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ABSTRACT 26 

Ganoderma lucidum, a traditional edible and medicinal fungus, holds an important 27 

status in health care systems in China and other Asian countries. Fungal 28 

immunomodulatory protein (FIP), one of the active ingredients isolated from G. 29 

lucidum, is a class of naturally occurring proteins and possesses potential biological 30 

functions. This study was conducted to explore the molecular mechanism of its 31 

immunomodulatory potency in immune responses of macrophages. In vitro assays of 32 

biological activity indicated that rFIP-glu significantly activated macrophage 33 

RAW264.7 cells, and possessed the ability of pro- and anti-inflammation the cells. 34 

RNA sequencing analysis showed that macrophage activation involved Toll-like 35 

receptors and mitogen-activated protein kinases pathways. Furthermore, qRT-PCR 36 

indicated that phosphoinositide 3 kinase inhibitor LY294002 blocked the mRNA 37 

levels of MCP-1, MEK1/2 inhibitor U0126 reduced the mRNA levels of TNF-α and 38 

MCP-1, and JNK inhibitor SP600125 prevented the up-regulation of iNOS mRNA in 39 

the rFIP-glu-induced cells. FIP-glu mediated these inflammatory effects not through a 40 

general pathway, instead through a different pathway for different inflammatory 41 

mediator. These data indicate the possibility that rFIP-glu has an important 42 

immune-regulation function and thus has potential therapeutic uses. 43 
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Ganoderma lucidum, a traditional Chinese medicinal mushroom, is a species in 48 

the genus of Ganoderma with numerous pharmacological effects such as improving 49 

immune function, antitumor, antioxidant, reducing cardiovascular and cerebrovascular 50 

diseases and heart diseases caused by body oxidation (1). Among more than 400 51 

different bioactive compounds isolated from G. lucidum, fungal immunomodulatory 52 

protein (FIP) is an important bioactive component with immune regulating activity 53 

and is one of the most promising active ingredients developed by modern 54 

biotechnologies (2). FIP is a small protein with similar structure and 55 

immune-regulatory activity to phytohemagglutinin and immunoglobulins. Since the 56 

first FIP (designated as Lingzhi-8 or LZ-8) was isolated from G. lucidum mycelia, 57 

dozens of FIPs have been isolated and identified from different fungous species in 58 

recent years (3-6). FIPs have immunomodulatory functions and play an important role 59 

in anti-tumor, anti-allergy, anti-transplant rejection, etc., which implies a promising 60 

application for medicinal use (7). For example, FIPs suppress tumors by inhibition of 61 

telomerase activity via decrease of hTERT promoter activity and translocation of its 62 

protein (8-10). FIP-gmi induce apoptosis via β-catenin inhibition in lung cancer cells 63 

(11). FIP-fve has anti-inflammatory effects on OVA-induced airway inflammation and 64 

reduces airway remodeling by suppressing IL-17 (12). In spite of a few studies about 65 

anti-tumor (13, 14) and immunomodulatory effects (15-17), the mechanism of these 66 

activities remain unclear. The relationship between the activation of these proteins, 67 

downstream cytokine expression and physiological function represents an active line 68 

of investigation. 69 
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Macrophages, belonging to a group of mononuclear phagocytes, play vital roles 70 

in processes of the immune response and are strategically positioned throughout the 71 

body tissues (18). They possess functions of phagocytosis, antigen presentation and 72 

production of cytokines, thereby initiating immune response (19). Following 73 

activation, macrophages can release a wide array of pro- or anti-inflammatory 74 

cytokines, which further activate fellow immune cells (20). Depending on these 75 

signals, macrophages have been typed classically activated (pro-inflammation, M1) 76 

and alternatively activated (anti-inflammation, M2) (21). Classically activated 77 

macrophages are elicited in response to pro-inflammatory cytokines and 78 

pathogen-associated molecular patterns (PAMPs), such as Interferon-γ (IFN-γ) and 79 

lipopolysaccharide (LPS) to promote pathogen killing and chronic inflammation. (22, 80 

23). These macrophages produce cytotoxic and inflammatory molecules nitric oxide 81 

(NO) and reactive oxygen species (ROS), pro-inflammatory cytokines tumor necrosis 82 

factor (TNF-α), interleukin (IL)-1β and IL-6, chemokine monocyte chemoattractant 83 

protein-1 (MCP-1, or C-C motif ligand 2 (CCL-2)), etc. (24). However, excessive 84 

inflammatory mediators can be implicated in a number of chronic diseases, such as 85 

arthritis, colitis and asthma (25). M2 macrophages, which are typed in response to 86 

anti-inflammatory cytokines, parasitic infections and damage-associated molecular 87 

patterns (DAMPs), such as IL-4 and IL-13, play an important role in inhibition of 88 

chronic and acute inflammatory response and in tissue repair (23). M2 macrophages 89 

are able to secrete high amounts of anti-inflammatory cytokines, such as IL-10 and 90 

TGF-β (26).  91 
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Macrophages can be activated to an inflammation-promoting phenotype through 92 

members of the Toll-like receptor (TLR) family such as TLR4 (20, 27, 28). Activated 93 

