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Abstract

Humans and animals consistently forego, or “discount” future rewards in favor of more
proximal, but less valuable, options. This behavior is often thought of in terms of a failure of
“self-control”, a lack of inhibition when considering the possibility of immediate gratification.
However, rather than overweighting the near-term reward, the same behavior can result from
failing to properly consider the far-off reward. The capacity to plan for future gains is a core
construct in Reinforcement Learning (RL), known as “model-based” planning. Both discounting
and model-based planning have been shown to track everyday behaviors from diet to exercise
habits to drug abuse. Here, we show that these two capacities are related via a common
mechanism – people who are more likely to deliberate about future reward in an intertemporal
choice task, as indicated by the time they spend considering the choice, are also more likely to
make multi-step plans for reward in a sequential reinforcement learning task. In contrast, the
degree to which people’s intertemporal choices were driven by a more automatic bias did not
correspond to their planning tendency, and neither did the more standard measure of discounting
behavior. These results suggest that the standard behavioral economic measure of discounting
is more fruitfully understood by decomposing it into constituent parts, and that only one of
these parts corresponds to the sort of multi-step thinking needed to make plans for the future.

1 Introduction

The virtue of patience is more than a cliché . In the lab, patience is often measured as the degree
to which participants are willing to forego a reward of given value in exchange for eventual delivery
of a reward of greater value. According to the standard framework, the value of the delayed reward
is “discounted” or diminished in proportion to the time one must wait to receive it. The rate at
which future rewards are discounted as a function of time (“discount rate”) provides an idiosyncratic
metric of relative patience (“shallow” discounting) vs. impulsivity (“steep” discounting). Critically,
this measure has been shown to have considerable trait-like stability across behavioral domains that
may reflect relative prioritization of long-term reinforcement, including academic performance, drug
abuse, diet and exercise habits [1, 2, 3].

A longstanding puzzle is exactly how this richly predictive and otherwise stable trait can reli-
ably be altered sometimes dramatically by attributes of the decision setting or internal state of
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the decision-maker [4]. Answering this question will require understanding the cognitive and neural
mechanisms involved in carrying out intertemporal choices. Although the framework of temporal
discounting provides a straightforward, economical metric for assessing individual differences in de-
lay discounting, it does not speak to the underlying cognitive mechanisms through which subjective
intertemporal preferences arise [5]. Traditionally, both economists and psychologists have framed
discounting as a phenomenon of self-control [6], with shallow discounting reflecting the inability
to resist the hedonic pull of immediate reward. In these terms, “impulsive” behavior arises from
hypersensitivity to immediate rewards, decreased cognitive control, or a combination of both [7].
However, a preference for sooner reward can arise either from over-valuation of relatively small
quantities on the immediate horizon, or under-valuation of relatively larger rewards to be received
later. Recent work has called attention to this latter phenomenon, highlighting the role of the
prospective valuation process in patient intertemporal choice [8, 9]. For instance, Peters & Bchel
(2010) found that cueing personal future events reduced discounting of rewards to be delivered at
the time of those events, and that neural evidence of episodic imagery in response to these cues
predicted the extent of this effect.

Formalizing the idea that intertemporal choice characteristics arise from prospective valuation,
Gabaix & Laibson (2017) [10] recently showed that the appearance of time preferences can emerge
in an agent who has no inherent preference over time per se, but who instead simply relies on
forecasts of the subjective utility of consuming a future reward (by imagining, e.g., a future vacation
to Philadelphia). Such an agent can exhibit discounting as long as they are “myopic” that is, as
long as the reliability of their forecasts decreases with the amount of time remaining until the
future consumption event. One candidate mechanism for myopic forecasting is sequential evidence
accumulation, such as captured by the drift-diffusion model (DDM; [11]). Suggestively, performance
in tasks that are well-described by this mechanism is susceptible to the same sorts of framing
manipulations e.g. attention allocation, time pressure, and cognitive load [12, 13, 14] that are
known to affect intertemporal choice, and the DDM and related models have been successfully
applied to model the dynamics of intertemporal choice [15, 16, 17].

