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Abstract 

Summary: With the development of single-cell sequencing technologies, parallel sequencing the transcriptome 

and genome is becoming available and will bring us the opportunity to uncover association between genotype and 

phenotype at single-cell level. Due to the special characteristics of single-cell sequencing data, new method is 

needed to identify eQTL from single-cell data. We developed an R package SCeQTL that uses zero-inflated 

negative binomial regression to do eQTL analysis on single-cell data. It can distinguish two type of gene-

expression differences among different genotype groups. It can also be used for finding gene expression variations 

associated with other grouping factors like cell lineages or cell types.  

Availability: The R package is available at https://github.com/XuegongLab/SCeQTL/. 

Contact: zhangxg@tsinghua.edu.cn  

 

1. Introduction 

Expression quantitative trait locus or eQTL analysis is an important approach for studying the 

association and the underlying regulation relationship between variations in the genotype and gene 

expression. Technologies that can sequence both genome and transcriptome of single cells have been 

developed recently (Macaulay et al., 2015; Dey et al., 2015). These technologies give us an opportunity 

to uncover the association between genetic variations and genes expression at single-cell level, which 

can help reveal detailed gene regulation mechanisms in processes like tumorigenesis and cell 

differentiation. 

Methods for identifying eQTLs have been well studied for microarray data and bulk RNA-seq data. 

Typical methods of eQTL mapping include linear regression and ANOVA, where the expression level 

is taken as the dependent variable and the genotype at a single-nucleotide variation (SNV) site is the 

explaining factor (Shabalin, 2012; Gatti et al., 2009). Among all these methods, most of them are based 

on the assumption that expression levels or its logarithms follow normal distribution, or Poisson 

distribution or negative binomial distribution (Sun, 2012). The Krux method used a non-parametric way 

to identify eQTL and claim their method is more robust (Qi et al., 2014). These existing methods 

including the non-parametric one will lose their power when applied on single-cell RNA-seq data 

because of the excess of zero values.  

The phenomenon of excess of zero values is common in single-cell RNA-seq (scRNA-seq) data 

(Miao and Zhang, 2016). There are mainly two reasons (Miao et al, 2018). Because the amount of total 
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RNAs in a single cell is extremely small, there is high probability that the reverse transcription step 

may miss some transcripts, causing the expression of these genes not observed in the sequencing data. 

This is usually called “drop-out” events. Another reason is that gene expression is a stochastic process 

at single-cell level (Munsky et al 2012). This results in high variation of gene expression between cells. 

Studying such heterogeneity is one of the major purposes of single-cell sequencing. Because of these 

special properties, when we analyze eQTLs on scRNA-seq data, we face two possible types of 

differences among different genotypes: differences in the proportion of zero-values and differences in 

non-zero expression levels. We call them as “zero-ratio difference” and “expression level difference”, 

respectively, for convenience. We developed SCeQTL to analyze these two types of differences that 

may be associated with genotype variations. The method can also be applied to analyze associations of 

gene expression with other types of groupings such as cell lineages or cell types. 

 

2. Zero-inflated generalized linear model 
 

We model the generation of scRNA-seq data as two processes. One is that transcripts are captured 

in the sequencing and the corresponding gene gets non-negative expression values. The other is that 

transcripts are missed or the gene is not expressed in the cell, which will result in zero expression values. 

The second process causes scRNA-seq data to have excess zero values. We find non-zero parts of 

scRNA-seq data fit the negative binomial distribution well similar to bulk RNA-seq data, but there can 

be a high probability of a gene being dropped out in the single-cell data. 

Therefore, we use a zero-inflated negative binomial regression to model the scRNA-seq data. For 

gene expression 𝐺 and genotype 𝑆, there is probability 𝑝 that transcript is dropped out and probability 

1 𝑝 that gene expression is generated from a negative binomial distribution. We write these as 

𝐺~
0                 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝

𝑁𝐵          𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 𝑝 

In the equation, μ and θ are the mean and shape parameter of the negative binomial distribution. We 

call a SNV to be an eQTL of a gene if the probability 𝑝  and/or the mean of negative binomial 

distribution μ is significantly correlated with the genotype of the SNV in a way that 

ln
𝑝

1 𝑝
𝛼 𝛽 𝑠 

ln μ 𝛼 𝛽 𝑠 

where, parameters 𝛼 , 𝛼 , 𝛽 , 𝛽  and the shape parameter θ are to be estimated from the data. Using 

maximum likelihood method to estimate the parameters, we get the log-likelihoods of the full model 

that includes the genotype as the explaining factor (β 0 or β 0) and of the reduced model that 

does not include the genotype (β 0 or β 0). 

