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Diabetic kidney disease (DKD) is a heritable but poorly understood complication of 

diabetes. To identify genetic variants predisposing to DKD, we performed genome-wide 

association analyses in 19,406 individuals with type 1 diabetes (T1D) using a spectrum of 

DKD definitions based on albuminuria and renal function. We identified 16 genome-wide 

significant loci. The variant with the strongest association (rs55703767) is a common 

missense mutation in the collagen type IV alpha 3 chain (COL4A3) gene, which encodes 

a major structural component of the glomerular basement membrane (GBM) implicated in 

heritable nephropathies. The rs55703767 minor allele (Asp326Tyr) is protective against 

several definitions of DKD, including albuminuria and end-stage renal disease. Three 

other loci are in or near genes with known or suggestive involvement in DKD (BMP7) or 

renal biology (COLEC11 and DDR1). The 16 DKD-associated loci provide novel insights 

into the pathogenesis of DKD, identifying potential biological targets for prevention and 

treatment. 

KEYWORDS 

Diabetic kidney disease, genome-wide association study, type 1 diabetes, genetics, diabetic 

complications, COL4A3 
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The devastating diabetic complication of DKD is the major cause of end-stage renal disease 

(ESRD) worldwide1,2. Current treatment strategies at best slow the progression of DKD, and do 

not halt or reverse the disease. Although improved glycemic control influences the rate of 

diabetic complications, a large portion of the variation in DKD susceptibility remains 

unexplained: one third of people with T1D develop DKD despite adequate glycemic control, 

while others maintain normal renal function despite long-term severe chronic hyperglycemia3.  

Though DKD demonstrates both familial clustering4-6 and single nucleotide polymorphism (SNP) 

heritability7, the specific genetic factors influencing DKD risk remain largely unknown. Recent 

genome-wide association studies (GWAS) have only identified a handful of loci for DKD, 

albuminuria, or estimated glomerular filtration rate (eGFR) in individuals with diabetes7-13. 

Potential reasons for the limited success include small sample sizes, modest genetic effects, 

and lack of consistency of phenotype definitions and statistical analyses across studies. 

Through collaboration within the JDRF Diabetes Nephropathy Collaborative Research Initiative 

(DNCRI), we adopted three approaches to improve our ability to find new genetic risk factors for 

DKD: 1) assembling a large collection of T1D cohorts with harmonized DKD phenotypes, 2) 

creating a comprehensive set of detailed DKD definitions, and 3) augmenting genotype data 

with low frequency and exome array variants.  

 

RESULTS 

Phenotypic comparisons 

We investigated a broad spectrum of DKD definitions based on albuminuria and renal function 

criteria, defining a total of 10 different case-control comparisons to cover the different aspects of 

disease progression (Figure 1). Seven comparisons were based on albuminuria and/or ESRD 

(including diabetic nephropathy [DN], defined as either macroalbuminuria or ESRD); two were 

defined based on eGFR (used to classify severity of chronic kidney disease [CKD]); and one 
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combined both albuminuria and eGFR data (“CKD-DN”). Each phenotypic definition was 

analyzed separately in GWAS; to account for the 10 definitions each analyzed under two 

covariate adjustment models, we estimated14 the total effectively independent tests as 7.4, 

allowing us to compute a more conservative study-wide significance threshold (P<6.76×10-9), 

based on genome-wide significance (P<5×10-8) and Bonferroni correction for 7.4 effective tests. 

Top genome-wide association results highlight COL4A3 

GWAS meta-analysis included association results for up to 19,406 individuals with T1D of 

European descent from 17 cohorts for the 10 case-control definitions (Table S1). We identified 

16 novel independent loci that achieved genome-wide significance (P<5×10-8), in which four 

lead SNPs also surpassed our more conservative study-wide significance threshold (Table 1; 

Figure 2, Manhattan plot; Figures S1a-p, regional association plots). The strongest signal was 

rs55703767 (minor allele frequency [MAF]=0.21), a common missense variant (G>T; 

Asp326Tyr) in exon 17 of COL4A3. This SNP was associated with protection from DN (odds 

ratio [OR]=0.79, P=5.34×10-12), any albuminuria (OR=0.84, P=3.88×10-10), the combined CKD-

DN phenotype (OR =0.77, P=5.30×10-9), and macroalbuminuria (OR=0.79, P=9.28×10-9). 

Interestingly, we found that rs55703767 in COL4A3 was more strongly associated in men 

(OR=0.73, P=1.29×10-11) than in women (OR=0.85, P=1.39×10-3; Phet=1.58×10-2). COL4A3 

encodes the alpha 3 chain of collagen type IV, a major structural component of the GBM15.  

COL4A3 variation and kidney phenotypes 

In persons with T1D and normoalbuminuria, GBM width predicts progression to proteinuria and 

ESRD independently of glycated hemoglobin (HbA1c)16. We examined the influence of the 

COL4A3 variant on GBM width in 253 Renin-Angiotensin System Study (RASS)17 participants 

with T1D who had biopsy and genetic data (Table S2). The DKD-protective minor T allele was 

associated with 19.7 nm lower GBM width (standard error (SE) 8.2 nm, P=0.02), with the lowest 

mean GBM width among TT homozygotes (Figure 3; Table S3), after adjusting for age, sex, 
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and diabetes duration, and without detectable interactions with T1D duration or mean HbA1c. 

Furthermore, in a Pima Indian cohort of 97 subjects with DKD with morphometric and 

expression data from renal biopsies, COL4A3 expression was negatively correlated with the 

GBM surface density (filtration surface density) (β=-0.27, P=0.02), which is associated with 

eGFR in DKD in both T1D and type 2 diabetes (T2D)18,19. 

To establish whether expression of COL4A3 was further correlated with DKD phenotypes, we 

examined micro-dissected human kidney samples from 455 subjects (433 tubule samples and 

335 glomerulus samples) with pathological and RNAseq data. Expression of COL4A3 was 

positively correlated with the degree of fibrosis in tubules (corr=0.289, P=3.2x10-9) but 

negatively correlated with glomerulosclerosis (corr=0.16, P=4.8x10-3; Figure S2). COL4A3 

expression in glomeruli, but not in tubules, was also nominally correlated with eGFR (corr 0.108, 

P=0.047; Figure S2).  