TLRs induce activation of specific intracellular pathways including phosphoinositide 94 

3 kinases (PI3K/Akt), mitogen activated protein kinases (MAPKs) and nuclear factor 95 

kappa B (NF-κB) (21, 29, 30). PI3K/Akt signaling pathway participates in 96 

macrophage polarization (31-34), while MAPKs, including extracellular 97 

signal-related kinase (ERK)-1/2, p38 and c-Jun NH2-terminal kinase (JNK), and 98 

NF-κB are classic inflammation related signals and induce the expression of 99 

pro-inflammatory mediators (35-38).  100 

Here, we report that rFIP-glu produced in Pichia pastoris has the ability to induce 101 

macrophage activation and produce pro- and anti-inflammatory mediators, which may 102 

be through PI3K and MAPK pathways. 103 

 104 

RESULTS 105 

Production of rFIP-glu in Pichia pastoris. An expression vector pPIC9K 106 

was used for achieving rFIP-glu. To facilitate purification, a His-tag was added at the 107 

C-terminal of rFIP-glu (Fig. 1A). Following confirmation by sequencing and 108 

linearization by Sac I, a recombination plasmid containing nucleotide sequences of 109 

FIP-glu and His-tag was transformed into Pichia pastoris GS115 cells. The 110 

transformants successfully secreted recombination proteins into the media compared 111 

with the negative control (GS115 transformed with or without pPIC9K plasmid 112 

incubated with or without MeOH) after induced by MeOH for 72 h (Fig. 1B). Western 113 
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blot analysis further confirmed that the secreted protein was rFIP-glu using anti-6×His 114 

tag (Fig. 1C) and anti-rFIP-glu (Fig. 1D). 115 

 116 

Toxicity of rFIP-glu against RAW264.7 cells. To investigate the activation 117 

effect of rFIP-glu on the RAW264.7 cells, firstly we determined whether this 118 

recombinant fungal protein possessed toxicity and measured its noncytotoxic range. 119 

As shown in Fig. 2, the proliferation of RAW265.7 cells treated with 1 and 2 μg/mL 120 

of rFIP-glu significantly increased (p ≤ 0.0001), relative to the control group. A 121 

culture of RAW264.7 cells incubated with 4 μg/mL of rFIP-glu resulted in no effect 122 

on cell viability and more than 90% of cells with 8 μg/mL were viable (p ≤ 0.01). The 123 

viability of RAW264.7 cells with more than 8 μg/mL showed a rapid decease (p ≤ 124 

0.0001). Based on these results, subsequent assays were performed at 4 μg/mL or no 125 

more than 8 μg/mL. Additionally, rFIP-glu obviously influenced the morphology of 126 

RAW264.7 macrophages with or without stimulation of LPS (Fig. S1).  127 

 128 

rFIP-glu improves phagocytosis of RAW264.7 cells. Next, phagocytic 129 

activities of RAW264.7 cells treated with rFIP-glu were examined by neutral red 130 

uptake assay. As shown in Fig. 3, when the cells were treated with noncytotoxic 131 

concentration of rFIP-glu ranged from 1 to 8 μg/mL, the phagocytosis increased and 132 

then decreased. The phagocytosis of macrophage RAW264.7 cells were significantly 133 

improved (p ≤ 0.05) at 2 μg/mL of rFIP-glu, but suppressed (p > 0.05) at 8 μg/mL. 134 

These indicate that rFIP-glu has the ability to enhance phagocytic activity of RAW 135 
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264.7 cells when the concentration is no higher than 8 μg/mL. 136 

 137 

rFIP-glu regulates pro- and anti-inflammatory genes at 138 

transcriptional level in RAW264.7 cells. To further evaluate the 139 

immunostimulatory effects of rFIP-glu, we investigated whether rFIP-glu had the 140 

ability to induce mRNA levels of relevant genes contributing to the function of 141 

macrophages. These genes were determined by qRT-PCR after cells were treated with 142 

rFIP-glu (1, 2, 4 and 8 μg/mL) for 6 h (Fig. 4). Compared to control, the 143 

rFIP-glu-treated group showed a robust increase in the mRNA level of TNF-α (Fig. 144 

4A; p ≤ 0.01 at 1 μg/mL; p ≤ 0.001 at 2, 4 and 8 μg/mL). Similarly, rFIP-glu also 145 

significantly promoted the mRNA expression of Arginase II in a 146 

concentration-dependent manner (Fig. 4B; p ≤ 0.001 at 1 μg/mL; p ≤ 0.0001 at 2, 4 147 

and 8 μg/mL). The production of NO was measured firstly, but none was detected at 1 148 

to 8 μg/mL of rFIP-glu (Data not shown). Alternatively, we investigated the mRNA 149 

expression of iNOS and found that it also dramatically increased in a 150 

concentration-dependent manner (Fig. 4C; p ≤ 0.0001 at 4 and 8 μg/mL). The mRNA 151 

level of MCP-1 (CCL-2) was also increased and peaked at 2 μg/mL (p ≤ 0.0001), and 152 

then decreased to no change at 8 μg/mL compared with control (Fig. 4D). rFIP-glu 153 

treatment concentration-dependently inhibited the mRNA expression levels of IL-10 154 