According to the generalized linear model theory (Nelder and Baker, 1972), the deviance, which is 

-2 times the log-likelihood ratio of the reduced model compared to the full model, follows an 

approximate chi-square distribution with 𝑘  degree of freedom. The 𝑘  is the difference between 

parameter numbers of the full model and the reduced model. We use the deviance as the test statistic to 

test for whether 𝛽 0 or 𝛽 0. By these two hypothesis tests, we can identify whether the gene have 

association with the genotype and what kind of association it is. 
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3. Application examples 

Single-cell parallel sequencing data are currently only available in very few labs and are not widely 

available yet. We used a semi-simulated data to test the power of method proposed. We used the human 

preimplantation embryos scRNA-seq data (Petropoulos et al., 2016) as the real gene expression data, 

and split the samples into three groups according to the embryonic day (E5-E7) to mimic three groups 

of genotypes.  

We first checked whether the non-zero data were fitted well with our model using the ‘checkdist’ 

function in our package. We randomly picked some genes and drew Q-Q plot to compare gene 

expression distribution with negative binomial distribution. The example of Fig. 1(a) showed that all 

genes fit the distribution well. 

Next, we applied SCeQTL and the widely used MatrixEQTL (Shabalin, 2012) on the data. We 

found that results of the two methods largely overlapped but there were some cases on which SCeQTL 

worked better. Fig. 1(b) shows an example that non-zero part had significant difference but 

MatrixEQTL didn’t find it. One reason is that the negative binomial distribution fit real data better than 

normal distribution. On the other hand, the zero values in scRNA-seq data caused the means of the three 

groups to be almost equal, so that MatrixEQTL could not detect the difference. Figure 1(c) gives an 

example that zero ratio have significant difference but non-zero part is almost same. MatrixEQTL can’t 

find differences of this type, too. 

 
Figure 1. (a) Normalized Q-Q plot for several randomly picked genes (b) An example that non-zero part of gene 

expression have significant differences among genotype groups, with the two p-values of 9.37 10  and 0.002, 

respectively. (c) The non-zero part of an example of significant zero-ratio differences. Zero-ratio of three genotype 

groups are 0.76, 0.26 and 0.26, respectively. The two p-values are 1.09 10  and 0.004, respectively. We can 

see from the figure that the non-zero expressions are not associated with the genotype, but the drop-out event is. 

 

4. Discussion 

SCeQTL is a comprehensive software package for eQTL analysis on single-cell genomic and 

transcriptomic parallel sequencing data. It can also be applied on tasks of finding the association of 

gene expression with other grouping factors. It provides an effective tool for exploring potential 

regulatory relationships at single-cell level. 

A limitation of the method is that the computation cost is relatively high if applied for eQTL analysis 

at whole-genome scale. It can take a few minutes on a single computing node to analyze a few hundred 

gene-SNV pairs. This is mainly due to the iterative procedures in estimating the parameters. However, 
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for most single-cell studies, the cells are from the same tissue sample or closely related samples. We 

can expect that the number of SNVs among the cells that need to be studied for eQTL analysis is not 

too large to make the speed of SCeQTL a severe issue in practical applications.    
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Supplementary Materials 

 
Data Preprocessing 

Firstly, we remove the effect of the library size. We use the DEseq (Anders and Huber, 2010) way 

of normalization. That is, the median of the ratios of observed counts is used to measure the sequencing 

depth. 

𝑠 𝑚𝑒𝑑𝑖𝑎𝑛
𝑔

∏ 𝑔
 

𝑔  is the expression level of gene i in sample j. The denominator is calculated by calculating the 

geometric mean across non-zero samples. As the paper said, this method is more robust than just taking 

the sum of all genes as sequencing depth since the high expressed gene will dominant the result, which 

is often seen in single-cell gene expression data. All the samples are normalized by the size factor, and 

we round down the result to suit our count model. 

Next, we remove the genes and variants which are not suitable for the analysis. Genes which are 

not expressed are removed, genes whose read counts are less than a threshold are treated as not 

expressed (by default, <=1). We only consider genes whose variances are greater than a threshold (by 

default, >=5). For variants, only variants creating at least two genotypic groups, each genotype present 

in at least five samples, are further considered. 

When we enter the iteration of analyzing every gene-variant pair, pair that don’t have enough non-

zero values (by default, <=5) in one genotype is reported. The estimation of distribution parameter can 

be far away from true value in this situation. And we find that in real data, there are samples whose 

expression level is much higher that the others, if we include these samples into consideration, the mean 

of negative binomial distribution will be overestimated. So we treat these samples as outlier and use 

robust z score to remove them (by default, >=4). MAD stands for the median absolute deviation. 