Evidence for hyperglycemia specificity 

Hyperglylcemia promotes the development of diabetic complications. If a genetic variant exerts 

a stronger effect in the setting of hyperglycemia, 1) it might not be detected in general CKD, 2) it 

may be detected whether hyperglycemia is conferred by T1D or T2D, 3) its effect may be 

stronger at higher glycemic strata, and 4) interventions that reduce glycemia may attenuate the 

association signal. COL4A3 rs55703767 was not associated with eGFR in a general population 

sample of 110,517 mainly non-diabetic participants of European ancestry20 (Table S4). 

However, in a smaller cohort of 5,190 participants with T2D and DKD phenotypes in the 

SUrrogate markers for Micro- and Macro-vascular hard endpoints for Innovative diabetes Tools 

(SUMMIT) consortium, we detected a directionally consistent suggestive association of COL4A3 

rs55703767 with DN (2-tailed P=0.08; Table S5).  

We further stratified the association analyses by HbA1c in the Finnish Diabetic Nephropathy 

(FinnDiane) Study, a cohort study with extensive longitudinal phenotypic data21. Based on the 
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time-weighted mean of all available HbA1c measurements for each individual, 1,344 individuals 

had mean HbA1c <7.5% (58 mmol/mol), and 2,977 with mean HbA1c ≥7.5%. COL4A3 

rs55703767 was nominally significant (P<0.05) only in individuals with HbA1c ≥7.5% (Figure 4, 

Table S6, Figure S3). However, in a similar study setting of individuals with T2D from the 

GoDARTS study (N=3226)13,22, no difference was observed for COL4A3 rs55703767 between 

HbA1c strata (Figure S4).  

We performed a similar HbA1c stratified analysis in the Diabetes Control and Complications 

Trial (DCCT), whose participants continue to be followed in the Epidemiology of Diabetes 

Interventions and Complications (EDIC)23,24. In DCCT-EDIC the effect of COL4A3 rs55703767 

was stronger among those recruited in the secondary cohort (mild retinopathy and longer 

diabetes duration at baseline) who were originally randomized to conventional treatment and 

therefore had higher HbA1c than the intensive treatment group (Table S7). Taken together, 

these independent lines of evidence strongly suggest that the COL4A3 variant effect on DKD 

risk is amplified by poor glycemic control. 

Other association signals 

Two other genome-wide significant signals were near genes encoding proteins related to 

collagen. Variant rs12615970 (MAF=0.13), located 53 kb downstream of COLEC11, was 

associated with CKD (OR=1.31, P=9.43×10-9), and rs116772905 (MAF=0.011) in exon 14 of 

DDR1 was associated with microalbuminuria (OR=3.78, P=4.40×10-8). rs116772905 is in 

perfect linkage disequilibrium with rs118124843, the lead association with microalbuminuria for 

this locus under the full adjustment model (taking into account both BMI and HbA1c), located 29 

kb downstream of DDR1 (OR=3.97, P=3.37×10-8). COLEC11 encodes a collectin protein 

containing both a collagen-like domain and a carbohydrate recognition domain for binding 

sugars, and DDR1 encodes the discoidin domain-containing receptor 1, which binds collagens 

including type IV collagen.  
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In addition to COL4A3 rs55703767, three other low-frequency variants associated with 

microalbuminuria achieved study-wide significance: rs142823282 (MAF=0.017), 22 kb upstream 

of TAMM41 encoding a mitochondrial translocator assembly and maintenance protein25,26 

(OR=6.75, P=1.13×10-11), rs144434404 (MAF=0.011), in intron 1 of BMP7 encoding the bone 

morphogenetic protein 7 previously implicated in DKD27 (OR=6.75, P=2.67×10-9), and 

rs145681168 (MAF=0.014), in intron 3 of two transcripts of HAND2 antisense RNA 1 (HAND2-

AS1; OR=5.53, P=5.40×10-9) and 50 kb upstream of HAND2, encoding a heart and neural crest 

derivatives transcription factor.  

Two additional common variants achieved genome-wide significance: rs551191707 

(MAF=0.122) in PRNCR1 associated with ESRD when compared with macroalbuminuria 

(OR=1.70, P=4.39×10-8) and rs61983410 (MAF=0.213) in an intergenic region on chromosome 

14 associated with microalbuminuria (full model OR=0.78, P=3.06×10-8). The remaining eight 

variants associated with features of DKD had lower allele frequencies (four with 0.01≤MAF≤0.05 

and four with MAF<0.01) and did not achieve study-wide significance.  

As we had done for COL4A3 rs55703767, we tested whether the associations of the 15 other 

variants were amplified by hyperglycemia. None of the 15 variants were significantly associated 

with eGFR in the general population (Table S4). In the smaller SUMMIT T2D cohort13 we were 

able to interrogate seven loci with comparable trait definitions. The odds ratios were directionally 

consistent in six of them (binomial sign test: P=0.0625, Table S5). In FinnDiane seven of the 

remaining 15 loci were observed with sufficient frequency (minor allele counts >10) to allow 

subgroup analysis. Two additional SNPs (rs149641852 in SNCAIP and rs12615970 near 

COLEC11) were nominally significant (P<0.05) only in individuals with HbA1c ≥7.5% (Table S6, 

Figure S3). 

