A counterselectable sucrose sensitivity marker permits efficient and flexible mutagenesis in

Streptococcus agalactiae

Thomas A. Hooven^a, Maryam Bonakdar^b, Anna B. Chamby^c, Adam J. Ratner^{c,d*}

Affiliations:

a. Columbia University Vagelos College of Physicians and Surgeons, Department of Pediatrics,

New York, NY

- b. Brown University, Pathobiology Graduate Program, Providence, RI
- c. New York University School of Medicine, Department of Pediatrics, New York, NY
- d. New York University School of Medicine, Department of Microbiology, New York, NY

* Corresponding author:	Adam J. Ratner
	Departments of Pediatrics and Microbiology
	Division of Pediatric Infectious Diseases
	New York University School of Medicine
	430 East 29th Street, Room 505
	New York, NY 10016
	Tel: (646) 501-0044
	Adam.Ratner@nyulangone.org

Running title: Rapid GBS mutagenesis with sucrose counterselection

1 Abstract

2

3 Streptococcus agalactiae (group B Streptococcus; GBS) is a cause of severe infections, 4 particularly during the newborn period. While methods exist for generating chromosomal 5 mutations in GBS, they are cumbersome and inefficient and present significant challenges if the 6 goal is to study subtle mutations such as single base pair polymorphisms. To address this 7 problem, we have developed an efficient and flexible GBS mutagenesis protocol based on 8 sucrose counterselection against levansucrase (SacB) expressed from a temperature-selective 9 shuttle vector. GBS containing the SacB expression cassette demonstrate lethal sensitivity to 10 supplemental sucrose whether the plasmid DNA is replicating outside of the chromosome or 11 has been integrated during a crossover event. Transmission electron microscopy shows that 12 SacB-mediated lethal sucrose sensitivity results from accumulation of inclusion bodies that eventually lead to complete degradation of normal cellular architecture and subsequent lysis. 13 14 We used this new mutagenesis technique to generate an in-frame, allelic exchange knockout of 15 the GBS sortase gene srtA, demonstrating that >99% of colonies that emerge from our protocol 16 had the expected knockout phenotype and that among a subset tested by sequencing, 100% 17 had the correct genotype. We also generated barcoded nonsense mutations in the cylE gene in two GBS strains, showing that the approach can be used to make small, precise chromosomal 18 19 mutations.

20

21

23

24 Importance

26	The ability to generate chromosomal mutations is fundamental to microbiology. Historically,
27	however, GBS pathogenesis research has been made challenging by the relative genetic
28	intractability of the organism. Generating a single knockout in GBS using traditional techniques
29	can take many months, with highly variable success rates. Furthermore, traditional methods do
30	not offer a straightforward way to generate single base pair polymorphisms or other subtle
31	changes, especially to noncoding regions of the chromosome. We have developed a new
32	sucrose counterselection-based method that permits rapid, efficient, and flexible GBS
33	mutagenesis. Our technique requires no additional equipment beyond what is needed for
34	traditional approaches. We believe that it will catalyze rapid advances in GBS genetics research
35	by significantly easing the path to generating mutants.
36	
37	Introduction
38	
39	Streptococcus agalactiae (group B Streptococcus; GBS) is the most common cause of neonatal
40	sepsis and meningitis (1-3). It can also cause serious infections in adults (4, 5) and in several
41	animal species, including fish, which can be a source of zoonotic transmission (6-9).
42	
43	GBS is not naturally competent under laboratory conditions (10) and exhibits low rates of
44	spontaneous genetic recombination (11). Genetic studies of GBS have mostly relied on

45	generation of allelic exchange knockouts using mutagenesis cassettes cloned into a
46	temperature-sensitive shuttle vector (12-14). The mutagenesis cassette typically consists of an
47	antibiotic resistance marker with upstream and downstream homology arms matching the
48	chromosomal regions adjacent to the target gene. A second antibiotic resistance marker on the
49	plasmid, outside of the mutagenesis cassette, confers dual resistance to transformed cells.
50	
51	After electroporation and transformation of competent GBS with the mutagenesis vector,
52	transformed clones are initially grown at a permissive temperature, which allows
53	extrachromosomal replication of the plasmid. A subsequent shift to a higher, non-permissive
54	temperature selects against extrachromosomal plasmid replication, leaving only cells where a
55	crossover event at one of the homology arms has resulted in plasmid integration into the
56	chromosome.
57	
58	In order to achieve allelic exchange, a second crossover event must then occur at the other
59	homology arm, followed by plasmid expulsion from the cell. Successful completion of these
60	steps is detected by screening individual colonies for a specific antibiotic resistance phenotype:
61	retained antibiotic resistance from the mutagenesis cassette marker with sensitivity to the
62	second antibiotic due to loss of the plasmid during growth at the non-permissive temperature
63	(12).

65 Without effective counterselection against the plasmid, however, detection of the second 66 crossover event—a stochastic and often rare occurrence—is inefficient. Particularly if the

67	desired mutant has a fitness disadvantage compared to wild type, identification of an allelic
68	exchange mutant may require manual screening of hundreds or thousands of individual
69	colonies (15).
70	
71	Furthermore, the existing approach limits the types of mutants that can be generated. Since the
72	final screen depends on persistence of one antibiotic resistance phenotype with loss of a
73	second, mutants produced using traditional techniques must include an antibiotic resistance
74	marker on the chromosome. Small-scale and unmarked alterations, such as single nucleotide
75	polymorphisms (SNP) or subtle mutations to noncoding regions, are very difficult to obtain.
76	
77	Levansucrase (sucrose: 2,6- β -D-fructan 2,6- β -D-fructosyltransferase) is an enzyme present in
78	multiple bacterial species and has been extensively studied in <i>Bacillus subtilis</i> (16-21). Encoded
79	by the <i>sacB</i> gene, secreted <i>B. subtilis</i> levansucrase polymerizes sucrose into the branched
80	fructan polymer known as levan (16, 19). While the exact function of levansucrase in <i>B. subtilis</i>
81	is unknown, the levan that it generates is believed to serve a structural or nutrient role for the
82	cell (17).
83	
84	In other bacterial species, expression of <i>B. subtilis sacB</i> confers lethal sensitivity to sucrose (22,
85	23). The mechanism of sucrose toxicity is believed to be from either intracellular or extracellular
86	accumulation of levan, with resultant disruption of normal cellular processes. Sucrose

87 sensitivity from *sacB* expression has been used as counterselection in conjunction with plasmid-

88	based mutagenesis systems to isolate mutants in several bacterial species (22, 23). To date,
89	however, the technique has not been described in GBS.
90	
91	Here we report development and validation of a flexible and efficient counterselection system
92	to make targeted mutations in GBS using a <i>sacB</i> -containing, temperature sensitive, broad host
93	range plasmid. A schematic of this new system is presented in Figure 1 . We show that the
94	system can be used to generate marked and unmarked mutations in multiple GBS strains. In our
95	experience, use of this technique dramatically decreases the labor and time required to
96	generate mutants, allowing accelerated discovery.
97	
98	<u>Results</u>
99	
100	Construction of pMBsacB, a temperature-sensitive, sucrose counterselectable mutagenesis
101	shuttle vector
102	
103	Plasmid pMBsacB is derived from pHY304, a widely used mutagenesis shuttle vector with the
104	temperature-sensitive broad host range origin of replication from pWV01 (12, 24).
105	
106	The <i>B. subtilis sacB</i> coding sequence, complete with signal peptide sequence, was amplified
107	from strain 168 purified genomic DNA and cloned into plasmid pOri23, which placed the <i>sacB</i>
108	gene downstream of the p23 promoter. This plasmid is designated pSacB23, and was used in
109	initial experiments to test <i>sacB</i> functionality in GBS (see next section).

