomics and phosphoproteomics quantifications at the protein/phosphosite level        
from TCGA cancer patients were obtained from the CPTAC data portal           
(proteomics.cancer.gov/data-portal), for breast cancer (BRCA) ​(Mertins et al., 2016)​,         
colorectal cancer (COREAD) ​(B. Zhang et al., 2014) and ovarian cancer (HGSC) ​(H.             
Zhang et al., 2016)​. The same data from cancer cell lines were downloaded for              
COREAD cell lines ​(Roumeliotis et al., 2017) and for BRCA cell lines ​(Lapek et al.,               
2017; Lawrence et al., 2015)​. Gene-level RNA-seq raw counts were acquired from            
GEO (GSE62944) ​(Rahman et al., 2015) for TCGA samples and from the CCLE data              
portal ​(Barretina et al., 2012; Cancer Cell Line Encyclopedia Consortium &           
Genomics of Drug Sensitivity in Cancer Consortium, 2015; Rahman et al., 2015) for             
cancer cell lines. Copy-number variation GISTIC levels ​(Mermel et al., 2011) were            
compiled from the firebrowse (firebrowse.org) data portal (accession date         
15/01/2018) for TCGA samples and from the CCLE data portal for cancer cell lines              
(accession date 14/02/2017). 
 
Data pre-processing and normalisation 
 
The label-free protein quantifications (precursor areas) for COREAD CPTAC         
samples ​(B. Zhang et al., 2014) were first normalized by sample, where summed             
peak areas for the same protein were divided by the total summed area for the               
observed sample proteome. Relative protein abundances were then calculated by          
dividing each protein area over the median area across samples, and then log2             
transformed. Protein and phosphosite intensities for COREAD cell lines ​(Roumeliotis          
et al., 2017) were divided by 100 and transformed to log2. For BRCA cell lines               
(Lapek et al., 2017) protein log2 fold-changes were calculated by subtracting the            
median intensities across the samples. Similarly, the label-free protein intensities          
(peak areas) for BRCA cell lines from ​(Lawrence et al., 2015) were converted into              
relative abundances by calculating the log2 ratio of protein intensities over the            
median intensities across samples. Sample replicates of protein and phosphoprotein          
were combined by averaging the values for each protein and phosphosite,           
respectively. Phosphopeptides intensities mapping to the same phosphosite were         
combined by calculating the median phosphosite intensity per sample. In the cancer            
cell lines, genes with multiple isoforms were filtered by selecting the protein isoform             
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with highest median expression across samples. Proteomics and        
phosphoproteomics distributions across cancer samples and cell lines were quantile          
normalized to ensure comparable distributions, using ​normalizeQuantiles function        
from Limma R package ​(Ritchie et al., 2015)​. In total, 13,569 proteins across 436              
samples (340 cancer samples and 96 cell lines) and 79,824 phosphosites across            
195 samples (145 cancer samples and 50 cell lines) were assembled in this study.              
Given the sparseness of the phospho(protein) data, for the subsequent analyses it            
was only selected proteins measured in at least 25% of the 368 samples with              
protein, mRNA and CNV measurements, and the phosphosites measured in at least            
50% of the 170 samples with also phosphorylation data, comprising 9,188 proteins            
and 5,733 phosphosites. The phospho(protein) and mRNA data were then          
standardized using the z-score transformation. 
 
At the RNA-seq level, lowly expressed genes were removed by filtering out genes             
with mean counts-per-million (CPM) lower than 1 across samples. After raw counts            
normalization by the trimmed-mean of M-values method ​(Robinson & Oshlack, 2010)          
using the edgeR R package ​(Robinson, McCarthy, & Smyth, 2010)​, the log2-CPM            
values were extracted from ​voom ​(Law, Chen, Shi, & Smyth, 2014) function in             
Limma. After merging the CPTAC samples with the CCLE cell lines, the final             
RNA-seq dataset comprised 13,228 genes with measurements across 370 samples          
(296 cancer samples and 74 cell lines). At the CNV level, after compiling the GISTIC               
thresholded data, 19,023 genes were found to have CNV measurements across 412            
samples (337 cancer samples and 75 cell lines). 

 
Potential confounding factors revealed by PCA analysis (supplementary figures 1A          
and 2A) were regressed-out using a multiple linear regression model. This model            
was implemented with the protein or mRNA abundance of a given gene as             
dependent variable and the potential confounding factors, i.e. cancer type,          
experimental batch, proteomics technology, age and gender as independent         
variables. The residuals from the linear model were the protein and mRNA variation             
not driven by the confounding effects, as the second PCA demonstrated           
(supplementary figures 1B and 2B). 
 