Variants previously associated with DKD  
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We investigated the effect of variants previously associated at genome-wide significance with 

renal complications in individuals with diabetes8-13,28. Across the ten sub-phenotypes in our 

meta-analysis, we found evidence of association for seven of nine examined loci (P<0.05, 

Figure S5): We replicated two loci that were previously discovered without overlapping 

individuals with the current study: SCAF8/CNKSR3 rs12523822, originally associated with DKD 

(P=6.8×10-4 for “All vs ctrl”) 8; and UMOD rs77924615, originally associated with eGFR in both 

individuals with and without diabetes (P=5.2×10-4 for “CKD”)20. Associations at the AFF3, 

RGMA-MCTP2, and ERBB4 loci, identified in the GEnetics of Nephropathy—an International 

Effort (GENIE) consortium12, comprised of a subset of studies included in this current effort, 

remained associated with DKD, though the associations were attenuated in this larger dataset 

(RGMA-MCTP2 rs12437854 P=2.97×10-5; AFF3 rs7583877 P=5.97×10-4; ERBB4 rs7588550 

P=3.53×10-5; Figure S6). Associations were also observed at the CDCA7/SP3 (rs4972593, 

P=0.020 for “CKD-DN”, originally for ESRD exclusively in women11) and GLRA3 (rs1564939, 

P=0.016 for “CKD extremes”, originally for AER10,28), but these analyses also include individuals 

that overlap with the original studies. Apart from the UMOD locus, none of the 63 loci associated 

with eGFR in the general population20 were associated with DKD after correction for multiple 

testing (P<7.0×10-4, Figure S7). 

Gene and gene set analysis 

We conducted gene-level analyses by employing two methods that aggregate SNP summary 

statistics over a gene region while accounting for linkage disequilibrium, MAGMA and 

PASCAL29,30. MAGMA identified five genes at a Bonferroni-corrected threshold (P<0.05/18,222 

genes tested = 2.74×10-6): the collagen gene COL20A1 associated with “CKD extreme” (full 

model P=5.77×10-7) and “ESRD vs. non-ESRD” (full model P=9.53×10-7), SLC46A2 associated 

with “All vs. ctrl” (P=7.38×10-7), SFXN4 associated with “Macro” (full model P=1.65×10-7), 

GLT6D1 associated with “ESRD vs. macro” (P=1.49×10-6), and SNX30 associated with “All vs 
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ctrl” (P=2.49×10-6) (Table S8). Although PASCAL did not identify any significant gene level 

associations, the five MAGMA-identified genes had P<5.0×10-4 in PASCAL (Table S9). Both 

SFXN4 and CBX8 have been reported to be differentially methylated in patients with diabetes 

with and without nephropathy31,32.  

Additionally, we used MAGMA, PASCAL, DEPICT, and MAGENTA to conduct gene-set 

analysis in our GWAS dataset. The four methods identified 12 significantly enriched gene sets 

(Table S10). One gene set, “negative regulators of RIG-I MDA5 signaling” was identified in two 

different pathway analyses (MAGMA and PASCAL) of our fully adjusted GWAS of ESRD vs. 

Macro. Several additional related and overlapping gene sets were identified, including “RIGI 

MDA5 mediated induction of IFN alpha beta pathways”, “TRAF3 dependent IRF activation 

pathway”, and “TRAF6 mediated IRF activation” (PASCAL) and “activated TLR4 signaling” 

(MAGENTA). RIG-I, MDA5 and the toll-like receptor TLR4 are members of the innate immune 

response system that respond to both cellular injury and infection33,34 and transduce highly 

intertwined signaling cascades. These include the signaling molecules TRAF3 and TRAF6, 

which induce expression of type I interferons and proinflammatory cytokines implicated in the 

progression of DKD35,36. Specifically, the TLR4 receptor and several of its ligands and 

downstream cytokines display differential levels of expression in DKD renal tubules vs. normal 

kidneys and vs. non-diabetic kidney disease controls37, and TLR4 knockout mice are protected 

from DKD and display marked reductions in interstitial collagen deposition in the kidney38. Other 

pathways of interest include “other lipid, fatty acid and steroid metabolism”, “nitric oxide 

signaling in the cardiovascular system”, and “Tumor necrosis factor (TNF) family member”, with 

both nitric oxide and TNF-𝛼 implicated in DKD39,40,41. 

Expression and epigenetic analyses 

We interrogated gene expression datasets in relevant tissues to determine whether our top 

signals underlie expression quantitative trait loci (eQTL). We first analyzed genotype and 
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RNAseq gene expression data from 96 whole human kidney cortical samples42 and micro-

dissected human kidney samples (121 tubule and 119 glomerular samples43 from subjects of 

European descent without any evidence of renal disease (Figure S8). No findings in this data 

set achieved significance after correction for multiple testing. In the GTEx and eQTLgen 

datasets, COL4A3 rs55703767 had a significant eQTL (P=5.63×10-38) with the MFF gene in 

blood, and rs118124843 near DDR1 and VARS2 had multiple significant eQTLs in blood 

besides VARS2 (P=1.71×10-5; Table S11). Interestingly, rs142823282 near TAMM41 was a cis-

eQTL for PPARG (P=4.60×10-7), a transcription factor regulating adipocyte development, 

glucose and lipid metabolism; PPARγ agonists have been suggested to prevent DKD44.  

To ascertain the potential functional role of our top non-coding signals, we mined ChIP-seq data 

derived from healthy adult human kidney samples45. SNP rs142823282 near TAMM41 showed 

enrichment for the histone marks H3K27ac, H3K9ac, H3K4me1, and H3K4me3, suggesting that 

this is an active regulator of TAMM41 or another nearby gene (Figure S9). Interestingly, in 

recent work we have shown that DNA methylation profiles in participants with T1D with/without 

kidney disease show the greatest differences in methylation sites near TAMM4146.  

To establish whether the expression of our top genes shows enrichment in a specific kidney cell 

type, we queried an expression dataset of ~50,000 single cells obtained from mouse kidneys47. 

Expression was detected for six genes in the mouse kidney atlas: three (COL4A3, SNCAIP, and 

BMP7) were almost exclusively expressed in podocytes (Figure 5), supporting the significant 

role for podocytes in DKD.  