1	1	
1		U

111	We subsequently generated pMBsacB by amplifying the p23 promoter and <i>sacB</i> coding
112	sequence as a single expression cassette then subcloning it into pHY304. Figure 2 shows the
113	steps involved in developing pMBsacB.
114	
115	GBS transformed with sacB-bearing plasmids show lethal sucrose sensitivity
116	
117	Before transforming GBS with <i>sacB</i> -bearing plasmids pSacB23 and pMBsacB, we developed an
118	electroporation protocol that did not include the use of sucrose, which is typically used as an
119	osmoprotectant to prevent bacterial death during transformation (24, 25). We had observed
120	very low rates of successful transformation during early trials with sucrose osmoprotection
121	(data not shown), presumably due to sucrose-mediated toxicity.
122	
123	We initially tried replacing sucrose with maltose, a structurally related disaccharide that we
124	hoped would not be lethal to cells transformed with <i>sacB</i> plasmids. However, there was no
125	significant increase in transformation efficiency with maltose osmoprotection (data not shown),
126	which we attributed to <i>sacB</i> nonspecific reactivity with maltose, likely generating
127	maltosylfructose (26, 27).
128	
129	Our transformation efficiency returned to expected levels (10 ⁻⁴ -10 ⁻⁵ per μ g plasmid DNA for GBS
130	strain CNCTC 10/84) with replacement of sucrose osmoprotectant with 25% (mass:mass)
131	polyethylene-glycol (average MW 6000 daltons; PEG-6000), which we dissolved in rich

transformation media for competent cell outgrowth and in the wash solution in which we storeand electroporate competent GBS.

134

135 GBS strain 10/84 transformed with pSacB23 or pMBsacB showed significant growth defects on 136 solid media with supplemental 0.75 M sucrose (Figure 3A). We also tested the sensitivity of 137 planktonic 10/84:pMBsacB to sucrose added to liquid media, and found significant growth impairment. Planktonic and solid media exposure could also be combined (Figure 3B). 10/84 138 139 transformed with pHY304, by contrast, did not demonstrate significant sucrose sensitivity. 140 In order to directly visualize the phenotypic effect of sucrose exposure on GBS expressing SacB, 141 142 we performed transmission electron microscopy on 10/84 transformed with pMBsacB or 143 pHY304 and exposed to sucrose or control conditions. As shown in Figure 4A-C, sucrose 144 exposure of 10/84 with pMBsacB resulted in abnormal cellular morphology, with apparent 145 intracellular accumulation of inclusion bodies, eventually resulting in complete degradation of 146 normal cellular architecture and eventual lysis. Apart from expected cell shrinkage from 147 sucrose-mediated osmosis, GBS transformed with the control plasmid pHY304 showed normal 148 architecture regardless of sucrose exposure (Figures 4D-E). SacB expression in the absence of 149 sucrose had no apparent effect on morphology (Figure 4F). 150 151 Sucrose counterselection improves the efficiency of allelic exchange mutagenesis

152

153	To test whether sucrose counterselection could be used in GBS to produce allelic exchange
154	mutants, we applied our system to deleting a gene that we and others had experience knocking
155	out: the sortase gene srtA (28). This provided a benchmark against which efficiency of
156	counterselection-assisted mutagenesis could be measured.
157	
158	We used overlap extension PCR to generate a <i>srtA</i> mutagenesis cassette (<i>dSrtA</i>) in which
159	approximately 800-bp homology arms flank an in-frame chloramphenicol acetyltransferase
160	gene (<i>cat</i>), which confers chloramphenicol resistance, replacing the <i>srtA</i> coding sequence. This
161	cassette was subcloned into pHY304 and pMBsacB, then used for transformation of 10/84 using
162	PEG-6000 osmoprotection.
163	
164	After transformation with either pHY304:dSrtA or pMBsacB:dSrtA, single-cross intermediate
165	strains were produced by transitioning liquid cultures from 28 °C to 37 °C in the presence of
166	erythromycin selection. Once chromosomal insertion was confirmed by PCR, the pHY304 and
167	pMBsacB single-cross strains were serially passaged at 28 $^\circ$ C with no antibiotics or
168	counterselction. At that point, each of the two cultures were used to seed two new cultures
169	with chloramphenicol at 37 °C, one containing 0.75 M sucrose and the other a non-sucrose
170	control.
171	
172	Each of the four cultures (pHY304: <i>dSrtA</i> and pMBsacB: <i>dSrtA</i> , with and without sucrose) was
173	passaged three times at 37 °C with chloramphenicol selection. Serial dilutions were then plated

175	overall CFU concentration did not differ significantly between conditions—as indicated by equal
176	growth on non-selective media—there was a dramatic difference between pMBsacB grown in
177	the presence of sucrose and the other three outgrowth conditions. Exposure of the pMBsacB
178	single-cross strain to sucrose eliminated virtually all erythromycin-resistant survival, suggesting
179	successful counterselection (Figure 5A-B). PCR of the <i>cat</i> gene generated the expected 660-bp
180	gel electrophoresis bands when genomic DNA from colonies that survived counterselection was
181	used as template, but not wild type GBS DNA (Figure 5C). Sanger sequencing of DNA amplified
182	using PCR primers that bind outside of the <i>dSrtA</i> homology arms confirmed that the <i>srtA</i> gene
183	had been replaced by <i>cat</i> , as intended (Figure 5D). The pHY304 single-cross strain was not
184	responsive to sucrose, and the pMBsacB erythromycin-resistant CFUs survived well in the
185	absence of sucrose exposure.
186	
187	The pMBsacB mutagenesis system permits efficient generation of unmarked mutations in
188	multiple GBS strains
189	
190	An effective counterselection system could facilitate generation of unmarked mutations,
190 191	An effective counterselection system could facilitate generation of unmarked mutations, opening the possibility of performing sequential genome edits to produce complex mutants.
191	
191 192	opening the possibility of performing sequential genome edits to produce complex mutants.
191 192 193	opening the possibility of performing sequential genome edits to produce complex mutants. To explore whether pMBsacB could accelerate generation of unmarked mutations, we

197	surrounded by	y a set of silent mutation SNPs	establishing a unio	pue barcode that would not
207				

- 198 likely arise through spontaneous mutation. The barcoded stop codon was flanked by 500-bp
- 199 upstream and downstream homology arms (Figure 6A).
- 200
- 201 We cloned this cassette into pMBsacB, generating pMBsacB:dCylE, which was then transformed

into two GBS strains, 10/84 and A909. After generation of the single-cross intermediate, which

203 was non-hemolytic (data not shown), we used sucrose counterselection to isolate putative

double-cross GBS, which could be either wild type—due to auto-excision of the plasmid at the

same homology arm as crossed over during insertion—or a *cylE* knockout.

206

207 Counterselection against the single-cross strain again resulted in near-complete elimination of
 208 erythromycin resistant CFUs (Figure 6B).