Analysis of protein attenuation 
 
The strategy in ​(Gonçalves et al., 2017) was used to evaluate the impact of              
copy-number variations at the genome level on cancer proteomes. For each gene,            
the Pearson correlation coefficients between the CNV and mRNA and the CNV and             
protein were calculated, and an attenuation measure devised as follows: 
 
[1] Attenuation potential ​i ​ = corr(CNV ​i ​, mRNA​i ​) - corr(CNV ​i ​, Protein ​i ​), i ​∈ ​Protein  
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where ​corr represents the Pearson correlation coefficient and ​Protein represents          
8,124 genes for which CNV, mRNA and protein quantifications across 368 samples            
where available. After calculating the attenuation potentials, a gaussian mixture          
model (GMM) with 4 mixture components was used to cluster the genes in four              
different groups. Group 1 had 19 genes with a negative attenuation potential, due to              
the higher correlation between the CNV and Protein than with the CNV and mRNA.              
These genes, which were not attenuated at the protein level, were included with the              
remaining non-attenuated genes in group 2, comprising 4,689 genes. Groups 3 and            
4 contained the lowly-attenuated and highly-attenuated genes, with 2,578 and 857           
genes, respectively. The GMM was implemented using ​Mclust ​function from the           
mclust R package ​(Scrucca, Fop, Murphy, & Raftery, 2016) ​. 

 
The enrichment of CORUM complexes was calculated with an hypergeometric test,           
using the ​enrichr function from the ​clusterProfiler R package ​(Yu, Wang, Han, & He,              
2012)​. Only CORUM complexes with a Jaccard index lower than 0.9 and with more              
than 5 proteins were used. The comparison of ubiquitination sites fold-changes           
across protein attenuation levels was done using protein ubiquitination data obtained           
with three proteasome inhibitors: MG-132, epoxomicin and bortezomib ​(Higgins et          
al., 2015; W. Kim et al., 2011; Udeshi et al., 2013; S. A. Wagner et al., 2011)​. 
 
 
Compendium of physical protein interactions 
 
In order to build a compendium of physical protein interactions, we downloaded a             
data set of protein-protein interactions from BioGRID version 3.4.157 ​(Stark et al.,            
2006) (accession date 30/01/2018). We only selected protein interactions occurring          
in human and captured with physical experimental systems. Interactions captured          
with Affinity Capture-RNA and Protein-RNA were excluded in order to guarantee that            
our dataset contained only interactions observed at the protein level. After excluding            
protein homodimers, 524,148 protein interactions (262,074 unique) were compiled         
with BioGRID. A list of protein interactions was also built using a set of protein               
complexes from the CORUM database ​(Giurgiu et al., 2018) (accession date           
29/05/2018). The rationale was that protein partners from the same protein complex            
interact physically at least once. Using a set of 1,787 protein complexes and             
excluding protein homodimers, we assembled 74,712 (37,356 unique) physical         
protein interactions. This was expanded using a set of curated protein complexes            
from the endoplasmic reticulum (ER), yielding 1,196 (598 unique) protein pairs. In            
total, 572,856 (286,428 unique) protein physical interactions were compiled. 
 
 
Linear modelling to identify protein and phospho-protein associations 
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Protein associations  
For a given protein physical interaction pair X and Y, it was tested whether protein X                
can control the protein levels of Y through protein-protein interaction, potentially           
constraining the degradation rate of Y. For each interacting pair two nested linear             
models were fitted. The first model (null) was used to predict the protein levels of Y                
(Py) using its mRNA (Ty) and a set of other covariates, i.e. cancer type, experimental               
batch, proteomics technology, patient age and gender (equation 1). In a second            
linear model (alternative), the CNV levels of X (Gx) was added as predictor variable              
(equation 2). A Likelihood Ratio Test (LRT) (equation 3) was then applied, in order to               
test whether the second model increases the goodness of fit of the first model in               
predicting Py. 
 
[2] Null model: P ​y​ = 𝛃​0​ + 𝛃​1​T​y​ + 𝛃​2​(covariates) + ɛ  
 
𝛃​0 ​represents the intercept, 𝛃​1 ​the regression coefficient (effect size) for the mRNA of              
Y,​ ​𝛃​2​ the regression coefficients of the covariates, and ɛ the noise term. 
 