 

DISCUSSION 

Our genome-wide analysis of 19,406 participants with T1D identified 16 genome-wide 

significant loci associated with DKD, four of which remained significant after a conservative 

correction for multiple testing. Four of the 16 genome-wide significant signals are in or near 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 19, 2018. ; https://doi.org/10.1101/499616doi: bioRxiv preprint 

https://doi.org/10.1101/499616
http://creativecommons.org/licenses/by/4.0/


 

genes with known or suggestive biology related to renal function/collagen (COL4A3, BMP7, 

COLEC11, and DDR1), but this is the first time that naturally occurring variation (MAF > 1%) in 

these loci has been associated with DKD. Our most significant signal was a protective missense 

variant in COL4A3, rs55703767, reaching both genome-wide and study-wide significance with 

multiple definitions of DKD. Moreover, this variant demonstrated significant association with 

GBM width and with the degree of fibrosis in renal tubules and glomeruli, and its effect was 

dependent on glycemia.  

COL4A3, with COL4A4 and COL4A5, make up the so-called “novel chains” of type IV 

collagen48, which together play both structural and signaling roles in the GBM. Specifically, 

COL4A3 is known to bind a number of molecules including integrins, heparin and heparin 

sulfate proteoglycans, and other components of the GBM such as laminin and nidogen. These 

interactions mediate the contact between cells and the underlying collagen IV basement 

membrane, and regulate various processes essential to embryonic development and normal 

physiology including cell adhesion, proliferation, survival and differentiation. Dysregulation of 

these interactions has been implicated in several pathological conditions including CKD49.  

Mutations in COL4A3 are responsible for the autosomal recessive form of Alport syndrome, a 

progressive inherited nephropathy, as well as benign familial hematuria, characterized by thin 

(or variable width) GBM, and thought to be a milder form of Alport syndrome50. The rs55703767 

SNP is predicted to alter the third amino acid of the canonical triple-helical domain sequence of 

Glycine (G)-X-Y (where X and Y are often proline (P) and hydroxyproline (Y), respectively) from 

G-E-D (D=Aspartic) to G-E-Y51, potentially impacting the structure of the collagen complex. In 

addition, a recent study52 of candidate genes involved in renal structure reported rs34505188 in 

COL4A3 (not in linkage disequilibrium with rs55703767, r2=0.0006) to be associated with ESRD 

in African Americans with T2D (MAF=2%, OR=1.55, P=5×10-4). Together with the trend towards 
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association we have seen in SUMMIT and the glycemic interaction we have reported here, 

these findings suggest variation in COL4A3 may be associated with DKD in T2D as well. 

Given its association as a protective SNP, we can speculate that the rs55703767 variant may 

confer tensile strength or flexibility to the GBM, which may be of particular relevance in the 

glomerular hypertension associated with DKD. Alternatively, COL4A3 may regulate the rates of 

production and/or turnover of other GBM components, affecting GBM width changes in 

diabetes. How these effects might confer protection in a manner dependent on ambient glucose 

concentrations is unknown. Future mechanistic studies will be required to determine the precise 

role of this variant in DKD; elucidation of its interaction with glycemia in providing protection 

might be relevant to other molecules implicated in diabetic complications. 

In keeping with the collagen pathway, the synonymous exonic variant rs118124843, which 

reached genome-wide significance for the “Micro” phenotype, is located near DDR1, the gene 

encoding the discoidin domain-containing receptor 1. Based on chromatin conformation 

interaction data from Capture HiC Plotter (CHiCP),53 the rs118124843 containing fragment 

interacts with six gene promoter regions, including DDR1, suggesting that the variant regulates 

DDR1 expression across multiple tissues (Table S11). DDR1 is a collagen receptor54 shown to 

bind type IV collagen55, and is highly expressed in kidneys, particularly upon renal injury56. Upon 

renal injury, Ddr1-deficient mice display lower levels of collagen57, decreased proteinuria, and 

an increased survival rate compared to wild-type controls58, with Ddr1/Col4a3 double knockout 

mice displaying protection from progressive renal fibrosis and prolonged lifespan compared to 

Col4a3 knockout mice alone57. Thus, through its role in collagen binding DDR1 has been 

suggested as a possible therapeutic target for kidney disease57.  

The association of rs12615970, an intronic variant on chromosome 2 near the COLEC11 gene, 

met genome-wide significance for the CKD phenotype, as well as nominal significance for 

multiple albuminuria-based traits. The rs12615970 containing fragment was found to interact 
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with COLEC11, ALLC, and ADI1 transcription start sites in chromatin conformation data on 

GM12878 cell line (Table S11)53,59. Collectin-11 is an innate immune factor synthesized by 

multiple cell types, including renal epithelial cells with a role in pattern recognition and host 

defense against invasive pathogens, through binding to fructose and mannose sugar 

moieties60,61. Mice with kidney-specific deficiency of COLEC11 are protected against ischemia-

induced tubule injury due to reduced complement deposition62, and mutations in COLEC11 

have been identified in families with 3MC syndrome, a series of rare autosomal recessive 

disorders resulting in birth defects and abnormal development, including kidney abnormalities63. 

The intronic variant rs144434404, associated at study-wide significance with the 

microalbuminuria phenotype, resides within the bone morphogenetic protein 7 (BMP7) gene. 

BMP7 encodes a secreted ligand of the transforming growth factor-beta superfamily of proteins. 

Developmental processes are regulated by the BMP family of glycosylated extracellular matrix 

molecules, via serine/threonine kinase receptors and canonical Smad pathway signaling. 

Coordinated regulation of both BMP and BMP-antagonist expression is essential for developing 

tissues, and changes in the levels of either BMP or BMP-antagonists can contribute to disease 

progression such as fibrosis and cancer64. BMP7 is required for renal morphogenesis, and 

Bmp7 knockout mice die soon after birth due to reduced ureteric bud branching65-67. 

Maintenance of Bmp7 expression in glomerular podocytes and proximal tubules of diabetic mice 

prevents podocyte loss and reduces overall diabetic renal injury27. More recently, we have 

identified a mechanism through which BMP7 orchestrates renal protection through Akt inhibition 

and highlights Akt inhibitors as potential anti-fibrotic therapeutics68. It is also noteworthy that the 

BMP7 antagonist grem-1 is implicated in DKD69-71 and gremlin has been implicated as a 

biomarker of kidney disease72.  