209

When plated on solid media without antibiotic selection, the counterselection culture yielded an equal mix of pigmented and non-pigmented colonies, supporting the concept that the plasmid could auto-excise in one of two ways, only one of which would result in the nonpigmented phenotype expected of the knockout. If not exposed to sucrose, the single-cross intermediate retained erythromycin resistance and the colonies were uniformly nonpigmented, reflecting the fact that the population consisted almost entirely of unchanged, single-cross CFUs.

217

218	In the 10/84 experiment, we selected four non-pigmented colonies from the non-selective plate
219	on which the sucrose-exposed culture had been grown. These were used for genomic DNA
220	purification, followed by amplification of the cylE coding sequence and Sanger sequencing. One
221	of the four had the correct barcoded sequence, whereas the other three did not properly
222	amplify during PCR, suggesting that the plasmid auto-excised in a manner that left a partial
223	sequence deletion (Figure 6C).
224	
225	In the case of A909, 20 out of 24 non-pigmented isolates properly amplified by PCR. We
226	sequenced ten of these, nine of which had the expected barcoded premature stop codon
227	(Figure 6C). Both 10/84 and A909 cylE knockout strains generated using pMBsacB:dCylE showed
228	the anticipated non-pigmented, non-hemolytic phenotype (Figure 6D).
229	
230	Unintended deletions during the final plasmid-excision is a phenomenon that we have
231	subsequently observed in other mutagenesis experiments, suggesting that all mutants
232	generated with pMBsacB must be confirmed by some combination of PCR and sequencing to
233	ensure the desired genotype.
234	
235	Discussion
236	Reliable methods for creating specific mutations are central to microbiological discovery.
237	Existing methods for doing so in GBS have been limited in multiple respects. Without
238	counterselection, the final screening step for plasmid auto-excision and curing is unreliable and
239	inefficient, since it depends on random identification of a low-probability biological event.

240	Furthermore, most current methods rely on replacement of a coding sequence with an
241	antibiotic resistance marker; this does not support rapid generation of small changes to the
242	chromosome, such as individual SNPs. An earlier counterselection-based approach to GBS
243	mutagenesis was limited by the fact that it required an already mutated background strain,
244	which is not ideal for pathogenesis work (15). Together, these barriers make isolation of
245	complex mutants with multiple, subtle chromosomal changes infeasible.
246	
247	Our sacB-mediated counterselection system overcomes these limitations. The method is simple
248	and does not require any additional equipment or experience beyond what is required for
249	traditional approaches.
250	
251	We validated our system by generating two knockouts: one (srtA) involved allelic exchange with
252	a chloramphenicol resistance marker, while the other (cylE) demonstrated the ability of our
253	technique to produce small chromosomal changes at the single nucleotide level. In order to
254	confirm that the system works in multiple GBS strains from different serotypes (which can show
255	phenotypic variability under the same growth conditions), we generated the same <i>cylE</i>
256	mutation in A909 (serotype Ia) and 10/84 (serotype V). We noted that A909 grew less robustly
257	on 0.75 M sucrose than 10/84; so for the A909 <i>cylE</i> mutation, we used 0.5 M sucrose
258	counterselection. When using this system in different strains, it is important to optimize the
259	counterselection conditions prior to starting a new mutation.
260	

261	As Figure 5 shows, the srtA knockout can be generated at reasonable rates even without
262	counterselection. There was considerable variability from one experimental replicate to the
263	next, but the mean recovery rate of knockouts in the sucrose-negative conditions was 29-57%,
264	regardless of whether the mutagenesis plasmid was pHY304 or pMBsacB. In contrast, the mean
265	recovery rate in the pMBsacB sucrose-positive condition was 99%, with low variability.
266	
267	In the case of low-fitness mutations, however, rates of recovery without counterselection can
268	be much lower (32). The last step in the mutagenesis workflow—auto-excision and curing of the
269	plasmid—essentially establishes a competition assay between the single-cross strain and the
270	intended mutant (12). If the mutant has a survival defect, the odds of randomly selecting a
271	mutant colony from among the single-cross population is very low. By shrinking the single-cross
272	background, the pMBsacB counterselection system increases the odds of isolating the desired
273	mutant. Particularly when the goal is mutation of high-fitness genes, we have found that it is
274	important to confirm sucrose sensitivity of the transformant and single-cross intermediate,
275	since spontaneous mutations in the <i>sacB</i> gene could lead to escape of unmodified high-fitness
276	genes once sucrose counterselection is applied.
277	
270	

278 In the case of unmarked mutations, where no new antibiotic resistance is introduced into the 279 chromosome, the bacterial population after counterselection is expected to be a mixture of the 280 desired mutant and wild type bacteria that reverted following plasmid auto-excision. This 281 occurred in our *cylE* knockout experiment, where roughly equal fractions of the post-

282	counterselection population showed knockout and wild type β -hemolysin/cytolysin
283	pigmentation phenotypes.
284	
285	This means that for mutations that do not cause an easily assayable phenotype (such as
286	pigment expression), sequence-based confirmation will be necessary. There are several
287	possible ways to perform this confirmation. Here, we used PCR followed by Sanger sequencing,
288	but probe- or qPCR-based SNP assays are alternative strategies. Confirmation by some means is
289	important, given that plasmid auto-excision can leave unintended deletions, as was the case in
290	several colonies in our <i>cylE</i> experiment.
291	
292	In summary, we have presented a new, straightforward counterselection-based approach to
293	generating flexible mutations in GBS. Our future plans for this work involve modifications to
294	coding and non-coding sequences, including promoter alterations, addition of fluorescent and
295	affinity tags to natively expressed genes, and generation of multiple knockout strains.
296	
297	Methods
298	
299	Bacterial strains and growth conditions
300	
301	GBS strains CNCTC 10/84 (serotype V, sequence type 26) and A909 (serotype Ia, sequence type
302	7) and <i>B. subtilis</i> strain 168 were maintained as frozen glycerol stocks and were grown on
303	tryptic soy (TS; Fisher Scientific product number DF0370-17-3) agar plates or stationary in TS

304	broth at 37 °C or	28 °C. Chemicall	, competent <i>Escherichia coli</i> D⊦	5α were purchased from New

- 305 England Biolabs (product number C2987H) and were stored and transformed according to
- 306 manufacturer instructions. E. coli growth was at 37 °C unless transformed with a temperature-
- 307 sensitive plasmid, in which case the growth temperature was 28 °C. Antibiotic concentrations
- 308 were as follows: erythromycin 5 μg/mL (GBS) or 300 μg/mL (*E. coli*), chloramphenicol 1 μg/mL
- 309 (GBS) or 10 μg/mL (*E. coli*). 0.5 M and 0.75 M sucrose-containing broth and solid media were
- 310 prepared by diluting a filter-sterilized 2 M sucrose stock solution in appropriate media and
- adding any necessary antibiotics to the final mixture.
- 312 Cloning technique
- 313

All shuttle vectors and derivatives used in this study were initially cloned into *E. coli* DH5 α , from

which plasmid DNA for downstream applications was purified using the Qiagen QIAprep

316 Miniprep kit (product number 27104) according to manufacturer instructions.

317

318 Isolation of genomic DNA

319

320 Genomic DNA from GBS and *B. subtilis* was isolated using the Applied Biosystems MagMAX

321 CORE kit (product number A32700) with a KingFisher magnetic bead processing system

322 according to manufacturer instructions, with the following minor modifications. Overnight