[3] Alternative model: P ​y​ = 𝛃​0​ + 𝛃​1​T​y​ + 𝛃​2​(covariates) + 𝛃​3​G​x​ + ɛ  
 
𝛃​3 ​is the regression coefficient for the CNV (G​x​) of protein X. A likelihood ratio test                
(LRT) was used to assess ​ the significance of the association: 
 
[4] LRT = 2 × [log​e​Lik(Alternative) - log​e​Lik(Null)]  
 
log ​e​Lik corresponds to the log likelihood of the alternative and null models. P-values             
were then calculated using the LRT statistic over a chi-squared distribution, and            
adjusted for false discovery rate (FDR) using the Benjamin-Hochberg method. This           
model was applied for a given protein association pair X and Y if: X ∈ CNV ⋀ Y ∈                   
Protein ⋀ Y ∈ mRNA, where CNV, Protein and mRNA represent the multi-omics             
datasets. 
 
A total of 411,591 protein pairs followed this criteria and were tested across 368              
tumor samples. The same analysis was performed with the mRNA, instead of the             
CNV, of protein X for 392,128 protein pairs. To avoid spurious protein associations             
that might occur due to the genomic co-localization of the ​controlling proteins, the top              
ranked association was selected using the Borda ranking method. This was done            
systematically for every cases where multiple ​controlling proteins in the same           
chromosome were associated with the same ​controlled protein. More than one           
controlling protein in the same chromosome for the same ​controlled protein were            
allowed if their CNV profile Pearson correlation was lower than 0.5. 
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The linear models were implemented using ​lm R function and the LRT test with              
associated statistics were calculated using ​lrtest function from lmtest R package. The            
Borda ranking method was implemented using the ​Borda function from TopKLists R            
package ​(Schimek et al., 2015)​. 
 
Phospho-protein associations 
For a given protein pair X and Y it was tested whether a phosphosite Xp from protein                 
X can be associated with changes in the protein abundance of protein Y. A similar               
model to before linear regression models and LRT tests was used. For each             
phosphosite-protein interaction, a first null model was fitted to predict the protein            
levels of Y (Py) using its mRNA (Ty), the CNV and protein levels of protein X (Gx                 
and Px) and the same covariates (cancer type, patient age and gender) (Equation 4).              
In a second alternative linear model, the phosphosite Xp (Phox) of protein X was              
added as predictor variable (equation 5). The models were then compared using a             
Likelihood Ratio Test as in equation 3. 
 
[5] Null model: P ​y​ = 𝛃​0​ + 𝛃​1​T​y​ + 𝛃​2​G​x ​+ 𝛃​3​P​x ​+​ ​𝛃​4​(covariates) + ɛ 
 
where 𝛃​0 ​represents the intercept, 𝛃​1 ​the coefficient of the mRNA of Y, 𝛃​2 and 𝛃​3 ​the                 
regression coefficients for the CNV and Protein of X, respectively, and ​𝛃​4 the              
coefficients of other covariates , and ɛ the noise term. 
 
[6] Alternative model: P ​y​ = 𝛃​0​ + 𝛃​1​T​y​ + 𝛃​2​G​x ​+ 𝛃​3​P​x ​+​ ​𝛃​4​(covariates) + 𝛃 ​5​Pho ​x​ + ɛ  

 
where 𝛃​5 ​is the regression coefficient for the phosphosite Xp of protein X. This model               
was applied for a given phosphosite-protein association pair Xp and Y if Xp ∈              
Phospho ⋀ X ∈ Protein ⋀ X ∈ CNV ⋀ Y ∈ Protein ⋀ Y ∈ mRNA, where Phospho,                   
Protein, CNV, and mRNA represent the multi-omics datasets. A total of 315,772            
phosphosite-protein pairs followed this criteria and were tested with this model           
across 170 tumor samples. 
 
Structural analysis 
 
Protein interface sizes were calculated using an in-house pipeline (int3dInterfaces,          
github.com/evocellnet/int3dInterfaces) that extracts protein interfaces from      
Interactome3D structures ​(Mosca et al., 2012)​. For each protein interaction structure           
in Interactome3D, this pipeline uses NACCESS (bioinf.manchester.ac.uk/naccess) to        
calculate the solvent accessibility of the bound and unbound monomers. Every           
residue changing its relative solvent accessibility is considered to form part of the             
interface. From the 11,530 human protein interaction structures analysed with this           
pipeline, structures of protein homodimers or structures with less than 100           
amino-acids were removed. Also, structures with chain lengths bigger than the           
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respective UniProt protein lengths and with the same chain length for each partner             
were removed. After applying these filters, 3,082 structures with 6,147 protein           
interactions were used in the subsequent analyses. 