In the present study, we hypothesized that this sort of mechanism, when parameterized such
that deliberation scales with the time until receipt of reward, might reproduce choice patterns in
a standard intertemporal choice task and correspond to a separate, external measure of prospec-
tive valuation namely, “model-based” planning in sequential reinforcement learning. Model-based
RL refers a set of decision strategies that use the contingency structure of the environment in
order to make choices that maximize long-run gain. The computational distinction between model-
based RL and its “model-free” counterpart, which makes choices on the basis of direct experience
with stimulus-reward associations, has proven a fruitful framework for understanding many fea-
tures of value-based choice [18]. Empirically, a link between discounting and model-based planning
is implied by the fact that prospective valuation is thought to underlie both forms of behavior
[19, 20]. This symmetry is complemented by experimental evidence linking model-based learning
to behaviors associated with self-control, such as compulsion disorders [21], and by the fact that
manipulations that affect discounting and evidence accumulation also affect model-based planning
[22]. The prospect of identifying an explicit link between these measures is appealing because
it offers formal computational basis for understanding the mechanisms through which prospec-
tive deliberation influences action evaluation. Just as reliable forecasts of future reward facilitate
patience in intertemporal choice, model-based reinforcement learning promotes long-term reward
maximization by simulating potential outcomes [18].
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Figure 1: Intertemporal choice task. Participants made a series of 102 binary choices between a
reward ($1-$85) to be delivered immediately following the experiment (smaller-sooner, SS), and a
larger reward ($10-$95) to be delivered between four and 180 days in the future (larger-later, LL)
via time-locked debit card. Participants had six seconds to make a choice; their response time was
recorded along with their decision.

Here, participants performed two experimental tasks. In the first task, a large group of par-
ticipants made several independent choices between smaller, immediate rewards and larger, later
rewards(Figure 1. A subset of these participants also performed a sequential “two-step” choice
task designed to index model-based choice behavior [23, 24]. We first used a hyperbolic model to
estimate individual discount rates, a measure of their relative patience, from participants choices
in the intertemporal choice task. We further leveraged information about decision time to decom-
pose choice into deliberative and reflexive components. Specifically, we fit choices and reaction
times with a sequential sampling model that separately measured both an individuals overall bias
towards choosing the patient option as well as the degree to which they deliberated about each
choice. This model both reproduced the choice patterns fit by the hyperbolic model and provided
a mechanistic explanation for the relationship between patience, choice variability, and decision
time. Importantly, both the bias and deliberative components of the model independently tracked
an individuals degree of patient choice. We next derived, from the sequential RL task, an index
reflecting the extent to which each participants behavior reflected model-based planning. We found
that the deliberative component of the sequential sampling model tracked individuals tendency
to use model-based planning, while their discount rate and bias did not. This finding suggests
that both kinds of choices rely on a common prospective evaluation mechanism, the decomposi-
tion of which can be used to better understand the patterns and predictiveness of preferences in
intertemporal choice.

2 Methods

563 participants (ages 18-66) recruited at New York University gave written informed consent
following New York University Committee on Activities Involving Human Subjects (UCAIHS)
and were compensated and debriefed at the end of the session. On the basis of behavior in the
Intertemporal Choice Task, 31 participants were excluded for a bias of greater than 95% towards
choosing the LL or SS options. 7 additional participants were excluded for completing fewer than
96 trials of the ITC task. A further 63 participants were excluded for a fitted hyperbolic discount
rate that was outside the range reliably estimable by our choice set (see Intertemporal Choice Task
below for further details). The remaining 462 (291 female; mean age = 22.86 years, SD = 5.95; age
and sex for nine participants are omitted from these statistics due to data loss) participants were
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Figure 2: Two-step Reinforcement Learning Task. For each trial, subjects made a first-stage choice
between two spaceships, each of which led more frequently (70% versus 30%) to one planet than the
other. For example, choosing the blue spaceship traveled to the red planet with 70% probability
(common transition), and traveled to the purple planet with 30% probability (rare transition). At
this second stage, subjects chose between two aliens and were rewarded (a picture of space treasure)
or not (an empty circle) according to a slowly drifting probability which was independent for each
alien.

included in the reported analysis.
44 participants (ages 18-26) recruited at Weill Cornell Medical College completed the ITC task

as well as a second decision-making task, the Two-step Reinforcement Learning Task (Daw et al.,
2011). These participants gave written informed consent and debriefed at the end of the session.
To control for any ordering effects (e.g., fatigue) the sequence of tasks was counterbalanced across
participants. 5 participants were excluded for a bias of greater than 95% towards choosing the LL
or SS options. A further 7 participants were excluded on the basis of a discount rate outside the
range estimable by our choice set. The remaining 32 volunteers (17 female; mean age = 22.7 years,
SD = 2.50) were included in the reported analyses.

Because the ITC task was identical for each participant population, we combined these data
for analysis, giving N=494 total participants.