- 323 liquid culture volumes were 1-10 mL. After pelleting by centrifugation at 3200 x g, the bacteria
- were lysed in a solution containing 100 μL manufacturer-supplied proteinase K and PK buffer,
- 50 μL lysozyme (100 mg/mL in water), and 5 μL mutanolysin (10 kU in 2 mL 0.1 M potassium

326	phosphate buffer pH 6.2). Lysis was performed at 37 °C for 30 minutes, then 55 °C for 30
327	minutes, followed by a 2-minute centrifugation at 3200 x g. The rest of the extraction followed
328	manufacturer instructions, using the MagMAX CORE Flex KingFisher protocol file.
329	
330	Construction of pSacB23 and pMBsacB
331	
332	The <i>sacB</i> coding sequence was amplified from <i>B. subtilis</i> 168 genomic DNA using primers
333	sacB_pORI23_F and sacB_pORI23_R, which contain Gibson assembly overhang sequences
334	compatible with pORI23 digested with BamHI. Successful clones were identified by Sanger
335	sequencing (data not shown), after which the p23 promoter- <i>sacB</i> cassette was amplified with
336	p23sacB_cassette_F and p23sacB_cassette_R and subloned into pHY304 digested with Avall
337	(see Figure 1). Outgrowth of the pMBsacB cloning reaction was performed at 28 $^\circ$ C and
338	successful clones were identified with Sanger sequencing (data not shown).
339	
340	Transformation of GBS with pSacB23 and pMBsacB
341	
342	Electrocompetent GBS suitable for transformation with <i>sacB</i> -containing plasmids were
343	prepared following methods outlined by Holo and Nes (25) and Framson et al. (24) modified to
344	prevent toxicity from sucrose osmoprotectant.
345	
346	Single 10/84 or A909 colonies from TS agar plates were used to seed 5 mL M17 (BD Difco
347	218561) + 0.5% glucose liquid cultures, which were grown at 37 °C to stationary phase. 500 μL

348	from these cultures were then used to seed filter sterilized 50 mL M17 + 0.5% glucose, 2.5%
349	(A909) or 0.6% (10/84) glycine, and 25% (mass:mass) PEG-6000.
350	
351	Following overnight growth at 37 °C, this culture was diluted in pre-warmed 130 mL of the
352	same media and allowed to grow for 1 hr. The entire volume was pelleted at 3200 x g, then
353	washed twice in ice cold 25% PEG-6000 + 10% glycerol. Following these washes, the samples
354	were resuspended in 1 mL of wash solution and either used immediately for transformation or
355	stored in aliquots at -80 °C.
356	
357	Electroporation and transformation of competent GBS was performed as described by Holo and
358	Nes (25), except that sucrose in the outgrowth media was replaced with 25% PEG-6000, and—
359	in the case of pMBsacB—outgrowth was performed at 28 °C instead of 37 °C.
360	
361	Sucrose killing assays
362	
363	Wild type GBS or transformants were grown overnight in appropriate antibiotic selection
364	without supplemental sucrose. For killing assays on agar plates, overnight cultures were serially
365	diluted and plated directly on TS agar with appropriate antibiotic selection, with or without
366	supplemental sucrose. CFU quantification was performed after 1-2 days of growth. For killing
367	assays during planktonic growth, the overnight cultures were diluted 1:50 in broth without
368	sucrose, grown to log phase, then exposed to sucrose supplementation (or control outgrowth

369	with only sterile water added to the broth) for two hours, at which time the cultures were
370	diluted and plated on appropriate solid media for CFU quantification after 1-2 days of growth.
371	

372 Transmission electron microscopy

373

374	10/84 transformed with pMBsacB or pHY304 was grown to mid-log phase in selective broth.
375	That culture was used to seed a new culture with or without supplemental sucrose. After
376	outgrowth to early-mid log phase, the bacteria were fixed with 2.5% glutaraldehyde and 2%
377	paraformaldehyde and washed with cacodylate buffer (50 mM, pH 7.2), then post fixed with 2%
378	osmium tetroxide. Bacteria were embedded in 2% agar, then cut and stained in the dark with
379	0.5% (w/v) uranyl acetate. Samples were dehydrated with alcohol, transferred to propylene
380	oxide/Epon mixtures and finally embedded in EMbed 812 (Electron Microscopy Sciences,
381	Hatfield, PA). Thin sections were cut, adsorbed on electron microscope grids, and stained with
382	uranyl acetate and lead citrate. Stained grids were then imaged in a Philips CM12 electron
383	microscope (FEI; Eindhoven, The Netherlands) and photographed with a Gatan (4kx2.7k) digital
384	camera (Gatan Inc., Pleasanton, CA).
385	
386	Construction of pMBsacB:dSrtA and pMBsacB:dCylE
387	
388	The dSrtA mutagenesis cassette consisted of the cat gene with 822-bp upstream and 795-bp

downstream homology arms that matched the 10/84 chromosomal regions flanking the *srtA*

390 gene. The three fragments were amplified from template DNA (10/84 genomic DNA or pDC123,

391	a shuttle vector containing <i>cat</i>). The primers used to generate the upstream, coding, and
392	downstream cassette regions of the mutagenesis cassette were dSrtA_US_F/R, cat_F/R, and
393	dSrtA_DS_F/R, respectively.
394	
395	Next, overlap extension PCR was used to join the three regions (28). The upstream homology
396	arm was first joined to cat, after which the downstream homology arm was attached. The two-
397	fragment intermediate and the final cassette were gel extracted and used for TOPO cloning into
398	pCR2.1-TOPO, followed by Sanger sequence confirmation (data not shown). After successful
399	construction, the complete cassette was digested out of pCR2.1-TOPO with Notl and Kpnl, then
400	ligated with T4 ligase overnight at 16 $^\circ$ C into pHY304 double-digested with the same restriction
401	enzymes. For insertion of the dSrtA cassette into pMBsacB, the construct was amplified out of
402	pHY304: <i>dSrtA</i> using primers dSrtA_GA_F and dSrtA_GA_R, then cloned into pMBsacB at the
403	Notl and Xhol sites using Gibson assembly.
404	
405	The 1500-bp <i>dCylE</i> cassette was amplified out of GBS strain AR1598, a derivative of 10/84 in
406	which the <i>cylE</i> gene has a barcoded premature stop codon (Figure 6B), using primers
407	dCyIE_GA_F and dCyIE_GA_R. This amplicon was similarly cloned into the <i>NotI</i> and <i>XhoI</i> sites of
408	pMBsacB using Gibson assembly.
409	
410	Allelic exchange using sucrose counterselection against pMBsacB

412	After transformation of GBS, using the method described above, with pMBsacB (or pHY304
413	control) bearing a mutagenesis cassette (dSrtA or dCylE), successful transformants were grown
414	in TS broth with appropriate antibiotic selection (erythromycin with or without
415	chloramphenicol) at 28 °C. Sucrose sensitivity of the transformants was confirmed by plating
416	serial dilutions on TS agar with 0.5 M (for A909) or 0.75 M (for 10/84) sucrose and appropriate
417	antibiotic selection at 28 $^{\circ}$ C.
418	

To generate single-cross intermediates, transformants were serially passaged three times at 28 419 420 °C with erythromycin selection. The third passage was then used to seed another culture at 37 421 °C with erythromycin selection, which was grown overnight. Serial dilutions of the final culture 422 were plated on TS agar with erythromycin at 37 °C. Individual colonies were grown and tested 423 for sucrose sensitivity. Genomic DNA was also extracted and tested by PCR for proper vector 424 insertion using either cylE farout F or srtA farout F, which match chromosomal sites outside 425 of the homology arms, and pMBsacB_MCS_F, which binds pMBsacB and pHY304 upstream of 426 the cloning sites used in this study (data not shown).