 
For the 1,470 proteins which contained both information about CNV          

attenuation and interface size, the percentage of residues in protein interfaces was            
calculated as the ratio of the number of unique residues in interfaces over the protein               
size. For 60 significant protein association pairs represented in the structural data,            
the relation between the protein interface size with the regression CNV coefficient            
and FDR, was assessed using the Pearson correlation coefficient. For each pair, the             
protein interface size was calculated in the ​controlling and ​controlled proteins. The            
protein sizes (number of residues) were obtained from UniProt for 20,349 proteins            
(accession date 19/06/2018). 

The percentage of area inside complex for the protein subunits from the            
COP9 signalosome was calculated using FreeSASA ​(Mitternacht, 2016)​. For each          
protein subunit, this percentage corresponded to the difference between the solvent           
accessible surface area (SASA) outside and inside complex over the SASA outside            
complex. The SASA was calculated in units of squared Ångström (Å​2​). 
 
 
Analysis of gene essentiality using CRISPR-Cas9 screenings 
 
Gene essentiality data obtained with CRISPR-Cas9 screenings ​(Meyers et al., 2017)           
was downloaded from Project Achilles data portal (portals.broadinstitute.org/achilles)        
(accession date 31/10/2017). This data contains gene-dependency levels adjusted         
for copy-number specific effects for 17,670 genes across 341 cancer cell lines.            
Genes with an essentially score lower than -1×SD (the standard deviation for the             
entire data set corresponds to 0.3) in more than 5% of the cell lines were considered                
essential, and used in the remaining analysis (5,532 genes). The median gene            
essentiality was calculated for 3,548 genes with attenuation and essentiality data           
across the 341 cancer cell lines. 
 
 
Pairwise correlation of protein association pairs using normal tissue data 
 
Gene and protein expression data for normal human tissues were obtained from the             
GTEx ​(GTEx Consortium et al., 2017) and Human Proteome Map (HPM) ​(M.-S. Kim             
et al., 2014) portals. The gene expression was obtained in the format of RNA-seq              
median RPKM for 56,238 genes across 53 tissues. The protein expression was            
downloaded as averaged label-free spectral counts for 17,294 genes across 30           
tissues. For the protein expression data, it was selected 9,156 genes in common             
with the HPM data available in Expression Atlas ​(Petryszak et al., 2014)​. The 14              
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tissues common to the GTEx and the HPM used in the remaining analysis were:              
frontal cortex, spinal cord, liver, ovary, testis, lung, adrenal gland, pancreas, kidney,            
urinary bladder, prostate gland, heart, esophagus and colon. The gene expression in            
the last three tissues was averaged in GTEx, between heart atrial appendage and             
left ventricle; between esophagus gastroesophageal junction, mucosa and        
muscularis; and between colon sigmoid and transverse. The protein and gene           
expression data was then filtered to only include genes and proteins expressed in at              
least 10 of 14 tissues, resulting in 5,239 genes consistently expressed at the gene              
and protein level. The RNA and protein measurements were then standardized to            
z-scores and quantile normalized. 
 

Having assembled the gene and protein expression datasets for normal          
tissues, pairwise Pearson correlation coefficients were calculated between the         
protein of the ​controlling and ​controlled genes, mRNA of the ​controlling and            
controlled genes, and mRNA and protein of the ​controlled gene. The Pearson            
correlations were calculated for 91 highly-significant associations (FDR < 0.01), 210           
significant associations (0.01 ≤ FDR < 0.05) and 161,945 non-significant          
associations at the CNV and mRNA level (FDR ≥ 0.05). 
 
Analysis of the impact of CNV attenuation on the eQTL association to disease             
traits 

Following the approach in HipSci proteomics ​(Mirauta et al., 2018)​, we           
considered a stringent set of 21,601 associations from the NHGRI-EBI GWAS           
catalog (download on 10 April 2018; converted to hg19) for analysis. We considered             
eQTLs reported from the Genotype-Tissue Expression (GTEx) in 35 tissues          
(excluding brain), compute the number of tissues having the same slope sign, i.e             
direction of effect size, and discarded those with consistent slope in less than 3              
tissues. 