(Fig. 4E; p ≤ 0.0001) in RAW264.7 cells. These results exhibit that rFIP-glu 155 

stimulates the immune responses by inducing pro-inflammatory mediators. In parallel, 156 

rFIP-glu inhibited the mRNA expression level of CXCL-10 (Fig. 4F; p ≤ 0.01 at 1 157 
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μg/mL; p ≤ 0.0001 at 2, 4 and 8 μg/mL). This result exhibits that rFIP-glu induces 158 

anti-inflammatory phenotype of macrophages. Additionally, there was little or no 159 

effect on IL-6 at transcriptional level (Fig. 4G) and the mRNA expression of IL-1β 160 

was not detected (Data not shown). Taken together, rFIP-glu re-polarizes 161 

macrophages by regulating of pro- and anti-inflammatory genes expression at 162 

transcriptional level in RAW264.7 cells.  163 

 164 

rFIP-glu regulates LPS-induced pro- and anti-inflammatory 165 

mediators at transcriptional level in RAW264.7 cells. In order to further 166 

determine that rFIP-glu induces or suppresses mRNA expression levels of pro- and 167 

anti-inflammatory genes, RAW264.7 cells were stimulated with 1 μg/mL LPS in the 168 

presence or absence of increasing concentration of rFIP-glu for 6 h, and then 169 

qRT-PCR analysis was performed. Compared with the normal control group, LPS 170 

treatment (1 μg/mL) significantly increased the mRNA expression of IL-1β, IL-6, 171 

IL-10, TNF-α, MCP-1 (CCL-2), CXCL-10 and Arginase II and production of NO (Fig. 172 

5). rFIP-glu treatment (1, 2, 4 and 8 μg/mL) significantly promoted the mRNA levels 173 

of TNF-α (Fig. 5A; p ≤ 0.0001), MCP-1 (CCL-2) (Fig. 5B; p ≤ 0.0001) and Arginase 174 

II (Fig. 5C; p ≤ 0.0001) and concentration-dependently inhibited IL-10 expression at 175 

transcriptional level (Fig. 5D; p ≤ 0.001 at 2 μg/mL; p ≤ 0.0001 at 4 and 8 μg/mL) in 176 

LPS-stimulated RAW 264.7 cells. These results suggest that rFIP-glu promotes 177 

inflammation in LPS-induced RAW264.7. On the other hand, rFIP-glu could 178 

suppressed LPS-induced mRNA expression levels of IL-1β (Fig. 5E; p ≤ 0.01 at 2 179 
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μg/mL; p ≤ 0.0001 at 4 and 8 μg/mL), IL-6 (Fig. 5F; p ≤ 0.01 at 4 μg/mL; p ≤ 0.0001 180 

at 8 μg/mL) and CXCL-10 (Fig. 5G; p ≤ 0.01 at 4 μg/mL; p ≤ 0.0001 at 8 μg/mL) and 181 

LPS-induced production of NO (Fig. 5H; p ≤ 0.01 at 2 μg/mL; p ≤ 0.0001 at 4 and 8 182 

μg/mL) in a concentration-dependent manner. The results indicate that rFIP-glu 183 

suppresses the LPS-induced expression of these inflammatory mediators at the 184 

transcriptional level. Thus, rFIP-glu regulates pro- and anti-inflammatory genes 185 

expression at transcriptional level in LPS-stimulated RAW264.7 cells. 186 

 187 

RNA sequencing results. To give further insights into the molecular 188 

mechanisms involved in the activity of rFIP-glu on macrophage RAW264.7 cells, 189 

RNA-seq was performed at the sequencing core facility of Shanghai Institute of 190 

Immunology. RAW264.7 cells were exposed to non-toxic rFIP-glu doses (4 μg/mL) 191 

for 6 h (Fig. 6). There were approximately 50,000 (coding and non-coding) genes 192 

detected. To determine sample relationships, principle component analysis (PCA) (Fig. 193 

6A) and hierarchical clustering analysis (Heatmap) (Fig. 6B) were performed and 194 

demonstrated that two different groups, rFIP-glu treatment group and control (PBS) 195 

group, can be distinguished and showed segregation. Using an FDR ≤ 0.001 and fold 196 

change > 1 to determine differently expressed genes after rFIP-glu treatment, more 197 

than 700 genes were differentially expressed and we observed 578 up-regulated genes 198 

and 159 down-regulated gene (Fig. 6C). Next, we used the Gene Ontology (GO) 199 

database to characterize the differentially expressed genes. Subsets of these genes 200 

were found to be involved in cellular process, regulation of biological process, 201 
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metabolic process, response to stimulus, developmental process, signaling and 202 

localization (Fig. 6D). These genes encoded proteins that perform immunological 203 

functions including inflammatory response, response to oxygen-containing compound, 204 

cellular response to organonitrogen compound, regulation of protein phosphorylation, 205 

regulation of protein modification process and regulation of programmed cell death 206 