427

428 Single-cross intermediate strains with the correct sucrose sensitivity phenotype and PCR-

429 confirmed genotype were then grown in TS broth without antibiotics at 28 °C and passaged
430 three times in order to enrich for spontaneous double-cross events. To counterselect against

431 pMBsacB, the third passage was used to seed TS broth with sucrose at 37 °C. In *srtA* knockout

432 experiments, chloramphenicol was added to the sucrose-containing broth. The sucrose culture

433 was passaged three times at 37 °C, and then serial dilutions were plated on TS agar with or

434	without chloramphenicol. Simultaneous plating on erythromycin-containing TS agar (with or
435	without chloramphenicol) was used to quantify the effectiveness of counterselection against
436	pMBsacB.
437	
438	Knockout candidates from the non-erythromycin plate were confirmed to be erythromycin
439	sensitive by patching to a new plate. Genomic DNA extraction followed by PCR and Sanger
440	sequencing confirmed plasmid excision and the correct knockout DNA sequence. For the <i>srtA</i>
441	knockout, the region was amplified using primers srtA_farout_F/R and these amplicons were
442	sequenced using srtA_farout_F and cat_F primers. For the <i>cylE</i> knockout, the region was
443	amplified using cylE_farout_F/R and the barcoded mutation was confirmed by sequencing with
444	the dCylE_conf_F primer.
445	
446	pHY304 knockout controls were subjected to the same steps, including sucrose exposure,
447	unless otherwise noted. Non-sucrose exposure control conditions were identical except that
448	the three final passages of the single-cross strain at 37 $^\circ$ C were performed in the absence of
449	sucrose.
450	
451	Acknowledgements
452	
453	We thank NYU Langone Health DART Microscopy Laboratory for the consultation and assistance
454	with transmission electron microscopy work.
455	

456 <u>Funding</u>

457

458 This work was supported by NIH/NIAID K08AI132555 to TAH and R56 AI136499 to AJR.

459

460 <u>Conflicts of interest</u>

461

- 462 AJR has served as a consultant to Pfizer. The other authors have no financial or other conflicts
- 463 of interest to disclose.

465		
466	Refer	ences
467		
468	1.	Baker CJ. 2013. The spectrum of perinatal group B streptococcal disease. Vaccine 31
469		Suppl 4 :D3–6.
470	2.	Stoll BJ, Hansen NI, Sánchez PJ, Faix RG, Poindexter BB, Van Meurs KP, Bizzarro MJ,
471		Goldberg RN, Frantz ID, Hale EC, Shankaran S, Kennedy K, Carlo WA, Watterberg KL,
472		Bell EF, Walsh MC, Schibler K, Laptook AR, Shane AL, Schrag SJ, Das A, Higgins RD,
473		Eunice Kennedy Shriver National Institute of Child Health and Human Development
474		Neonatal Research Network. 2011. Early onset neonatal sepsis: the burden of group B
475		Streptococcal and E. coli disease continues. Pediatrics 127 :817–826.
476	3.	Schrag SJ, Farley MM, Petit S, Reingold A, Weston EJ, Pondo T, Hudson Jain J, Lynfield R.
477		2016. Epidemiology of Invasive Early-Onset Neonatal Sepsis, 2005 to 2014. Pediatrics
478		138 :e20162013–e20162013.
479	4.	Muñoz P, Llancaqueo A, Rodríguez-Créixems M, Peláez T, Martin L, Bouza E. 1997.
480		Group B streptococcus bacteremia in nonpregnant adults. Arch Intern Med 157 :213–216.
481	5.	Reingold A, Watt JP. 2015. Group B streptococcus infections of soft tissue and bone in
482		California adults, 1995-2012. Epidemiol Infect 143 :3343–3350.
483	6.	Kayansamruaj P, Pirarat N, Hirono I, Rodkhum C. 2014. Increasing of temperature
484		induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory

485		related genes in infected Nile tilapia (Oreochromis niloticus). Vet Microbiol 172 :265–271.
486	7.	Botelho ACN, Ferreira AFM, Fracalanzza SEL, Teixeira LM, Pinto TCA. 2018. A
487		Perspective on the Potential Zoonotic Role of Streptococcus agalactiae: Searching for a
488		Missing Link in Alternative Transmission Routes. Front Microbiol 9 :608.
489	8.	Kalimuddin S, Chen SL, Lim CTK, Koh TH, Tan TY, Kam M, Wong CW, Mehershahi KS,
490		Chau ML, Ng LC, Tang WY, Badaruddin H, Teo J, Apisarnthanarak A, Suwantarat N, Ip M,
491		Holden MTG, Hsu LY, Barkham T, Singapore Group B Streptococcus Consortium. 2017.
492		2015 Epidemic of Severe Streptococcus agalactiae Sequence Type 283 Infections in
493		Singapore Associated With the Consumption of Raw Freshwater Fish: A Detailed Analysis
494		of Clinical, Epidemiological, and Bacterial Sequencing Data. Clin Infect Dis 64:S145–S152.
495	9.	Tan S, Lin Y, Foo K, Koh HF, Tow C, Zhang Y, Ang LW, Cui L, Badaruddin H, Ooi PL, Lin
496		RTP, Cutter J. 2016. Group B Streptococcus Serotype III Sequence Type 283 Bacteremia
497		Associated with Consumption of Raw Fish, Singapore. Emerging Infect Dis 22:1970–1973.
498	10.	Håvarstein LS, Hakenbeck R, Gaustad P. 1997. Natural competence in the genus
499		Streptococcus: evidence that streptococci can change pherotype by interspecies
500		recombinational exchanges. J Bacteriol 179 :6589–6594.
501	11.	Brochet M, Rusniok C, Couve E, Dramsi S, Poyart C, Trieu-Cuot P, Kunst F, Glaser P.
502		2008. Shaping a bacterial genome by large chromosomal replacements, the evolutionary
503		history of Streptococcus agalactiae. Proc Natl Acad Sci USA 105 :15961–15966.
504	12.	Yim HH, Rubens CE. 1998. Site-specific homologous recombination mutagenesis in group