Strengths of this analysis include the large sample size, triple that of the previous largest 

GWAS; the uniform genotyping and quality control procedures; standardized imputation for all 
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studies (1,000 Genomes reference panel); the inclusion of exome array content; the exploration 

of multiple standardized phenotype definitions of DKD; and supportive data from various 

sources of human kidney samples. Several of the loci identified have known correlations with 

kidney biology, suggesting that these are likely true associations with DKD. However, we 

acknowledge a number of limitations. First, nine variants have low MAF and were driven by only 

two cohorts, indicating that further validation will be required to increase confidence in these 

associations. Second, seven variants were significantly associated with microalbuminuria only, 

a trait shown to be less heritable in previous studies. Even though the gene-level, gene set and 

pathway analyses had limited power, these analyses identified several additional potential DKD 

loci and pathways, some with relevance to kidney biology, that require further follow-up. 

Diabetic complications are unquestionably driven by hyperglycemia and partially prevented by 

improved glycemic control in both T1D and T2D, but there has been doubt over what 

contribution, if any, inherited factors contribute to disease risk. In line with previous genetic 

studies, this study with a markedly expanded sample size identified several loci strongly 

associated with DKD risk. These findings suggest that larger studies, aided by novel analyses 

and including T2D, will continue to enhance our understanding of the complex pathogenesis of 

DKD, paving the way for molecularly targeted preventive or therapeutic interventions. 
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Online METHODS 

Cohorts in GWAS. The GWAS meta-analysis included up to 19,406 patients with type 1 

diabetes and of European origin from 17 cohorts: The Austrian Diabetic Nephropathy Study 

(AusDiane); The Coronary Artery Calcification in Type 1 Diabetes (CACTI)73; the Diabetes 

Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications 

(DCCT/EDIC)23,24; Pittsburgh Epidemiology of Diabetes Complications Study (EDC)74; The 

Finnish Diabetic Nephropathy (FinnDiane) Study12,21; French and Belgian subjects from the 

Genetics of Diabetic Nephropathy (GENEDIAB)75 and Genesis76 studies; Genetics of Kidneys in 

Diabetes US Study (GoKinD) from George Washington University (GWU-GoKinD)77; patients 

from the Joslin Kidney Study77,78; individuals with T1D from Italy12; The Latvian Diabetic 

Nephropathy Study (LatDiane)79; The Lithuanian Diabetic Nephropathy Study (LitDiane) 

[Reference pending, submitted]; The Romanian Diabetic Nephropathy Study (RomDiane)80; The 

Scottish Diabetes Research Network Type 1 Bioresource (SDRNT1BIO)72,81; individuals with 

T1D from Steno Diabetes Center82; individuals with T1D from Uppsala, Sweden83,84; UK 

GoKinD, Warren 3 and All Ireland (UK-ROI) study40; and The Wisconsin Epidemiologic Study of 

Diabetic Retinopathy (WESDR)85. All participants gave informed consent and all studies were 

approved by ethics committees from all participating institutions. 

RASS cohort. RASS was a double-blind placebo-controlled randomized trial of the angiotensin 

converting enzyme inhibitor (ACEi) enalapril and the angiotensin II receptor blocker (ARB) 

losartan on renal pathology among 285 normoalbuminuric, normotensive subjects with T1D and 

had normal or increased measured glomerular filtration rate (>90 ml/min/1.73m2)17. Beginning 

in 2005, participants were recruited from three centers: University of Minnesota (Minneapolis, 

Minnesota), McGill University (Montreal, Canada) and University of Toronto (Toronto, Canada) 

and included those with 2 to 20 years of diabetes and excluded those on any antihypertensive 

medications. Written informed consent was obtained from each participant and the study was 
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approved by the relevant institutional review boards. RASS study participants were followed for 

5 years with percutaneous kidney biopsy completed prior to randomization and at 5 years. 

Structural parameters measured by electron microscopy on biopsy included GBM width, 

measured by the electron microscopic orthogonal intercept method17. 

SUMMIT consortium. The SUMMIT consortium included up to 5193 subjects with type 2 

diabetes, with and without kidney disease, of European ancestry. All studies were approved by 

ethics committees from relevant institutions and all participants gave informed consent13. 

Complete list of SUMMIT Consortium members provided in Table S13. 

Genotyping. Samples were genotyped on the HumanCore BeadChip (Illumina, San Diego, CA, 

USA), which contains 250,000 genome-wide tag SNPs (and other variants) and over 200,000 

exome-focused variants. All samples were passed through a stringent quality control protocol. 

Following initial genotype calling with Illumina software, all samples were re-called with zCall, a 

calling algorithm specifically designed for rare SNPs from arrays. Once calling was completed 

for all cohorts, our pipeline updated variant orientation and position aligned to hg19 (Genome 

Reference Consortium Human Build 37, GRCh37). Variant names were updated using 1000 

Genomes as a reference. The data were then filtered for low quality variants (e.g. call rates 

<95% or excessive deviation from Hardy-Weinberg equilibrium) or samples (e.g. call rates 

<98%, gender mismatch, extreme heterozygosity). Principal Component Analysis (PCA) was 

performed separately for each cohort in order to empirically detect and exclude outliers with 

evidence of non-European ancestry. Genotypes were expanded to a total of approximately 49 

million by imputation, using 1,000 Genomes Project (phase 3 version 5) as a reference. 

Genotyping of RASS cohort. All RASS participants contributed DNA for genotyping on the 

Illumina HumanOmni1-Quad and HumanCoreExome beadchip arrays. Genotypes were called 

using BeadStudio/Genomestudio software (Illumina®). Quality control (QC) measures included 

removing duplicate samples, samples with evidence of contamination (heterozygosity range 
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0.25-0.32) and those with cryptic relatedness identity-by-state (IBS) (n=24). Principal 

component analyses were completed and 7 non-European outliers were removed. Of those 

genotyped, 1 participant was missing kidney biopsy data. 