(Fig. 6E). Moreover, to investigate the possible signaling pathways through which 207 

RAW264.7 cells activated by rFIP-glu, Kyoto Encyclopedia of Genes and Genomes 208 

(KEGG) pathway enrichment analysis was performed. Fig. 6F showed the top 20 209 

significantly enriched canonical pathways. In order to verify the RNA-seq results, 10 210 

differential expression genes which were up- or down-regulated showed in the 211 

RNA-seq results were selected. The expression levels of these genes measured by 212 

RT-qPCR showed the same tendency with RNA-seq (Fig. 6G). 213 

 214 

PI3K and MAPK signaling pathways are involved in rFIP-glu-induced 215 

macrophage activation. Obviously, results mentioned above had been shown that 216 

rFIP-glu was capable to promote macrophage proliferation and phagocytosis and 217 

induce the mRNA expression of inflammatory mediators such as TNF-α, MCP-1 218 

(CCL-2) and iNOS. Analysis of RNA-seq indicated that Toll-like receptors pathway 219 

was involved in macrophage activation by rFIP-glu (Fig. S2). Signaling pathway 220 

inhibitor, PI3K inhibitor LY294002, was used to further confirm the mechanisms 221 

involved in rFIP-glu-induced macrophage activation. mRNA levels of TNF-α, MCP-1 222 

(CCL-2) and iNOS were measure by qRT-PCR. Results showed that PI3K inhibitor 223 
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LY294002 blocked the mRNA levels of MCP-1 (CCL-2) induced by rFIP-glu in 224 

RAW264.7 cells (Fig. 7B; p ≤ 0.0001), while the mRNA expression of TNF-α was not 225 

changed (Fig. 7A). These findings suggest that the PI3K pathway is related to 226 

rFIP-glu-induced macrophage activation. 227 

RNA-seq data implied that MAPK signaling pathway was also involved in 228 

macrophage activation by rFIP-glu (Fig. S3). Signaling pathway inhibitors, MEK1/2 229 

inhibitor U0126, JNK inhibitor SP600125 and p38 inhibitor SB203580, were used to 230 

further confirm the mechanisms involved in rFIP-glu-induced macrophage activation. 231 

mRNA levels of TNF-α, MCP-1 (CCL-2) and iNOS were measure by qRT-PCR. 232 

Results showed that, in rFIP-glu-induced RAW264.7, MEK1/2 inhibitor U0126 233 

blocked the mRNA levels of TNF-α (Fig. 7C; p ≤ 0.0001) and MCP-1 (CCL-2) (Fig. 234 

7D; p ≤ 0.0001) and JNK inhibitor SP600125 prevented the up-regulation of iNOS 235 

mRNA (Fig. 7E; p ≤ 0.001). These findings suggest that the MEK1/2 and JNK 236 

pathways are indeed related to rFIP-glu-induced macrophage activation. 237 

 238 

Discussion 239 

G. lucidum is well known as an edible medicinal mushroom for thousands of 240 

years in China. FIP-glu or LZ-8 is one of the active ingredients in G. lucidum. From 241 

beginning of discovery, FIP-glu is named immunomodulatory protein because of a 242 

certain degree of homology with the heavy chain variable region of several 243 

immunoglobulins (39, 40). FIP-glu possesses a variety of physiological activities, 244 

such as anti-anaphylaxis, proliferation stimulation of lymphocytes, anti-tumor and 245 
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immunosuppression (7), suggesting that this protein has great potential in 246 

development of immuno-regulated drugs or foods. Our results showed that rFIP-glu is 247 

a potent stimulator of macrophage proliferation and activation. rFIP-glu can regulate 248 

the mRNA expression of pro- and anti-inflammatory mediators in macrophage 249 

RAW264.7 cells in the presence or absence of LPS. rFIP-glu mediates macrophage 250 

activation through PI3K and MAPK pathways based on RNA-seq analysis. 251 

Macrophages play an important role in host-defense. Macrophages perform 252 

phagocytosis against pathogens as the first step, which is used to initiate the innate 253 

immune response, and then orchestrate the adaptive response (41). Thus, phagocytosis 254 

is a key indicator of evaluating macrophage activation. In the present study, rFIP-glu 255 

significantly improved the phagocytosis of macrophage RAW264.7 cells at 2 μg/mL, 256 

suggesting that rFIP-glu have abilities to enhance phagocytic activity of RAW 264.7 257 

cells. The phagocytosis of macrophages can be enhanced by many bioactive 258 

substances, such as polysaccharides (42, 43), peptides (44) and proteins (45, 46), 259 

alkaloids (47) and phospholipids (48). Phagocytosis is one of the important innate 260 

immune responses. Following RNA-seq analysis showed that rFIP-glu-induced 261 

phagocytosis of macrophage RAW264.7 cells involved Fcγ receptor-mediated 262 

phagocytosis and most genes involved in this process were up-regulated (Fig. S4). 263 