2.1 Behavioral Tasks

2.1.1 Intertemporal Choice Task

Participants used key presses to make a series of 102 binary choices between a smaller amount
of money they would receive immediately (same-day) and a larger amount of money that would
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be paid after a variable number of days 1. Across trials, the magnitude of monetary amounts
ranged from $1 to $85 for the smaller, sooner (SS) payment, and $10 to $95 for the larger, later
(LL). The SS payment was delivered at the end of the session (0 days), while the LL was delivered
between four and 180 days in the future. The side (left vs. right) on which the smaller-sooner
(SS) vs. larger-later (LL) reward appeared was counterbalanced across trials. After the stimuli
were presented, participants had 6s to make a selection by pressing either “1”- or “0”- keys which
corresponded to the left- and right- rewards respectively. After the choice was entered, a checkmark
appeared indicating the chosen option for 500ms. There was a variable inter-trial-interval (ITI) of
3-5s. Since prior work suggests that real and hypothetical choices may fundamentally differ [25],
participants were paid for one randomly selected trial from the full set of decisions and instructed to
make choices according to their true preferences. Bonuses were awarded in the form of an Amazon
gift card sent electronically via email the day of the experiment. The balance and activation date
of the gift card were matched to the magnitude and delay associated with the chosen option on the
selected trial. This payment policy was designed to minimize potential choice biases arising due to
any increased uncertainty associated with receipt of delayed rewards.

2.1.2 Two-step Reinforcement Learning Task

To capture individual differences in goal-directed choice we used an adapted version of a two-
step Reinforcement Learning paradigm designed to dissociate model-based and model-free learning
strategies (as in (Decker et al., 2016); adapted from Daw et al., 2011). Before starting the task, all
participants completed an interactive tutorial and verbally confirmed their understanding of the
instructions.

The primary objective of the task was to collect as much space treasure as possible. At the
beginning of each trial (Figure 2), participants made a first-stage choice between a blue spaceship
and a green spaceship, which was followed by a probabilistic transition (rare 30%, common 70%)
to one of two 2nd planets (red vs. purple). The blue spaceship commonly (70%) transitioned the
red planet and rarely (30%) transitioned to the purple planet whereas the red spaceship commonly
(70%) transitioned the blue planet and rarely (30%) transitioned to the red planet. Subjects were
informed that the transitions from first stage choices (i.e., spaceships) to second stage states (i.e.,
planets) were symmetric and remained fixed throughout the task. At the 2nd stage state, subjects
made a choice between one of two aliens and were rewarded (a picture of space treasure) or not
(an empty circle) according to a slowly drifting probability which was independent for each alien.
Reward probabilities changed slowly, stochastically, and independently (independent Gaussian ran-
dom walks bound between .2 and .8) over the course of the task, incentivizing exploration of 2nd
stage stimuli (aliens) throughout the experiment. All choices were subject to a 3s response deadline.
Once a response was submitted, an animation highlighted the chosen stimulus (spaceship or alien)
for 1s, as well as the outcome (space treasure or an empty circle) for 1s after 2nd stage choices.
If participants failed to make a first- or 2nd stage choice, both stimuli were covered by a red X
for 3s before the next trial started. Participants completed 200 trials separated by a 1s inter-trial
interval.

The fixed probabilistic transition between 1st and 2nd stage states enabled the distinction
of model-based and model-free choices by examining the influence of the previous trial on the
subsequent first-stage choice. A model-free learner is likely to repeat a previously rewarded first-
stage choice (“stay”), regardless of the transition type that led to the reward (a main effect of reward
on subsequent first-stage choices). In contrast, a model-based chooser considers the transition
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Figure 3: Decisions arise from a combination of bias z and drift rate v, which capture, respectively,
the influence of reflexive and deliberative processing on choice. In this illustration, a choice for
the LL (top) is disfavored by a static bias towards selecting SS (bottom). However, this bias is
overcome during the course of deliberation, by evidence accumulated in favor of the LL at a rate
(v) fast enough to reach the upper threshold before the deadline. Thus, the degree of “patience”
displayed for a given choice can result from either a static, between-trials bias towards choosing
LL, a deliberation of the values on the specific trial, or a combination of the two processes.

structure, reflected by an interaction effect of transition type (common vs. rare) and reward
on “stay or switch” decisions (a reward-by-transition interaction effect on subsequent first-stage
choices). In our analysis, participants full trial-by-trial choice sequence in the task was fit with a
computational reinforcement-learning model that gauges the degree to which participants choices
are better described by a model-based or a model-free reinforcement learning algorithm.