Genotyping in SUMMIT consortium. Cohorts were genotyped on the Affymetrix SNP 6.0, the 

Illumina Omni express and the Illumina 610Quad arrays. QC measures included filtering out low 

frequency (<1% MAF) variants, filtering out low quality variants or samples, removal of duplicate 

samples, and removal of non-European samples based on principal component analysis.13 

 

Human kidney samples from University of Pennsylvania cohort for RNA-sequencing and 

cis-eQTL analysis. Human kidney tissue collection was approved by the University of 

Pennsylvania Institutional Review Board. Kidney samples were obtained from surgical 

nephrectomies. Nephrectomies were de-identified, and the corresponding clinical information 

was collected through an honest broker; therefore, no consent was obtained from the subjects. 

Tubular and glomerular eQTL data sets were generated by 121 samples of tubules and 119 

samples of glomeruli, respectively. The cis window was defined as 1 megabase up- and down-

stream of the transcriptional start site (±1Mb). Whole kidney cis-eQTL (further just referred to as 

eQTL) data set was generated from 96 human samples were obtained from The Cancer 

Genome Atlas (TCGA) through the TCGA Data portal42.  

Mouse kidney single cell RNA-sequencing. Animal studies were approved by the Institutional 

Animal Care and Use Committee of the University of Pennsylvania. We mated Cdh16Cre mice 

(Jackson Lab, 012237), Nphs2Cre mice (Jackson Lab, 008205) and SclCre mice (MGI number is 

3579158) with Tomato-GFP (mT/mG) mice (Jackson Lab, 007576) to generate 

Cdh16CremT/mG, SclCremT/mG and Nphs2cremT/mG mice51. 
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Genomic features of human kidney. Human kidney-specific chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) data can be found at GEO: GSM621634, GSM670025, 

GSM621648, GSM772811, GSM621651, GSM1112806, GSM621638. Different histone 

markers were combined into chromatin states using ChromHMM45. 

Glomerular basement membrane measurement in RASS cohort. RASS study participants 

were followed for 5 years with percutaneous kidney biopsy completed prior to randomization 

and at 5 years. Structural parameters measured by electron microscopy on biopsy included 

GBM width, measured by the electron microscopic orthogonal intercept method17. 

RNA-sequencing of human kidney samples in the University of Pennsylvania cohort. 

Human kidney tissue was manually microdissected under a microscope in RNAlater for 

glomerular and tubular compartments. The local renal pathologist performed an unbiased 

review of the tissue section by scoring multiple parameters, and RNA were prepared using 

RNAeasy mini columns (Qiagen, Valencia, CA) according to manufacturer's instructions. RNA 

quality was assessed with the Agilent Bioanalyzer 2100 and RNA integrity number scores above 

7 were used for cDNA production. The library was prepared in the DNA Sequencing Core at 

University of Texas Southwestern Medical Center. One microgram total RNA was used to 

isolate poly(A) purified mRNA using the Illumina TruSeq RNA Preparation Kit. We sequenced 

samples for single-end 100bp, and the annotated RNA counts (fastq) were calculated by 

Illumina’s CASAVA 1.8.2. Illumina sequence quality was surveyed with FastQC. Adaptor and 

lower-quality bases were trimmed with Trim-galore. Trimmed reads were aligned to the 

Gencode human genome(GRCh37) with STAR-2.4.1d. The readcount of each sample was 

obtained using HTSeq-0.6.1 (htseq-count) and then normalized fragments per kilobase million 

values were used to perform association analysis with fibrosis and sclerosis using linear 

regression. 
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Mouse kidney single cell RNA-sequencing. Kidneys were harvested from 4 to 8-week-old 

male mice with C57BL/6 background and dissociated into single cell suspension as described in 

our previous study47. The single cell sequencing libraries were sequenced on an Illumina HiSeq 

with 2x150 paired-end kit. The sequencing reads were demultiplexed, aligned to the mouse 

genome (mm10) and processed to generate gene-cell data matrix using Cell Ranger 1.3 

(http://10xgenomics.com)47. 

RNAseq and microarray profiling of human kidney samples from the Pima cohort. Kidney 

biopsy samples from the Pima Indian cohort were manually micro-dissected into 119 glomerular 

and 100 tubule-interstitial tissues to generate gene expression profiles86. Expression profiling in 

the Pima Indian cohort kidney biopsies was carried out using Affymetrix GeneChip Human 

Genome U133 Array and U133Plus2 Array, as reported previously, and Affymetrix Human Gene 

ST Genechip 2.187,88, and on RNA-seq (Illumina). The libraries were prepared using the 

ClonTech SMARTSeq v4 Ultra Low Input polyA selection kit. Samples were sequenced on a 

HiSeq 4000, single end, 75bp. Mapping to human reference genome GRCh38.7 was performed 

with STAR 2.5.2b (https://github.com/alexdobin/STAR). For annotation and quantification of 

mapping results we used cufflinks, cuffquant and cuffnorm in version 2.2.1 (https://cole-trapnell-

lab.github.io/cufflinks/). After mapping and quantification, PCA and Hierarchical Clustering was 

used to identify outliers and reiterated until no more outliers could be identified.  

 

STATISTICAL ANALYSIS 

GWAS Analysis. Participant renal status was evaluated on the basis of both albuminuria and 

eGFR. We defined a total of 10 different case-control outcomes to cover the different aspects of 

renal complications (Figure 1). Five comparisons (“All vs. ctrl”, “Micro”, “DN”, “Macro”, and 

“ESRD vs. macro”) were based on albuminuria, measured by albumin excretion rate (AER) from 

overnight or 24-h urine collection, or by albumin creatinine ratio (ACR). Two out of three 
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consecutive collections were required (when available) to classify the renal status of subjects as 

either normoalbuminuria, microalbuminuria, macroalbuminuria, or ESRD; for detailed 

thresholds, see Table S9. Controls with normal AER were required to have a minimum diabetes 

duration of 15 years; subjects with microalbuminuria/ macroalbuminuria/ ESRD were required to 

have minimum diabetes duration of 5/ 10/ 10 years, respectively, in order to exclude renal 

complications of non-diabetic origins. Two comparisons (“ESRD vs. ctrl” and “ESRD vs. non-