505 B streptococci. Methods in Cell Science **20**:13–20.

506	13.	Sheen TR, Jimenez A, Wang N-Y, Banerjee A, van Sorge NM, Doran KS. 2011. Serine-rich
507		repeat proteins and pili promote Streptococcus agalactiae colonization of the vaginal
508		tract. Journal of Bacteriology 193 :6834–6842.
509	14.	Quach D, van Sorge NM, Kristian SA, Bryan JD, Shelver DW, Doran KS. 2009. The CiaR
510		response regulator in group B Streptococcus promotes intracellular survival and
511		resistance to innate immune defenses. Journal of Bacteriology 191 :2023–2032.
512	15.	Tamura GS, Bratt DS, Yim HH, Nittayajarn A. 2005. Use of glnQ as a counterselectable
513		marker for creation of allelic exchange mutations in group B streptococci. Appl Environ
514		Microbiol 71 :587–590.
515	16.	Meng G, Fütterer K. 2003. Structural framework of fructosyl transfer in Bacillus subtilis
516		levansucrase. Nat Struct Biol 10 :935–941.
517	17.	Marvasi M, Visscher PT, Casillas Martinez L. 2010. Exopolymeric substances (EPS) from
518		Bacillus subtilis: polymers and genes encoding their synthesis. FEMS Microbiol Lett
519		313 :1–9.
520	18.	Porras-Domínguez JR, Ávila-Fernández Á, Miranda-Molina A, Rodriguez-Alegria ME,
521		Munguia AL. 2015. Bacillus subtilis 168 levansucrase (SacB) activity affects average levan
522		molecular weight. Carbohydr Polym 132 :338–344.
523	19.	Ortiz-Soto ME, Rudiño-Piñera E, Rodriguez-Alegria ME, Munguia AL. 2009. Evaluation of

- 524 cross-linked aggregates from purified Bacillus subtilis levansucrase mutants for
- 525 transfructosylation reactions. BMC Biotechnol **9**:68.
- 526 20. Abdel-Fattah AF, Mahmoud DAR, Esawy MAT. 2005. Production of levansucrase from
- 527 Bacillus subtilis NRC 33a and enzymic synthesis of levan and Fructo-Oligosaccharides.
- 528 Curr Microbiol **51**:402–407.

529 21. Ortiz-Soto ME, Rivera M, Rudiño-Piñera E, Olvera C, López-Munguía A. 2008. Selected

- 530 mutations in Bacillus subtilis levansucrase semi-conserved regions affecting its
- 531 biochemical properties. Protein Eng Des Sel **21**:589–595.
- 532 22. Marx CJ. 2008. Development of a broad-host-range sacB-based vector for unmarked
 533 allelic exchange. BMC Res Notes 1:1.
- 534 23. Li Y, Thompson CM, Lipsitch M. 2014. A modified Janus cassette (Sweet Janus) to
- 535 improve allelic replacement efficiency by high-stringency negative selection in
- 536 Streptococcus pneumoniae. PLoS ONE **9**:e100510.
- 537 24. Framson PE, Nittayajarn A, Merry J, Youngman P, Rubens CE. 1997. New genetic
- 538 techniques for group B streptococci: high-efficiency transformation, maintenance of
- temperature-sensitive pWV01 plasmids, and mutagenesis with Tn917. Appl Environ
 Microbiol 63:3539–3547.
- 541 25. Holo H, Nes IF. 1989. High-Frequency Transformation, by Electroporation, of

542 Lactococcus-Lactis Subsp Cremoris Grown with Glycine in Osmotically Stabilized Media.

543 Appl Environ Microbiol **55**:3119–3123.

544	26.	Canedo M, Jimenez-Estrada M, Cassani J, López-munguía A. 1999. Production of
545		Maltosylfructose (Erlose) with Levansucrase fromBacillus Subtilis. Biocatalysis and
546		Biotransformation 16 :475–485.
547	27.	Seibel J, Moraru R, Götze S, Buchholz K, Na'amnieh S, Pawlowski A, Hecht H-J. 2006.
548		Synthesis of sucrose analogues and the mechanism of action of Bacillus subtilis
549		fructosyltransferase (levansucrase). Carbohydr Res 341 :2335–2349.
550	28.	Lalioui L, Pellegrini E, Dramsi S, Baptista M, Bourgeois N, Doucet-Populaire F, Rusniok C,
551		Zouine M, Glaser P, Kunst F, Poyart C, Trieu-Cuot P. 2005. The SrtA Sortase of
552		Streptococcus agalactiae is required for cell wall anchoring of proteins containing the
553		LPXTG motif, for adhesion to epithelial cells, and for colonization of the mouse intestine.
554		Infection and Immunity 73 :3342–3350.
555	29.	Whidbey C, Harrell MI, Burnside K, Ngo L, Becraft AK, Iyer LM, Aravind L, Hitti J,
556		Waldorf KMA, Rajagopal L. 2013. A hemolytic pigment of Group B Streptococcus allows
557		bacterial penetration of human placenta. J Exp Med 210 :1265–1281.
558	30.	Rosa-Fraile M, Dramsi S, Spellerberg B. 2014. Group B streptococcal haemolysin and
559		pigment, a tale of twins. FEMS Microbiol Rev 38 :932–946.
560	31.	Randis TM, Gelber SE, Hooven TA, Abellar RG, Akabas LH, Lewis EL, Walker LB, Byland
561		LM, Nizet V, Ratner AJ. 2014. Group B Streptococcus β -hemolysin/cytolysin breaches
562		maternal-fetal barriers to cause preterm birth and intrauterine fetal demise in vivo. J
563		Infect Dis 210 :265–273.

564	32	Link AJ, Jeong KJ, Georgiou G. 2007. Beyond toothpicks: new methods for isolating
JU 1	JZ.	Link A, Jeong N, Georgiou G. 2007. Deyond toothpicks. new methods for isolating

- 565 mutant bacteria. Nat Rev Micro 5:680–688.
- 566 33. Zeigler DR, Prágai Z, Rodriguez S, Chevreux B, Muffler A, Albert T, Bai R, Wyss M,
- 567 **Perkins JB**. 2008. The origins of 168, W23, and other Bacillus subtilis legacy strains.
- 568 Journal of Bacteriology **190**:6983–6995.
- 569 34. Hooven TA, Randis TM, Daugherty SC, Narechania A, Planet PJ, Tettelin H, Ratner AJ.
- 570 2014. Complete Genome Sequence of Streptococcus agalactiae CNCTC 10/84, a
- 571 Hypervirulent Sequence Type 26 Strain. Genome Announcements **2**:e01338–14–e01338–
- 572 14.
- 573 35. Chaffin DO, Rubens CE. 1998. Blue/white screening of recombinant plasmids in Gram-
- 574 positive bacteria by interruption of alkaline phosphatase gene (phoZ) expression. Gene
- 575 **219**:91–99.
- 576 36. Que YA, Haefliger JA, Francioli P, Moreillon P. 2000. Expression of Staphylococcus
- 577 aureus clumping factor A in Lactococcus lactis subsp cremoris using a new shuttle vector.
- 578 Infection and Immunity **68**:3516–3522.