3 Computational Modeling

3.1 Intertemporal choice models

3.1.1 Hyperbolic Model of Temporal Discounting.

A discount rate was used as a summary of participant behavior. Discount rates (k) quantify the
degree to which the subjective value of a future reward is discounted as a function of time, and
can be estimated from a participants choices. While many functional characterizations of temporal
discounting have been proposed, prior research suggests that intertemporal choice behavior is par-
ticularly well-described by a hyperbolic discount function [26] SV = A

1+kD , where the subjective
value SV of a future monetary reward is calculated by dividing the objective amount A by one
plus the discount rate k times delay D (here measured in days). Thus if the delay is 0, the subjec-
tive and objective amount are equal. With increasing delay time, or discount rate, the subjective
value decreases. Parameters (discount rate, softmax temperature) were determined from the ob-
served choices of each participant by using maximum likelihood iterative optimization (fminunc)
in MATLAB (Mathworks, Natick, MA, USA).
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3.1.2 Drift-diffusion models (DDM)

To investigate whether future-oriented choices were made on the basis of deliberation, we imple-
mented several variants of a canonical sequential sampling model, the drift-diffusion model (DDM;
[11]). The models expressed different ways that the deliberative process might depend on the three
elements of each choice: the value of the larger, later option (VLL), the value of the smaller, sooner
option (VSS), and the delay to receipt of the LL (T ). These values informed the decision process
by setting the rate at which sampling proceeded toward the decision threshold (drift rate, or v)
and/or the starting point of the accumulation process (bias, or z) 3.

Model parameters were specified as a hierarchical mixed-effects regression using the HDDM
framework [27]. Each model set the v and/or z parameters as specified, with the remaining pa-
rameters (t, or the non-decision time, for all models, and sz, or the trial-by-trial variability in the
starting point, for models that did not specify a trial-by-trial regressor for z) fit freely to each sub-
ject. Fitting was performed using a Markov-Chain Monte Carlo (MCMC) procedure, with chains
set to 10000 total samples and 5000 burn-in samples.

The value difference model captured the hypothesis that choices were insensitive to T, by setting
the drift rate as a function of VLL − VSS .

v ∼ 1 + [VLL − VSS ] (1)

The bias-drift combination model captured the hypothesis that each subject used an idiosyn-
cratic combination of instantaneous value difference and time-sensitive deliberation, by fitting sepa-
rate coefficients for the starting point, as a function of value difference, and drift rate, as a function
of (log) time to LL receipt.

z ∼ 1 + [VLL − VSS ], v ∼ 1 +
1

log(T )
(2)

Our primary model of interest was the scaled difference model, which effectively jointly fit the
discount parameter with the multiplicative coefficient component of the drift rate by setting drift
equal to the reference-dependent value VLL − VSS , scaled by log(T ):

v ∼ 1 +
VLL − VSS
log(T )

(3)

Comparing across types of models and tasks. These analyses gave us two families of models,
with not only different numbers of parameters but also different types of input data choices for
the hyperbolic model, choices and RT for the DDMs. To compare models on equal footing, we
used leave-one-out cross-validation to assess the ability of the models to predict choices out-of-
sample. For this analysis, we reduced each subjects dataset to their first 96 choices. Each model
was then fit 96 times to populations in which all subjects performed the same sequence of 95
trials. This fit was evaluated by computing the choice probability (ps,m,i) that the model m would
select as the subject s did on the held-out trial i. For DDM models, this choice probability was
computed by generating 1,000 simulated choices using the parameters (v, z, t, sz) fit to the training
set, and the settings (VLL, VSS, T) of the held-out trial, and computing ps,i as the fraction that
resulted in the same choice as did the subject. For the hyperbolic model, ps,i was calculated exactly
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by using the fit discount parameter k and inverse softmax temperature . We computed the log-
likelihood of each model m for each subject s by summing choice probabilities across test trials:
LLm,s = −

∑
i log(pm,s,i).

Finally, the relative fits of these models were assessed using the Bayesian model selection
procedure of [28], which takes model identity as a random effect. Bayes factors were computed
on the basis of the per-subject log likelihood (choice probabilities), and models were compared
using by submitting the log model evidences directly to the spm BMS.m routine from SPM8
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/).