There are two general classes of Fcγ receptors (FcγRs), activating receptors that 264 

activate effector functions and inhibitory receptors that inhibit these functions (41). In 265 

general, activation and inhibitory FcγRs are co-expressed on the same cell (49). The 266 

phagocytosis involves the simultaneous clustering of activating and inhibitory FcγRs 267 
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and is regulated by the ratio of activating to inhibitory FcγRs (50). Moreover, 268 

FcγR-mediated phagocytosis is accompanied by the release of inflammatory 269 

mediators, and excessive magnitude of the FcγR response could lead to excessive 270 

inflammation (50, 51). RNA-seq analysis exhibited down-regulation of an activating 271 

receptor, FcγRI and up-regulation of an inhibitory receptor, FcγRIIb, when 272 

RAW264.7 cells were treated with 4 μg/mL of rFIP-glu although the enhancement of 273 

phagocytosis was not significant. This suggests that rFIP-glu participates in the 274 

regulation of the phagocytosis of macrophages and the release of inflammatory 275 

mediators. Additionally, FcγRIIb has ability to suppress allergic responses (52-55). 276 

This possibly is one of the mechanisms of rFIP-glu-mediated anti-allergy. 277 

In response to an immune challenge, macrophages become activated and produce 278 

cytotoxic and inflammatory mediators, such as NO, ROS, TNF-α and IL-6, that 279 

contribute to nonspecific immunity (56). Our results implied that rFIP-glu has the 280 

predominant role in transcription of pro-inflammatory genes including TNF-α, 281 

MCP-1 (CCL-2), Arginase II and iNOS. Macrophages can be activated by 282 

biologically active substances such as polysaccharides and proteins to produce the 283 

pro-inflammatory molecules (24, 34, 57, 58). Similarly, most mushroom metabolites 284 

also activate macrophages to produce various mediators, such as IL-1β, TNF-α and 285 

iNOS (59). PCP, an immunomodulatory protein from Poria cocos, can promote 286 

TNF-α and IL-1β production in RAW 264.7 cells (60). TNF-α are pro-inflammatory 287 

cytokines and play an essential role in the immune response and inflammation (61). 288 

MCP-1 (CCL-2) is a member of the CC chemokine family and involved in the 289 
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pathogenesis of multiple forms of inflammatory disorders as a mediator of acute and 290 

chronic inflammation (62, 63). Arginase II, one of isoforms of arginase, is 291 

up-regulated in M1 macrophages by pro-inflammatory stimuli and promotes 292 

pro-inflammatory responses (64, 65). iNOS-dependent nitric oxide from activated 293 

macrophages as a cytotoxic mediator can function in many diseases including cancer 294 

(66). Interestingly, in rFIP-glu-treated macrophage RAW264.7 cells, the mRNA 295 

expression of IL-6 was not changed, and that of IL-1β was not detected due to less 296 

transcripts possibly (Data not shown), although IL-1β and IL-6 are important 297 

pro-inflammatory cytokines as well. Moreover, the mRNA level of IL-10 was 298 

suppressed by rFIP-glu. IL-10 is an anti-inflammation cytokine and is secreted by M2 299 

macrophages to suppress the inflammation (26, 67). Studies show that an increase in 300 

levels of M1 markers such as IL-1β, MCP-1 (CCL-2), TNF-α and iNOS and a 301 

decrease or little change in levels of M2 markers such as IL-10 will drive macrophage 302 

M1 activation (68-71). The findings of the present investigation contributed to our 303 

understanding that rFIP-glu promotes macrophage M1 polarization and initiates 304 

pro-inflammatory responses. Unexpectedly, CXCL-10 were down-regulated at mRNA 305 

levels in RAW264.7 cells induced by rFIP-glu. CXCL-10, belonging to the CXC 306 

family of chemokines, is involved in systemic inflammation and can mediate the 307 

recruitment of inflammatory cells (72, 73). Actually, CXCL-10 are expressed under 308 

inflammatory conditions in M1 macrophages (74, 75) and their products are reduced 309 

in M2 macrophages (76, 77). It seems that rFIP-glu induces M2 phenotypical 310 

macrophages to suppress inflammation. To further confirm anti-inflammatory effects 311 
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of rFIP-glu, these related genes were detected in LPS-stimulated macrophage 312 

RAW264.7 cells. Results showed that rFIP-glu indeed possessed anti-inflammation 313 

activity through inhibiting LPS-induced mRNA levels of pro-inflammatory mediators 314 

(IL-6, IL-1β and CXCL-10) and the production of NO. A vast majority of bioactive 315 

substances can attenuate LPS-induced inflammation by decreasing the mRNA levels 316 

of pro-inflammatory mediators and increasing anti-inflammatory mediators. 317 

Polysaccharides, SGP-1 and SGP-2 isolated from the rhizomes of Smilax glabra, 318 

significantly suppressed the release of NO, TNF-α and IL-6 from LPS-induced RAW 319 

264.7 cells (78). A prenylated flavonoid, 10-oxomornigrol F (OMF), can inhibit the 320 

LPS-induced production of NO, TNF-α, IL-1β and IL-6 in RAW264.7 cells (79). To 321 

our surprise, rFIP-glu acted in strong synergy with LPS to induce the mRNA 322 

expression levels of TNF-α, MCP-1 (CCL-2) and Arginase II. Meanwhile, mRNA 323 

level of IL-10 was still suppressed by rFIP-glu in LPS stimulated RAW264.7 cells. 324 