Table 1: Strains, plasmids, and primers used in this study

	Strains		
Strain	Description	Reference	
E. coli DH5α	Chemically competent cloning strain	New England Biolabs item # C2987H	
B. subtilis 168	Legacy strain derived from <i>B. subtilis</i> Marburg	(33)	
GBS CNCTC 10/84	Serotype V, sequence type 26	(34)	
GBS A909	Serotype la, sequence type 7		
GBS AR1598	Serotype V, sequence type 26 10/84 mutant with barcoded premature stop codon in <i>cylE</i> gene	This study	
	Plasmids		
Name	Description	Reference	
pDC123	Shuttle vector with the chloramphenicol acetyltransferase gene used as PCR template	(35)	
рНҮ304	Broad host range, temperature sensitive mutagenesis plasmid; pWV01 derivative; erythromycin-resistant	(12)	
pMBsacB	pHY304 with p23- <i>sacB</i> cassette cloned into <i>Avall</i> site, for sucrose-counterselectable GBS mutagenesis	This study	
pOri23	Shuttle vector with <i>ori</i> ColE1 and <i>Lactococcus</i> -derived Gram-positive origin of replication; erythromycin- resistant; p23 promoter adjacent to <i>BamHI</i> restriction site	(36)	
pSacB23	pORI23 with <i>sacB</i> cloned into <i>BamHI</i> site for expression off p23 promoter	This study	
	Primers		
Name	Sequence (5' to 3')	Description	
cat_F	ATGGAGAAAAAAATCACTGGATATACCACC	Amplifies <i>cat</i> gene for allelic exchange knockout	
cat_R	CCCGCCCTGCCACTCATCGC	screening and for overlap extension PCR to make <i>dSrtA</i> mutagenesis cassette (from pDC123 template)	
cylE_farout_F	TACACGCGAGATCGGTTAGC	Binds GBS chromosome outside of the <i>dCylE</i> mutagenesis cassette region, for confirming single- and double-crossover events at	
cylE_farout_R	CTGGTGTTCCTGAAGCGAGT	the <i>cylE</i> locus	
dCyIE_GA_F	ATTGGGTACCGGGCCCCCCAGATGCTATA AAAGCAGC	Amplifies <i>dCylE</i> mutagenesis cassette (from AR1958 template) for Gibson assembly into pMBsacB	
dCylE_GA_R	TGGAGCTCCACCGCGGTGGCCCTGTTTACTT GTTCCGATAAAAAG	Notl/Xhol digest	
dCylE_Conf_F	CCAACGAAGCCACTGTCTCT	Sequencing primer to confirm barcoded stop codon in the <i>cylE</i> gene	

dSrtA_DS_F	GCGATGAGTGGCAGGGCGGGGGCGTAAAAGG TAGTTAGAATTATGAAATTAAAGGCTGTTC	Amplifies downstream homology arm for <i>dSrtA</i> mutagenesis cassette; overlap extension PCR	
dSrtA_DS_R	GCGCGCGCCTCGAGGCGTTTTAACTTTCGTGT CTCTAGATTCATCATAATTCAGAAGT	compatible	
dSrtA_GA_F	GCTTCCAAGGAGCTAAAGAGGAATTCGAAAA GCCCTGAC	Amplifies <i>dSrtA</i> mutagenesis cassette for Gibson assembly into pMBsacB <i>Notl/Xhol</i>	
dSrtA_GA_R	ATTCACTACTTTTAGTTAAGTTATTTGTTAA CTGTTAATTGTCC	— digest	
dSrtA_US_F	GCGCGCGCGGATCCAATTTAGGGCGTGTGT ATCGTTTGAAAGCATAT	Amplifies upstream homology arm for <i>dSrtA</i> mutagenesis cassette;	
dSrtA_US_R	GGTGGTATATCCAGTGATTTTTTTTCTCCATGA AACCATGTGATTTTTTTTATT	overlap extension PCR compatible	
p23sacB_cassette_F	GCTTCCAAGGAGCTAAAGAGGTCCTTAACT AAAAGTAGTGAATTTTTGATTTTTG	Amplifies p23 promoter- <i>sacB</i> gene from pSacB23 for Gibson assembly into pHY304 <i>AvalI</i> digest	
p23sacB_cassette_R	AAATTCCCCGTAGGCGCTAGGCATGCGTTA TTTGTTAACTGTTAATTGTCC		
pMBsacB_MCS_F	CAATACGCAAACCGCCTCTC	Binds pMBsacB, for use with "farout" primers for confirmation of single-cross insertion	
sacB_pORI23_F	TATGAATGACAATGATGTTGATGAACATC AAAAAGTTTGC	Amplifies <i>sacB</i> from <i>B.</i> <i>subtilis</i> 168 for Gibson	
sacB_pORI23_R	AGCTTGGCTGCAGGTCGACGTTATTTGTTA ACTGTTAATTGTCC	assembly into pORI23 BamHI digest	
srtA_farout_F	AGAGCACAAAAACGTGGAGG	Binds GBS chromosome outside of the <i>dSrtA</i> mutagenesis cassette region, for confirming single- and double-crossover events at	
srtA_farout_R	ACTGCTAAGGTATCGTTAGACCC	the <i>srtA</i> locus	

Figure Captions

Figure 1. Schematic of pMBsacB-mediated GBS mutagenesis: Following insertion of a mutagenesis cassette into pMBsacB and transformation of GBS at 28 °C (1), the transformed strain is used to seed a 37 °C culture, selecting for single-crossover events at one of the homology arms (2). After removal of antibiotic selection and growth at 28 °C to promote a second crossover event and plasmid expulsion (3), sucrose is added as counterselection to isolate the desired allelic exchange clones (4). In the absence of sucrose counterselection, step 4 resembles traditional mutagenesis techniques (red box), in which identification of the allelic exchange depends on chance discovery of a clone with spontaneous loss of plasmid-based antibiotic resistance.

Figure 2. Development of pMBsacB: The *sacB* coding sequence was amplified from *B. subtilis* 168 and inserted at the *BamHI* site in pORI23, placing the gene adjacent to the p23 promoter in pSacB23 (1). The promoter-gene cassette was then amplified from pSacB23 (2) and cloned into the AvalI site of the broad host range, temperature-sensitive plasmid pHY304 (3), generating pMBsacB.

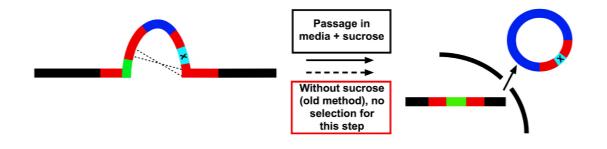
Figure 3. *sacB* **confers lethal sucrose sensitivity in GBS:** Stationary phase WT GBS 10/84 or 10/84 transformed with plasmids used in this study was serially 10-fold diluted and plated on TS agar plates with appropriate antibiotic selection with or without supplemental 0.75 M sucrose (A). The first dilution shown is 10⁻¹. pMBsacB-based sucrose sensitivity functions in

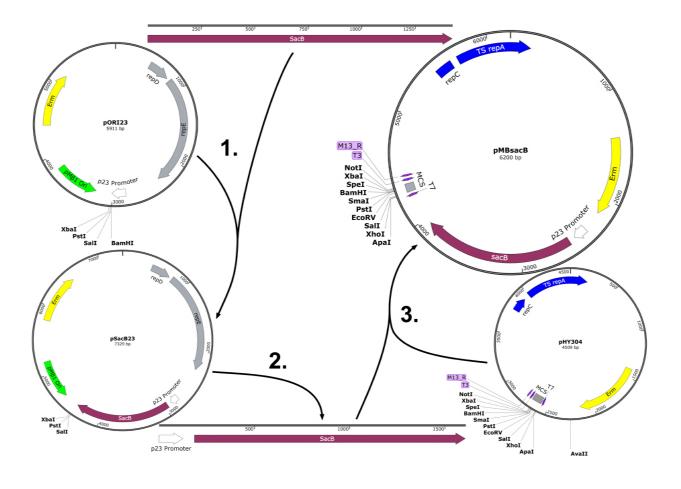
liquid culture and on solid media, whereas pHY304 does not affect GBS survival in sucrose in either growth condition (B; *** p < 0.0001, ANOVA).