All correlation statistics are Pearsons R, or in the case of partial correlations. When analyzing
between-task correlations for the subset of subjects who performed the two-step task, robust corre-
lations were performed after removal of bivariate outliers, using the MATLAB toolbox Corr toolbox
[29]. In these cases, we report the 95% confidence interval (CI) of 1,000 bootstrap runs. All of the
correlations reported here are robust to the exclusion of bivariate outliers, unless otherwise noted.

3.2 Two-step RL model

Indices of model-based learning in the two-step RL task were derived via Bayesian estimation using
a variant of the computational model introduced in [23]. The model assumes choice behavior arises
as a combination of model-free and model-based reinforcement learning. Each trial t begins with
a first-stage choice c1,t followed by a transition to a second state st where the participant makes a
2nd stage choice c2,t and receives reward rt. Upon receipt of reward rt, the expected value of the
chosen 2nd stage action (the left vs. the right alien) Q2

t (st, c2,t) is updated in light of the reward
received.

The model assumes 2nd stage choices arise due to a learned value function over states and
choices Q2(s, c). The function updates the value for the chosen action by integrating the reward
received on each trial using a simple delta rule,

Q2
t+1(st, c2,t) = (1− α)Q2

t (st, c2,t) + rt, (4)

where α is a free learning rate parameter that dictates the extent to which value estimates are
updated towards the received outcome on each trial. Readers from RL backgrounds will recognize
that this update (Eq. 4) differs from the standard delta rule, Q(s, a) = (1−α)Q(s, a)+αr. In Eq. 4
and in similar references throughout, the learning rate α is omitted from the latter term. Effectively,
this reformulation rescales the magnitudes of the rewards by a factor of 1

α and the corresponding
weighting (i.e., temperature) parameters β by α. The probability of choosing a particular 2nd stage
action c2,t in state st is approximated by a logistic softmax: P (c2,t = c) ∝ exp(β2Q2

t (st, c2) with
free inverse temperature parameter β2 normalized over both options c2.

First-stage choices are modeled as determined by a combination of both model-free and model-
based value predictions about the ultimate, 2nd stage value of each 1st stage choice. Model-based
values are given by the learned values of the corresponding 2nd stage state, maximized over the
two actions: QMB

t (c1 = argmaxc2 Q
2
t (s, c2), where s is the 2nd stage state predominantly produced

by stage-1 choice c1. Model-free values are learned by two learning rules, TD(0) and TD(1), each
of which updates according to a delta rule towards a different target. TD(0) backs-up the value of
the stage-1 choice on the most recent trial QMF0

t+1 (c1,t) with the value of the state-action pair that
immediately (i.e., lag-0) followed it: QMF0

t+1 (c1,t) = (1− α)QMF0
t (c1,t) +Q2

t (st, c2,t), whereas TD(1)
backs up its value estimate QMF1

t+1 (c1,t) by looking an additional step ahead (i.e., lag-1) at the reward
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received at the end of the trial: QMF1
t+1 (c1,t) = (1−α)QMF1

t (c1,t)+rt . Stage-1 choice probabilities are
then given by a logistic softmax, where the contribution of each value estimate is weighted by its own
free temperature parameter: P (c1,t = c) ∝ exp(βMBQMB

t (c) +βMF0QMF0
t (c) +βMF1QMF1

t (c)).At
the conclusion of each trial, the value estimates for all unchosen actions and unvisited states are
decayed multiplicatively by γ, reflecting the assumption that value estimates decay exponentially
by a rate of 1 − γ over successive trials. In total the model has six free parameters: four weights
(β2, βMB, βMF0, βMF1), a learning rate α, and a decay rate γ.

This model makes two minor departures from some of the standard parameterizations outlined
in prior work [23, 22]. First, whereas earlier models posit a single model-free choice weight βMF

and use an eligibility trace parameter γ ∈ [0, 1] to control the relative contributions of TD(0) and
TD(1) learning, here, as in recent work by [21], model-free valuation is split into its component
TD(0) and TD(1) stages, each with separate sets of weights and Q values. The decay parameter
γ represents an additional change in variables from other formulations. Although RL traditionally
focuses on the process of updating the value of chosen actions (or state-action pairs) in light of
their outcomes, substantial evidence from both theoretical and empirical work [30] suggests that
the values of unchosen actions and unvisited states depreciate over time. Beyond this theoretical
motivation, including a decay parameter accounts for the empirical observation that people tend to
‘stay (repeat) their most recent choice in a given stage; as the decay rate approaches 1, the value
of the unchosen actions decrease towards zero, increasing the relative value of the chosen action on
the next trial. By contrast, previous models [23] have operationalized choice perseveration using
a “stickiness” parameter, which is implemented as a recency bonus or subjective “bump” in the
value of whichever first stage action was chosen on the most recent trial (irrespective of reward).