Another immunomodulatory protein, FIP-apo (APP) from Auricularia polytricha, also 325 

accounts for synergistic effects with LPS by NO and TNF-α production (80). These 326 

results mentioned above suggest that rFIP-glu can balance M1/M2 macrophages by 327 

regulating pro- and anti-inflammatory mediators and exhibit immunomodulatory 328 

activity. This phenomenon may confer macrophages an ability to quickly switch 329 

between M1 or M2 associated functions allowing for appropriate responses to stimuli 330 

and tissue environment (81). Re-polarization of macrophages is a key role and a 331 

promising therapeutic option in many diseases (26, 82). For example, inflammatory 332 

bowel diseases can be ameliorated by switching M1 macrophages to M2 (83, 84). 333 
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Conversion of M2 to M1 phenotype is a potential therapeutic intervention in 334 

anti-tumor (85, 86).  335 

Obviously, rFIP-glu has the ability to activate macrophages. The mechanisms 336 

were further investigated. In this study, RNA-seq was used to investigate the 337 

mechanisms of macrophage activation in rFIP-glu-treated RAW 264.7 cells. Our 338 

results indicated that the macrophage activation induced by rFIP-glu involved 339 

Toll-like receptors and MAPKs signaling pathways in macrophage RAW264.7 cells, 340 

which is consistent with that PI3K/Akt, the downstream of Toll-like receptor, and 341 

MAPK are involved in the activation of macrophages (34, 87-89). TLR4 is critical in 342 

immune responses and involved mainly in inflammation responses (90). TLR4 can be 343 

recognized and activated by many stimuli such as polysaccharides, and its expression 344 

increases, and then activates PI3K/Akt and MAPKs pathways, with introduction of a 345 

pool of inflammatory mediators (30, 34, 43, 87, 91). In addition, NF-κB involves in 346 

macrophage activation as well (24, 34, 92, 93). Similarly, RNA-seq analysis indicated 347 

that NF-κB pathway participated in rFIP-glu-mediated macrophage activation. More 348 

evidences should be investigated in the future. Although rFIP-glu activated Toll-like 349 

receptors, MAPKs and NF-κB pathways, RNA-seq (Fig. S2) and qRT-PCR (Fig. S5) 350 

confirmed that the mRNA expression level of TLR4 did not change. It suggests that 351 

the mRNA expression of pro-inflammatory genes induced by rFIP-glu was not 352 

through activating the TLR4 signaling pathway. RNA-seq analysis showed that TLR2 353 

mRNA expression increased (Fig. S2), presuming TLR2 was a receptor of rFIP-glu. A 354 

preliminary yeast two-hybrid experiment showed that rFIP-glu did not interact with 355 
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an extracellular part of TLR2 (Data not shown), suggesting TLR2 possibly was not a 356 

receptor of rFIP-glu as well. It is noteworthy that some active substances can activate 357 

all of these pathways (34, 57, 88), while some can only activate one or more (30, 87, 358 

94). We next used specific PI3K/Akt and MAPKs pathway inhibitors to clarify 359 

whether these signaling pathways were involved in macrophage activation induced by 360 

rFIP-glu. Our results implied the involvement of PI3K in rFIP-glu mediated MCP-1 361 

(CCL-2) mRNA production, MEK1/2 in TNF-α and MCP-1 (CCL-2), and JNK in 362 

iNOS. Although the induction of phosphorylated MAPKs and PI3K/Akt receptors was 363 

not evaluated by Western blot, the participation of them was confirmed by RNA-seq 364 

as well as inhibition of the effects induced by pretreatment with signaling pathway 365 

inhibitors. These results indicate that rFIP-glu may enter cells and act with MEK1/2, 366 

JNK or PI3K indirectly or directly, and another hypothesis is that rFIP-glu interacts 367 

with TLR2 within cells (Fig. 8). In addition, the synergistic activity of rFIP-glu and 368 

LPS implied that rFIP-glu could enhance the expression of downstream mediators that 369 

are generated by Toll-like receptors pathway (80). Heme oxygenase-1 (HO-1) is an 370 

anti-inflammatory enzyme and attenuates the inflammatory response (95), which can 371 

be regulated by nuclear factor erythroid 2-related factor 2 (Nrf2) in the inflammatory 372 

response (96). The Induction of HO-1 can be though MAPK and PI3K signaling 373 

pathways (94, 97, 98). In the present study, mRNA level of HO-1 was significantly 374 

increased in rFIP-glu-induced RAW264.7 cells (Fig. S6). This result implies that the 375 

anti-inflammation of rFIP-glu is possibly mediated by HO-1 in macrophage 376 

RAW264.7 cells. 377 
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 378 

MATERIALS AND METHODS 379 

Reagents. Neutral red staining solution was obtained from Sangon Biotech 380 

(Shanghai, China). U0126 (MEK1/2 inhibitor), SP600125 (JNK inhibitor) and 381 

SB203580 (p38 inhibitor) were purchased from Beyotime (Shanghai, China). 382 

LY294002 (PI3K inhibitor) was purchased from Selleck Chemicals (Houston, TX, 383 

USA). Anti-FIP-glu antiserum was raised in rabbits (99). Anti-6×His Tag mouse 384 

monoclonal antibody, HRP-conjugated Goat Anti-Mouse IgG and HRP-conjugated 385 

Goat Anti-Rabbit IgG were from Sangon Biotech (Shanghai, China).  386 

 387 

Production of rFIP-glu. Production of recombinant FIP-glu (rFIP-glu) in P. 388 

pastoris was performed according to the instruction provided by Pichia Expression 389 