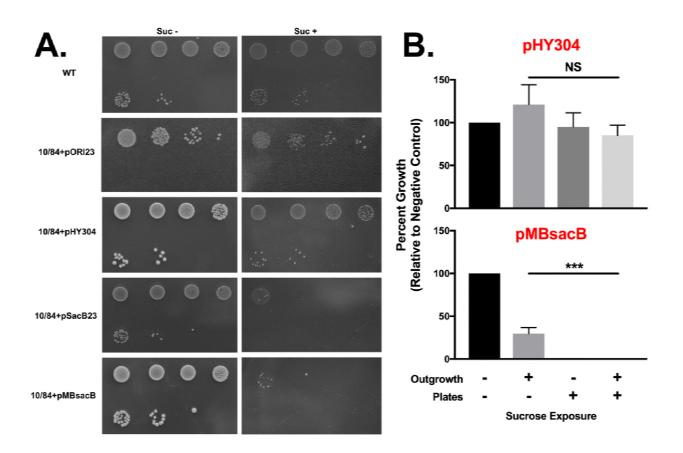
Figure 4. Transmission electron microscopy reveals that SacB expression under sucrose counterselection results in destructive intracellular inclusions: Early-log phase GBS strain 10/84 transformed with pMBsacB and exposed to 0.75 M sucrose for 3 hours shows intracellular inclusion bodies that lead to degraded architecture and eventual lysis (A-C). GBS transformed with the control plasmid pHY304 shows normal architecture under baseline growth conditions (D) and only expected osmotic effects when grown with supplemental sucrose (E). SacB expression in the absence of sucrose counterselection has no apparent effect on GBS morphology (F).

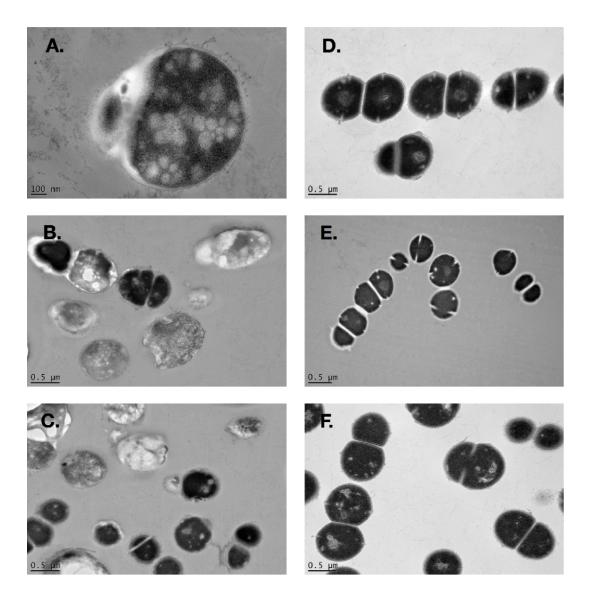
Figure 5. Allelic exchange mutagenesis of the *srtA* **gene is made more efficient by using pMBsacB:** Sucrose exposure of single-cross pMBsacB:*dsrtA* knockout intermediates results in selection against erythromycin-resistant clones, which is not seen with the pHY304:*dsrtA* singlecross strain (A). Recovery of phenotypically correct knockout clones is significantly more efficient using pMBsacB than when mutagenesis is performed with pHY304 (B; * p < 0.05, T test). PCR of *cat* results in successful amplification of genomic DNA from 11 knockout (KO) candidates, but not from wild type (WT) or template-negative (Neg) controls (C). Sanger sequences of the *srtA* region amplified using primers outside of the mutagenesis cassette were combined to generate a consensus sequence, which was aligned to the expected knockout template. Erm=erythromycin, Cm=chloramphenicol, suc=sucrose.

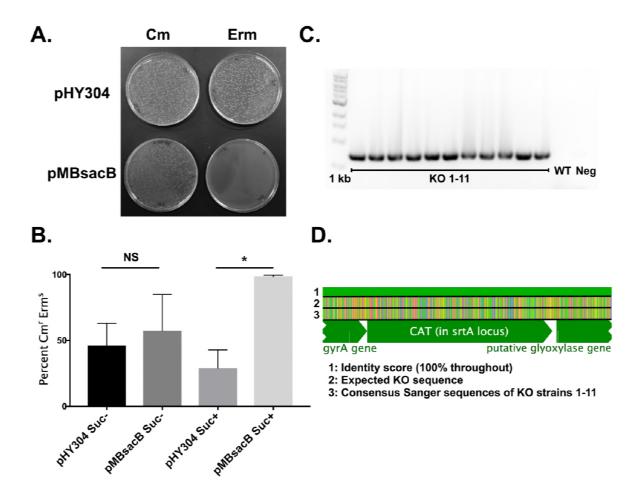
Figure 6. pMBsacB permits efficient generation of unmarked mutations in the *cylE* gene: After generation of a *cylE* mutagenesis cassette bearing a premature stop codon barcoded by additional silent SNPs, the cassette was cloned into pMBsacB and used to knockout β-hemolysin/cytolysin expression in GBS 10/84 and A909 (A). Sucrose counterselection resulted in near-complete elimination of erythromycin-resistant CFUs (B). Clones that survived counterselection were screened for the barcoded mutation by performing PCR with cylE_farout_F/R primers and Sanger sequencing of the amplified genomic region of interest with dCylE_Conf_F (C). Representative traces are shown for the bands marked by asterisks. The recovered knockout strains had the expected non-hemolytic phenotype when plated on 5% sheep's blood agar (D). Erm=erythromycin.


Figure 1




1. Transform pMBsacB:mutagenesis construct at 28°C (+Erm) 2. Select for single-cross insertions at 37°C (+Erm)


3. Passage at 28°C (no selection)


4. Plate double-cross mutants at 37°C (+/- antibiotics)

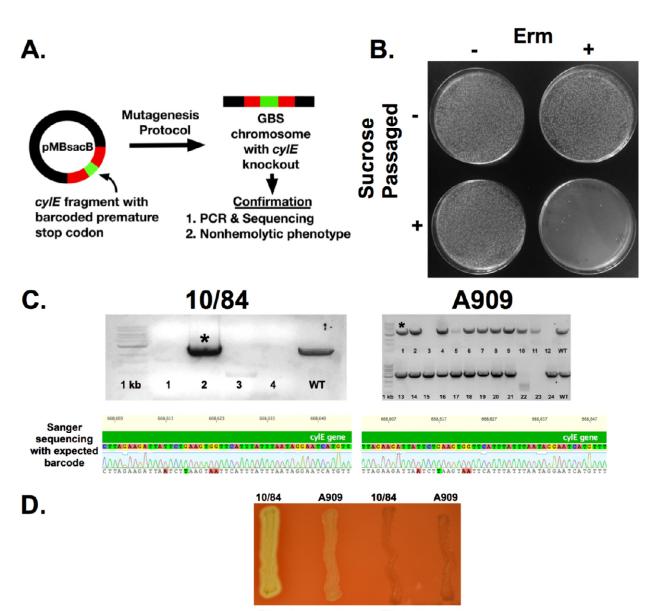


Figure 6

Wild type

Knockout