The six free parameters of the model, β2,βMB,βMF0,βMF1,α, γ, were estimated by maximizing
the likelihood of each individuals sequence of choices, jointly with group-level distributions over
the entire population using an Expectation-Maximization procedure [31]. The resulting set of per-
subject model-based weightings served as our primary index of model-based learning for further
analysis of individual differences.

4 Results

4.1 Two paths to patience in intertemporal choice

Participants (N=494) made a series of binary decisions between two options one, a smaller reward,
delivered sooner (SS), the other, a larger reward, to be delivered later (LL). On average, participants
selected the patient option on 42.127% ( 0.645%) of trials. Response times to choose LL were longer,
on average, than for choosing SS (across participants, mean RT(LL) = 1977.994 25.323ms; mean
RT(SS) = 1831.7 ± 19.322ms; mean difference 146.294ms [95% CI: 111.528, 181.06] t(493)=8.268,
p<.001).

The traditional approach to analyzing these intertemporal choice tasks is to measure the degree
to which participants display a preference for early delivery of rewards by fitting a discount factor
that decreases the subjective value of each option based on the time until receipt. We fit participant
choices with a hyperbolic discounting model [6, 26]. The fit value of the hyperbolic discount factor
k was 0.023 ± 0.002, with choice variability parameter of 0.291 ± 0.008.

We next fit an evidence accumulation model to participant choices and RT. Evidence accu-
mulation algorithms are commonly implemented as models of binary value-based choice, with the
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decisiveness of deliberation the drift rate of evidence accumulation at each decision set to be a
function of the difference between the subjective value of the two options. A higher value of the
drift rate leads to faster choices and less-variable outcomes (Figure 3). Consistent with the idea
that patience in the ITC task is linked to the rate of deliberation, more patient choosers were both
faster to select the LL option (correlation between discount factor log(k) and mean RT to LL per
participant: R = .304, p < .001) and, at the same time, less variable in their choices (correlation
between discount factor log(k) and choice noise: R = −.361, p < .001).

To formally test whether such a mechanism could explain choices in our task, we fit several vari-
ants of a DDM to participant choices and reaction times; the variants differed in their specification
of the relationship between drift rate and bias and the choice settings (TLL, VLL, VSS ; see Methods
for specifications). The best-fitting such model, the scaled-difference model, does not inherently
discount option values, but instead produces stochastically-varying estimations with variance that
increases with time to receipt.

We compared the best-fitting sampling model and the hyperbolic-time-preferences discounting
model on their ability to predict held-out choices: For each of the N trials, the model parameters
were fit to the other N-1 trials, and the fit model predicted the outcome for trial n. The likelihood
is the sum, across all N fits, of the log choice probability of the held-out trial, thus allowing
comparison of both models on equal footing. Consistent with the idea that these models capture
the same behavior but with varying levels of specificity as to the mechanism, neither was a superior
explanation of out-of-sample choices (average difference in log-likelihood: 2.526 ± 0.417; exceedance
probability p=.633).

Two parameters of the sampling model capture qualitatively different, but non-exclusive, mech-
anisms by which an agent could choose LL: the bias z an offset that specifies the relative amount
of evidence needed to select LL and the drift rate v the rate at which evidence is accumulated
in favor of the higher-valued option (Figure 1). The first component can reflect simple rule-guided
strategies such as “Choose LL when its value is greater than $50” or “Choose SS when the delay
is greater than 10 days.” The second component reflects dynamic reasoning, for instance of the
form “What will I do with $10 today?” or “What might I do with $100 in 50 days?” Regardless
of implementation, the key distinction between the two lies at the computational level, where they
capture different timescales of value arbitration: the bias reflects all processing whose influence is
fixed before the presentation of the current options, whereas the drift rate captures deliberative
processing that interacts with the specific conditions of the current choice (e.g. value of each option,
and time until delivery).

Model parameters varied considerably between participants (Figure 4). As expected, the dis-
count factor log(k) was reliably correlated with both drift rate v (R=-.852, p<.001) and bias z
(R=-.517, p<.001). However, the v and z parameters were, themselves, correlated across partici-
pants (R=.401, p<.001). Supporting the hypothesis that separate processes influencing discounting,
each parameters correlation with log(k) was reliable after controlling for the other (partial corre-
lation of log(k) and v, controlling for z: ρ=-.823, p<.001; log(k) and z, controlling for v: ρ=-.365,
p<.001) (Figure 5).