Kit (Invitrogen, USA). Briefly, a gene encoding FIP-glu and subcloned in pUC-57 390 

vector was synthesized by Sangon Biotech (Shanghai) Co., Ltd. (China) based on 391 

codon usage bias. Then, the gene was cloned into an expression cassette vector 392 

pPIC9K. For convenience, a His-tag was added at 3’ end of multiple clone sites of the 393 

vector. After construction, the recombinant expression vector pPIC9K-glu-His 394 

linearized by a restriction enzyme Sac I was transferred into P. pastoris GS115. After 395 

confirmed by PCR (100) and sequencing, the transformant was induced by methanol 396 

for producing rFIP-glu. The rFIP-glu was purified with nickel-nitrilotriacetic acid 397 

(Ni-NTA) agarose resin (TaKaRa, Beijing, China). SDS-PAGE and Western blot 398 

analysis were performed based on the methods of our lab (99, 101).  399 
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 400 

Cell culture. Macrophage RAW264.7 cells were purchased from the Cell Bank 401 

of the Chinese Academy of Sciences (Shanghai, China), cultivated in DMEM medium 402 

supplemented with antibiotics (100 U/mL penicillin and 100 mg/mL streptomycin) 403 

and 10% FBS and incubated at 37 °C in a 5% CO2 incubator. Cells were seeded at 2 × 404 

10
5
 cells per well in 24- or 96-well microplates and were incubated in 5% CO2 at 405 

37 °C. 406 

 407 

Cell viability. Methylene blue uptake assay was performed to assess the effect 408 

of rFIP-glu on the viability of macrophage RAW264.7 cells (102). Briefly, Raw264.7 409 

cells were incubated for 24 h, and then were incubated with rFIP-glu at different 410 

concentration (1, 2, 4 and 8 μg/mL), LPS (1 μg/mL) and Concanavalin A (ConA) (5 411 

μg/mL) for 24 h. LPS and ConA were used as positive controls. The culture 412 

supernatant was discarded and cells were stained by adding 50 μL of 0.6% methylene 413 

blue to each well. Plates were incubated at 37 °C for 60 min, and then inverted to 414 

drain the stain solution away. Wells were washed with phosphate buffered saline (PBS) 415 

to remove unbound stain. Plates were air-dried for several minutes. Stained cells were 416 

solubilized by adding 50 μL of Elution Buffer (Ethanol : PBS : Acetic acid = 50 : 49 : 417 

1 (Volume)) for 20 min with a gentle shake. The absorbance value was measured at 418 

570 nm using a microplate reader (BIO-TEK
®

, USA) and the viability was expressed 419 

as percentage versus control group. 420 

 421 
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Phagocytosis assay. Phagocytosis assay was measured by Neutral red uptake 422 

assay (42). Briefly, Raw264.7 cells were incubated for 24 h, and then incubated with 423 

rFIP-glu at different concentration (1, 2, 4 and 8 μg/mL) and ConA (5 μg/mL) for 24 h. 424 

After the supernatant was discarded, 100 μL neutral red staining solution was added 425 

into each well and the plates were continued to incubate for 30 min. The supernatant 426 

was discarded and the cells were washed with PBS thrice to move free neutral red. 427 

200 μL of cell lysis buffer (Ethanol : Acetic acid = 1 : 1 (Volume)) was added into 428 

each well and the plates were shaken for 2 h at room temperature. The absorbance 429 

value was measured at 540 nm using a microplate reader (BIO-TEK
®

, USA) and the 430 

phagocytosis was expressed as OD values. 431 

 432 

Measurement of NO. Raw264.7 cells were incubated for 24 h, and then were 433 

incubated with rFIP-glu at different concentration (1, 2, 4 and 8 μg/mL) and LPS (1 434 

μg/mL) for 24 h. The supernatants were used to evaluate NO production using Griess 435 

assay by a NO Assay kit (Beyotime, Shanghai, China). According to the 436 

manufacturer’s protocol, sodium nitrite (NaNO2) was used to generate a standard 437 

curve to calculate the NO concentration. 438 

 439 

RNA extraction, sequencing and bioinformatics analysis. Macrophage 440 

RAW264.7 cells were cultured with rFIP-glu (4 μg/mL) for 6 h. Cells were harvested 441 

and total RNA was extracted using TaKaRa MiniBEST Universal RNA Extraction Kit 442 