ESRD”) were based on presence of end-stage renal disease as defined by eGFR< 15 mL/min 

or dialysis or renal transplant. Two phenotypes (“CKD” and “CKD extreme”) were defined based 

on estimated glomerular filtration rate (eGFR; evaluated with the CKD-EPI formula): Controls 

had eGFR ≥ 60ml/min/1.73m2 for both phenotypes, and minimum of 15 years of diabetes 

duration; cases had eGFR <60ml/min/1.73m2 for the “CKD” phenotype, and eGFR <15 

ml/min/1.73m2 or dialysis or renal transplant for the “CKD extreme” phenotype, and minimum of 

10 years of diabetes duration. For the “CKD-DN” phenotype that combined both albuminuria 

and eGFR data, controls were required to have both eGFR ≥60ml/min/1.73m2 and 

normoalbuminuria; cases had both eGFR <45ml/min/1.73m2 and micro- or macroalbuminuria, or 

ESRD.  

A genome-wide association analysis of each of the case-control definitions was performed using 

logistic regression under an additive genetic model, adjusting for age, sex, diabetes duration, 

study site (where applicable) and principal components. As disease onset and progression is 

also closely related to BMI and HbA1c levels,89 we conducted a second set of analyses 

adjusting for BMI and HbA1c which we refer to as our fully adjusted covariate model. Allele 

dosages were used to account for imputation uncertainty. Inverse-variance fixed effects meta-

analysis was performed using METAL and the following filters: INFO score >0.3, minor allele 

count >10, and presence of variant in at least two cohorts. The X chromosome was similarly 

analyzed for males and females both separately and in a combined analysis, with the exception 
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of using hard call genotypes in place of allele dosages. The study-wide significance threshold 

(P<6.76×10-9) was calculated by applying a Bonferroni correction to the traditional GWAS 

threshold (P<5.00×10-8), based on the number of effectively independent tests, using methods 

previously described on the eigenvalues of the GWAS summary statistics correlation matrix14.  

SUMMIT GWAS analysis. Genome-wide association analyses were performed for DKD trait 

definitions harmonized with seven of our primary T1D analyses: “DN”, “Micro”, “Macro”, “ESRD”, 

“ESRD vs. non-ESRD”, “CKD”, and “CKD-DN” under an additive model, adjusting for age, 

gender and duration of diabetes. 

RASS GBM width analysis. We completed linear regression of the COL4A3 variant 

(rs55703767) and within person mean GBM width (nm) from both baseline and 5 year 

measures, in additive and genotypic genetic models. Both univariate and multivariate analyses 

were run including sex, baseline age and diabetes duration, within person mean HbA1c over 5 

years, indicators for treatment group assignment and treatment center. A two-sided significance 

threshold of alpha <0.05 was applied. 

Gene and gene set analysis. PASCAL gene and pathway scores were conducted on all 20 

sets of GWAS summary statistics (10 outcomes and 2 covariate models). Gene scores were 

derived using the sum option, averaging association signal across each gene using the default 

50kb window size. Pathway scores were then computed from pathway member gene scores 

where membership was defined using default pathway libraries from BioCarta, REACTOME, 

and KEGG. Using a similar approach, MAGMA (v1.06) gene and pathway scores were 

conducted on all GWAS summary statistics using both the default gene region defined by the 

transcription start and stop sites and a 5kb window definition. MAGMA pathway analysis 

included all 1077 of the PASCAL reported libraries plus an additional 252 pathways included in 

MSigDB canonical pathway set. MAGENTA (vs2, July 2011) pathway analysis included 4725 

pathways with a minimum of five genes within the gene set. Gene sets were obtained with the 
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MAGENTA distribution and included Gene ontology terms, PANTHER sets (biological 

processes, molecular functions, metabolic and signaling pathways), KEGG pathways, and 

Ingenuity pathways. DEPICT gene set enrichment uses a more comprehensive collection of 

gene sets that allows genes to have a continuous probability for gene set membership. We 

conducted DEPICT individually on all 20 sets of GWAS summary statistics with P< 1.0 × 10-5. 

We conducted two additional pooled analyses using genome-wide minimum P-values from: 1) 

All 20 analyses (10 phenotypes and 2 covariate models) and 2) Sixteen analyses of the 8 most 

related phenotypes (8 phenotypes and 2 covariate models) which excluded ESRD vs Macro and 

Micro.  

Human kidney cis-eQTL analysis (University of Pennsylvania data). Nominal p-values were 

calculated for each SNP-gene pair with FastQTL using linear regression with an additive effects 

model, and adjusted by six genotype PCs. 

RNA-sequencing of human kidney samples (University of Pennsylvania data). Normalized 

fragment per kilobase million values were used to perform association analysis with fibrosis and 

sclerosis using linear regression. 

eQTL analysis (Pima data). Analysis was performed with Robust Multi-array Average quantile 

normalization90 after removing probes overlapping with variants identified by WGS. Batch 

effects between platforms were corrected using ComBat91 and unknown batch effects were also 

adjusted using singular value decomposition with first four eigenvectors. eQTL mapping was 

performed using EPACTS (https://genome.sph.umich.edu/wiki/EPACTS) software tool using 

linear mixed model accounting for hidden familial relatedness, after inverse Gaussian 

transformation of expression levels, adjusting for age and sex. 

Mouse kidney single cell RNA-sequencing. To calculate the average expression level for 

each cluster, a z-score of normalized expression value was first obtained for every single 
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cell. Then, we calculated the mean z-scores for individual cells in the same cluster, resulting 

in 16 values for each gene.  