We defined proxy variants of each ​cis​-eQTL as variants in high LD (r ​2 > 0.8;               
based on the UK10K European reference panel) within the same ​cis window. Next             
we grouped eQTLs in high LD blocks (r ​2 > 0.8), excluded from this analysis 247               
genes having each more than 100 eQTL blocks, and obtain a final set of 66,197               
eQTL blocks corresponding to 2,953 genes and 441,194 eQTL - gene associations.            
We then define these blocks as GWAS-tagging if for at least one eQTL in the block                
at least one LD proxy variant was annotated in the NHGRI-EBI GWAS catalog.             
Finally, we report the fraction of GWAS-tagging eQTL stratified by the attenuation            
level of the corresponding ​cis genes. To assess the robustness of this analysis and              
to study the effects on GWAS tagging probability of eQTL recurrence across tissues,             
we compute the number of tissues in which an eQTL was called with the same               
slope, and report results by stratifying the eQTLs by increasing number of tissues. 
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We rely on core protein complexes from CORUM to identify the gene            
complex membership status, and segregate those which are annotated in at least            
one large complex (>5 subunits). Out of the genes with eQTL evidence and with              
annotation scores, 961 are annotated in CORUM and 576 are members of large             
complexes. 
 
Supplementary Figures and Tables 
 

 
 
Supplementary figure 1. Confounding effects regressed-out from       
transcriptomics data. (A) ​Pearson correlation coefficient of the first 10 principal           
components (PCs) with the potential confounding effects before normalization. ​(B)          
Pearson correlation coefficient of the first 10 principal components (PCs) with the            
potential confounding effects after normalization. 
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Supplementary figure 2. Confounding effects regressed-out from proteomics        
data. (A) ​Pearson correlation coefficient of the first 10 principal components (PCs)            
with the potential confounding effects before normalization. ​(B) Pearson correlation          
coefficient of the first 10 principal components (PCs) with the potential confounding            
effects after normalization. 
 

 
Supplementary figure 3. Relationship between CNV attenuation in proteins and          
protein complex membership. (A) ​List of top protein complexes ordered by           
enrichment in attenuated genes. X-axis shows p-values derived with an          
hypergeometric test (Benjamini-Hochberg multiple test correction). We discarded        
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from the list of CORUM complexes those with a Jaccard index higher than 0.9 with               
any other complex and those with 5 proteins or less ​(B) Number of genes for each                
attenuation class by complex membership status (CORUM). ​(C) Number of genes           
stratified by the maximum number of subunits of any protein complex incorporating            
the genes. ​(D) ​Enrichment of attenuated proteins in members of protein complexes            
stratified by complex size, i.e number of subunits. Shown are the p-values derived             
with an exact Fisher test (alternative “greater”). ​(E) ​Relationship between the number            
of subunits in a protein complex and the protein complex member CNV attenuation.             
For each member of a complex we juxtapose the attenuation score (x-axis) and the              
maximum number of subunits of any complex this protein is part of (y-axis). 
 

 
 
Supplementary figure 4. Attenuated proteins show faster increase in protein          
ubiquitination after proteasome inhibition and higher gene essentiality. (A)         
Ubiquitination sites fold-changes (y-axis) across protein attenuation levels (x-axis)         
after proteasome inhibition with three inhibitors: Bortezomib, Epoxomicin and         
MG-132. ​(B) Median gene essentiality measured in CRISPR-Cas9 screenings         
(y-axis), across 341 cancer cell lines, by attenuation level (x-axis). 
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Supplementary figure 5. Analysis of the protein complex membership status of           
genes impact on the relationship between the CNV attenuation at protein level            
and eQTL association with disease traits. ​Identical analysis as in figure 3D is             
performed for genes with no (A) and with (B) existing annotation in CORUM protein              
complexes, and for genes members of protein complexes with at least 5 subunits             
(C). 
 
Supplementary table 1. ​8124 genes stratified by attenuation level. The table           
includes the Pearson correlation coefficient between the CNV and mRNA and the            
CNV and protein, respective p-values and attenuation potential. 
 
Supplementary table 2. ​516 protein-protein associations significant in the CNV and           
mRNA models (FDR < 5%). For each association, the table includes the controlling             
and controlled protein, and the effect size (beta) and FDR from both models. 
 
Supplementary table 3. ​32 significant phospho-protein associations (FDR < 5%).          
The table includes the controlling protein/phosphosite, the controlled protein, and the           
effect size (beta) and FDR from the the phospho model. All associations are also              
significant in the CNV and RNA models, between the putative regulatory and            
regulated proteins. 
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