Given this decomposition, we examined in more detail the relationship between patience and
choice noise. Consistent with the idea that the reduction in choice noise with patience is driven by
the deliberative process and an increasing number of samples per unit time yielded more consistent
value estimates partial correlation revealed a reliable relationship between choice noise and drift
rate v when controlling for bias z (ρ=.361, p<.001), but not between and z when controlling for v
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(ρ=-.04, p=.375). This effect was reliable even after controlling for the overall relationship between
choice noise and patience: was correlated with v when controlling for both log(k) and z (ρ=.133,
p=.003). This analysis supports the hypothesis that choices result from dynamic option evaluation
that involves successive samples of noisy evidence about option values.

In sum, we found that an evidence accumulation model allows us to decompose two paths to
patience in intertemporal choice tasks. Specifically, while both drift rate v and bias z predict
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Figure 4: Drift rate and bias both contribute to patient choice. Choices in the intertemporal
task, measured by the fraction of trials on which LL was chosen (A) and discount factor k (B),
are a combined function of drift rate v and bias z (N=494). The discount factor log(k) was
reliably correlated with both drift rate v (R=-.852, p<.001) and bias z (R=-.517, p<.001), but
the v and z parameters were, themselves, correlated across participants (R=.401, p<.001). Two
clusters of participants reflect different combinations of the two parameter values, yielding different
proportions of patient choice .
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Figure 5: Hyperbolic discount factor is correlated with drift rate and bias. Hyperbolic discount
factor (log(k)) is independently correlated with both the drift rate v (top) and bias z (bottom)
of the DDM (N=494). Each parameters correlation with log(k) was reliable after controlling for
the other (partial correlation of log(k) and v, controlling for z: ρ=-.823, p<.001; log(k) and z,
controlling for v: ρ=-.365, p<.001).

patient choices, captured by discount factor k, only v predicts deliberation of the sort that results
in less-noisy choices. Next, we investigated whether this deliberative process was also related to a
different type of choice behavior: planning in a sequential decision-making task.
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4.2 Model-based planning is uniquely predicted by deliberative intertemporal
choice

A subset of participants (N=32) performed a separate “two-step task” (Figure 1); [23, 24]). Follow-
ing the standard approach to analyzing behavior in this task, we fit a computational reinforcement
learning model to participants choices in the two-step task (see Methods). When participants prop-
erly learn (and use) the transition structure, and properly learn to credit rewards received after a
“Rare” transition, their value of MB will be higher.

We first evaluated the relationship between behavior in the two tasks. Consistent with the idea
that model-based planning indexes a general tendency towards forward-looking choice, participants
with higher values of βMB were also more likely to choose the LL option (R(βMB, %LL)=.381,
p=.015). Despite this, the model-based planning index βMB did not correlate with discount factor
(R(βMB, log(k))=-.073, p=.346).

Although the relationship between model-based planning and patient choice was not mediated
by the hyperbolic discount rate, we reasoned that such a relationship might be observable via the
decomposition of discounting behavior that we identified previously, into drift rate v and bias z.
Consistent with our hypothesis that a common deliberative mechanism underlies both intertempo-
ral choice and model-based planning, only the correlation between MB and v was significant (v:
R=.328, p=.033; z: R=.123, p=.251) (Figure 6). Confirming the specificity of this relationship,
only v remained a significant predictor of MB when each correlation was taken while controlling
for the contribution of the other parameter and log(k) (v: ρ =.374, p=.017; z: ρ =.007, p=.485) 6.

Taken together, these results demonstrate that apparent time preferences in intertemporal
choice tasks arise from a process with two, computationally distinct components one a form of de-
liberation over the choice options, and the other a more automatic approach to binary choice. This
decomposition of patient choice into two components reveals a relationship between intertemporal

Figure 6: Model-based planning is correlated with drift rate, not discount factor or bias (N = 32).
Despite not being correlated with hyperbolic discount factor (log(k), left), or DDM bias (z, right),
model-based planning (MB) is correlated with DDM drift rate (v, middle) as fit to choices and
RTs in the separately-administered intertemporal choice task. The correlation between MB and v
is significant even after controlling for z and log(k) (robust =.374, [95% CI: 0.011, 0.671], middle).
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and model-based choice that is not observable in the standard model of discounted choice.