𝑧
𝑔 𝑚𝑒𝑑𝑖𝑎𝑛 𝑔

𝑀𝐴𝐷 𝑔
 

 
Parameter estimation 

Package ‘pscl’ (Zeileis, Kleiber and Jackman, 2008) is used to estimate the parameter and calculate 

the log-likelihood now. The package use EM algorithm or BFGS algorithm to iterate updating the 

parameter.  

 

Covariates correction 

It is common that some hidden covariates may exist in the sampled population, such as age, gender, 

or other clinical variables. It is important to remove the effect of them from the eQTL study, as 

otherwise a high percentage of results will be false discoveries. SCeQTL allows user to define a 
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covariate vector x as possible confounding factors to be considered in the analysis. With covariate 

vector x ∈ R , the models become 

ln α β s ∑ γ x , 

ln μ α β s ∑ γ x , 

where extra parameter vectors 𝜸𝟏 and 𝜸𝟐 to be estimated. The hypothesis test process is the same as 

non-covariates one. 

 

Multiple test correction 

We provide two ways to control the false discovery, Benjamini-Hochberg (BH) method (Benjamini 

and Hochberg, 1995) and Q-value method. The Q-value method is implement by R package ‘qvalue’ 

(http://github.com/jdstorey/qvalue). Since several publications come up with other methods for multiple 

test correction in eQTL mapping (Degnan et al, 2008; Peterson et al, 2016), users can select whether p-

value or false discovery rate is returned and the threshold for either of them. 

 

Experiment result 

Figure S1 and S2(a) shows that negative binomial distribution is appropriate for modeling the non-

zero part of the data, while the lines in Q-Q plot of other distributions are far away from the diagonal. 

Figure S2(b) shows that the drop-out event is very common in single-cell RNA-seq data and needs to 

be considered. Figure S3 show the P value distribution under null hypothesis, we randomly generate 

the genotype and permutate it and use two methods to calculate the P value. P value distribution of 

SCeQTL is closed to uniform distribution between 0 and 1, while the result of Matrix eQTL have strong 

bias. 

 

Figure S1: Q-Q plot of (a) negative binomial distribution (b) Poisson distribution (c) Normal distribution (d) 

log-normal distribution. 
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Figure S2: (a) Probability density function of fitted distribution and the histogram of a sample; (b) Histogram of 

zero ratio of all the genes. 

 

 

Figure S3: P value distribution under null hypothesis of (a) SCeQTL and (b) Matrix eQTL. 

 

We also found SCeQTL could successfully find some biological interesting results. By dividing 

the samples by cell lineage, we applied SCeQTL to find genes that vary among different cell lineage. 

Among all 20,000 genes, SCeQTL found about 20 genes P value less than 10 , 70 genes P value less 

than 10  and 200 genes P value less than 10 . In these genes that are significantly correlated with 

cell lineage, we found some genes have been reported as lineage specific genes. For example, EPI 

(epiblast) specific genes PRDM14, GDF3, TDGF1, NODAL, SOX2, NANOG, P value of these genes 

are 5.7 10 、 4.7 10 , 6.5 10 , 4.0 10 , 5.1 10 , 4.8 10 ; TE 

(trophectoderm) specific genes GATA2, GATA3, DAB2; P value of these genes are 4.1 10 , 6.7

10 , 3.3 10 ; PE (primitive endoderm) specific genes HNF1B, PDGFRA, GATA4, P value of 
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these genes are 5.7 10 , 1.7 10 , 2.0 10 . All these lineage specific genes rank top 200 

in our result. What’s interesting is that quite a lot of these genes have obvious zero ratio differences, 

which may prove that zero ratio differences are important as non-zero part differences in single cell 

data since genes in single cell may close due to some reasons. 

We also manually checked several genes that have not been reported.  We found most significant 

genes truly have difference among groups. Figure S4 shows three examples. The results need further 

investigations. 

 

 
Figure S4: Examples of lineage differential expressed genes (a) PSORS1C2, Zero-ratio of three genotype 

groups are 0.18, 0.85, and 0.57, respectively. The two p-values are 4.1 10  (b) PTPRZ1, Zero-ratio of three 

genotype groups are 0.45, 0.93 and 0.73, respectively. The two p-values are 4.8 10  (c) AMDHD1, Zero-

ratio of three genotype groups are 0.60, 0.79, and 0.38, respectively. The two p-values are 1.5 10 . 
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