 

DATA AND SOFTWARE AVAILABILITY 

All cohorts can share genome-wide meta-analysis summary statistics. Individual level genotype 

data: due to restrictions set by the study consents and by EU and national regulations, individual 

genotype data cannot be shared for all cohorts.  
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FIGURE AND TABLE LEGENDS 

Table 1. Loci associated with DKD at study-wide (P<6.76×10-9, bold) and genome-wide (P<5×10-8) significance.  
Notable genes from missense variant in the indicated gene (M); intronic, synonymous, or noncoding transcript variant within gene 

(G); gene nearest to index SNP (N); biological relevance to kidney biology (B). Chr, chromosome; pos, position; EAF, effect allele 

frequency; OR, odds ratio; min, minimally adjusted covariate model; full, fully adjusted covariate model.  

SNP Chr:pos Effect 
allele 

Other 
allele 

EAF Notable gene(s) Phenotype ORmin 

 
P-valuemin ORfull 

 
P-valuefull 

rs12615970 2:3745215 G A 0.133 COLEC11 (B); 
ALLC (N, G) 

CKD 0.76 9.43×10-9 0.76 1.60×10-7 

rs55703767 2:228121101 T G 0.206 COL4A3 (M, B, N) DN 0.79 5.34×10-12 0.78 8.19×10-11 

      All vs. ctrl 0.84 3.88×10-10 0.84 9.68×10-9 

      CKD+DN 0.77 5.30×10-9 0.76 3.77×10-9 

      Macro 0.79 9.28×10-9 0.76 9.38×10-8 

rs115061173 3:926345 A T 0.014 LINC01266 (N) ESRD vs. 
ctrl 

9.39 4.07×10-8 8.33 4.08×10-5 

rs142823282 3:11910635 G A 0.011 TAMM41 (N, B) Micro 6.75 8.32×10-10 9.21 1.13×10-11 

rs116216059 3:36566312 A C 0.016 STAC (N, G) ESRD vs. 
non-ESRD 
 

8.76 1.37×10-8 11.82 1.41×10-4 

rs191449639 4:71358776 A T 0.005 MUC7 (N) DN 32.46 1.32×10-8 32.46 2.09×10-8 

rs145681168 4:174500806 G A 0.014 HAND2-AS1(N, G, 
B) 

Micro 5.53 2.06×10-7 7.46 5.40×10-9 

rs149641852 5:121774582 T G 0.012 SNCAIP (N, G) CKD 
extreme 

9.03 1.37×10-8 --- --- 

rs118124843 6:30887465 T C 0.011 DDR1 (B);  
VARS2 (G) 

Micro 3.78 4.42×10-8 3.37 3.40×10-8 

rs77273076 7:99728546 T C 0.008 MBLAC1 (N, B) Micro 9.12 2.28×10-7 3.97 3.37×10-8 

rs551191707 8:128100029 CA C 0.122 PRNCR1 ( N) ESRD vs. 
macro 

1.70 4.39×10-8 1.72 2.28×10-7 

rs183937294 11:16937846 G T 0.007 PLEKHA7 (N, G) Micro 17.29 1.65×10-8 23.57 2.10×10-6 

rs61983410 14:26004712 T C 0.213 STXBP6 (N) Micro 0.79 9.84×10-8 0.78 3.06×10-8 

rs113554206 14:73740250 A G 0.012 PAPLN (N, G) Macro 4.62 5.39×10-7 10.38 8.46×10-8 

rs185299109 18:1811108 T C 0.007 intergenic CKD 20.7 1.28×10-8 44.7 4.99×10-9 

rs144434404 20:55837263 T C 0.011 BMP7 (N,G, B) Micro 6.75 2.67×10-9 6.69 4.65×10-7 
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Figure 1

Figure 1. Phenotypic analysis of DKD. Schematic diagram of outcomes 

analyzed in this study. Numbers indicate the total number of cases (darker 

gray) and controls (lighter gray) included in the meta-analyses for each 

phenotype. Microalb.: microalbuminuria; macroalb.: macroalbuminuria; 

eGFR: estimated glomerular filtration rate; ESRD: End-stage renal disease, 

defined as eGFR <15 mL/min/1.73m2 or undergoing dialysis or having renal 

transplant; CKD: chronic kidney disease.
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Figure 2

Figure 2 Genome-wide association testing of all 10 phenotypic

comparisons. Multiphenotype Manhattan plot shows lowest P-value at

each marker for each of the 10 phenotypic comparisons, under the standard

and fully-adjusted model. Significance of SNPs (-log10[P-value], y axis) is

plotted against genomic location (x axis). Loci surpassing genome-wide

significance (red line) and/or study-wide significance (blue line) are colored

by phenotype.
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Figure 3

Figure 3. Adjusted residuals of GBM width by rs55703767 genotype 

and sex. Box and whisker plot of residuals of mean GBM width after 

adjusting for age, sex, and diabetes duration, stratified by GG, GT, or TT 

genotype at rs55703767, with overlay of individual data points for both 

females (pink) and males (blue).
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Figure 4

Figure 4. Association at rs55703767 (COL4A3) stratified by HbA1c below 

or above 7.5%, for the phenotypes reaching genome-wide significance 

in the combined meta-analysis. Analysis included 1344 individuals with 

time-weighted mean HbA1c <7.5% (58 mmol/mol), and 2977 with mean 

HbA1c ≥7.5% from the FinnDiane study; the individuals had median 19 

HbA1c measurements (range 1 – 129).  
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Figure 5. Single cell RNA-sequencing in mouse kidney shows COL4A3, 

SNCAIP, and BMP7 are specifically expressed in podocytes. Mean 

expression values of the genes were calculated in each cluster. The color 

scheme is based on z-score distribution; the map shows genes with z-

score>2. In the heatmap, each row represents one gene and each column is 

single cell type. Percentages of assigned cell types are summarized in the 

right panel. Endo, containing endothelial, vascular, and descending loop of 

Henle; Podo, podocyte; PT, proximal tubule; LOH, ascending loop of Henle; 

DCT, distal convoluted tubule; CD-PC, collecting duct principal cell; CD-IC, 

collecting duct intercalated cell; CD-Trans, collecting duct transitional cell; 

Fib, fibroblast; Macro, macrophage; Neutro, neutrophil; lymph, lymphocyte; 

NK, natural killer cell.
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