5 Discussion

The ability to prospectively evaluate potential future outcomes is a critical feature of adaptive
choice. Nearly every decision we face involves comparison between actions whose outcomes are not
contemporaneously observable. In economics and psychology, this sort of decision has been studied
as reflecting an idiosyncratic degree of preference for earlier consumption of rewards. However, a
similar set of behaviors can arise without inherent time preference, but instead from a mechanism
where evaluation of the choice options depends on the time until they are delivered. One such can-
didate mechanism is prospective evaluation of the sort proposed to underlie model-based planning
in sequential reinforcement learning (RL) tasks. Here we found that individuals whose behavior
in an RL task indicated increased recruitment of model-based learning strategy, which relies on
prospective evaluation, also showed greater patience in a separate intertemporal choice (ITC) task.
These behaviors corresponded at a computational level, and also an algorithmic one. We decom-
posed choices in the ITC task on the basis of their relative recruitment of reflexive or deliberative
processes and found that the latter was exclusively associated with model-based planning.

Our finding may provide a unifying explanation of seemingly conflicting previous results about
the external validity of the discounting measure, and in particular about the relationship between
discount factors and measures of model-based planning [32, 33]. Specifically, the fact that pa-
tient choice can be decomposed into reflexive and deliberative components, each of which predicts
the standard discount rate, raises the possibility that failures to find correspondence between dis-
counting and other measures might be attributable to discounting that relies in larger part on the
former, reflexive, process, rather than the more deliberative component. Such a reflexive approach
to patient-seeming choice could arise from the fact that laboratory measures of intertemporal pref-
erences generally involve repeated choices that, even if they are not sequential in nature, may
support the adoption of cross-trial strategies tuned to the specific task at hand. Along these lines,
a recent report that found no correlation between measured discounting and model-based planning
[33] assessed discount factors using a staircasing procedure, which by its sequential nature may
explicitly encourage across-trial bias-setting of the sort captured by the reflexive, but not delibera-
tive, component. At the same time, the fact that these measures are positively correlated with each
other suggests that there is not an explicit trade-off, and task features that encourage one need not
diminish the other. Further work is necessary to understand what types of tasks encourage different
evaluation strategies, and to what degree each corresponds to other behaviors and personality traits
traditionally associated with patience in intertemporal choice.

These results concord with recent work showing that temporal discounting does not require a
preference over temporal delivery. [10], as long as the forecasts generated by the mechanism are
more variable when predicting outcomes farther away in time. They further showed that hyperbolic
discounting describes the behavior of this rational agent when forecast variance is linearly increasing
with time. In other words, the degree of (im)patience corresponds to the tradeoff between the
potential of a larger reward, and the internal cost of reliably simulating that reward. Such a
tradeoff parallels analyses showing that the balance between model-based and model-free decisions
result from a cost/benefit or speed/accuracy tradeoff [18].

In the brain, the relative influence of model-based vs. model-free valuation is negotiated via the
dynamic [18]. The planning computations that support model-based behavior have been shown to
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involve contributions from dorsolateral prefrontal cortex, dorsomedial striatum, and hippocampus
[19, 20]. Patient intertemporal choice is also thought to involve a search through future outcomes,
and has been shown to engage a similar cortico-subcortical network of brain regions including
the hippocampus [34, 5] and dorsolateral prefrontal cortex [34]. Further support for the role of
prospective simulation in patient choice is given by evidence linking numerous cognitive processes
related to episodic memory, such as self-projection, episodic future thinking, mental time travel,
and scene construction, to simulating the outcomes of hypothetical actions [35, 36, 37, 38].

Broadly, the computational flexibility of the RL framework offers future research a viable tool
for dissociating sub-mechanisms of intertemporal choice. While such mechanistic distinctions are
always important when trying to relate behavioral differences to neural substrates, the importance
of untangling the many potential causes of impatient choice is underscored by the fact that obser-
vations of impulsivity across multiple clinical populations are likely to arise from different causes.
Recovery from substance abuse, for example, is thought to rely on the ability to take the perspective
of your future self in order to envision the long-term benefits of sobriety in spite of its tension with
the contemporaneous drug craving. While many treatments focus on building proper habits [39],
recent findings support the promotion of prospective future simulation as an effective approach for
decreasing drug consumption [40]. A computational framework that reliably distinguishes multi-
ple paths to patience could provide theoretical grounding for when to apply each approach, and
help therapists take into account the myriad environmental and personal factors known to alter
deliberative decision-making under uncertainty.
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