(Beijing, China). Sequencing library was generated using Illumina Truseq stranded 443 
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total RNA LT kit. On average 20 million Illumina paired-end reads (150 bp) were 444 

generated for each sample. The reads were mapped to reference using Hisat and 445 

differential expression analysis was performed using the R package DESeq2. In 446 

addition, principle component analysis (PCA) was carried out on the genes 447 

significantly expressed between all different groups. We combined results of two 448 

Enrichment analysis tools. One was derived from GSEA 3.0 desktop by mapping all 449 

genes to biological process of GO knowledge base and KEGG knowledge base. The 450 

other was calculated by IPA (version 01-13) of which cutoff was FDR ≤ 0.001 and 451 

Log2FoldChange > 1. The data were also analyzed on the free online platform of 452 

Majorbio I-Sanger Cloud Platform (www.i-sanger.com). 453 

 454 

cDNA synthesis and Real-time quantitative PCR (RT-qPCR). cDNA 455 

was synthesized from 1 μg RNA using PrimeScript™ RT Master Mix (Perfect Real 456 

Time) (TaKaRa, Beijing, China) according to the manufacturer’s protocol. RT-qPCR 457 

was performed using SYBR qPCR Master Mix (Vazyme, Nanjing, China) and Roche 458 

LightCycler
®

 96 Application. For PCR, samples were heated to 95 °C for 1 min, 459 

denatured at 95 °C for 20 s, annealed at 55 °C for 20 s, extended at 72 °C for 20 s, and 460 

cycled 45 times. The primers in this study were listed in Table S1. All reactions were 461 

performed in triplicate, and Ct values were normalized to β-actin. Relative expression 462 

was calculated using the 2
-ΔΔCt

 method. 463 

 464 

Statistical analysis. Graph Pad Prism 7 software was used to prepare graphs 465 
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and statistical analysis. Data are expressed as means ± SD. The statistical analysis 466 

used One-way ANOVA analysis. Significance was indicated as ns, p > 0.05; ∗, p ≤ 467 

0.05; ∗∗, p ≤ 0.01; ∗∗∗, p ≤ 0.001; and ∗∗∗∗, p ≤ 0.0001. 468 
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 823 

Figure legends 824 

FIG 1 Production of rFIP-glu in P. pastoris GS115 cells. A, schematic map of the 825 

recombinant expression vector pPIC9K-glu-His. B, rFIP-glu detected by 826 

SDS-PAGE. C, Western blot analysis of rFIP-glu using anti-6×His tag. D, 827 

Western blot analysis of rFIP-glu using anti-rFIP-glu. Lane M: protein molecular 828 

mass marker. Lane 1, P. pastoris GS115 cells without being induced by MeOH. 829 

Lane 2, P. pastoris GS115 cells induced by MeOH. Lane 3, P. pastoris GS115 830 

cells containing expression vector pPIC9K without being induced by MeOH. 831 

Lane 4, P. pastoris GS115 cells containing expression vector pPIC9K induced by 832 

MeOH. Lane 5, P. pastoris GS115 cells containing expression vector 833 

pPIC9K-glu-His without being induced by MeOH. Lane 6, P. pastoris GS115 834 

cells containing expression vector pPIC9K-glu-His induced by MeOH. 835 

FIG 2 Effect of rFIP-glu on the viability of RAW264.7 cells. RAW264.7 cells were 836 

treated with different concentration of rFIP-glu (1, 2, 4, 8, 16 and 32 μg/mL) or 837 

PBS (as control), Concanavalin A (ConA) and lipopolysaccharide (LPS) for 24 h. 838 

The cells were measured by methylene blue uptake assay. Data were expressed 839 

as means ± SD (n = 5). ns, p > 0.05; ∗∗, p ≤ 0.01; ∗∗∗∗, p ≤ 0.0001 versus 840 
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control group. 841 

FIG 3 Effects of rFIP-glu on RAW264.7 cells phagocytosis. RAW264.7 cells were 842 

treated with different concentration of rFIP-glu (1, 2, 4 and 8 μg/mL). Control 843 

cells were treated with PBS only and ConA cells as positive control were treated 844 

with 5 μg/mL. The effects were assessed by neutral red uptake assay. Data were 845 

expressed as means ± SD (n = 3). ∗, p ≤ 0.05 versus control group. 846 

FIG 4 Effects of rFIP-glu on RAW264.7 cells. The cells were treated with different 847 

concentration of rFIP-glu (1, 2, 4 and 8 μg/mL) for 6 h. The mRNA expression 848 

of TNF-α (A), Arginase II (B), iNOS (C), MCP-1 (CCL-2) (D), IL-10 (E), 849 

CXCL-10 (F) and IL-6 (G) was measured by qRT-PCR. Data were expressed as 850 

means ± SD (n = 3). ns, p > 0.05; ∗∗, p ≤ 0.01; ∗∗∗, p ≤ 0.001; ∗∗∗∗, p ≤ 0.0001 851 

versus control group. 852 

FIG 5 Effects of rFIP-glu on LPS-induced RAW264.7 cells. Cells were treated with 853 

different concentration of rFIP-glu (1, 2, 4 and 8 μg/mL) and LPS (1 μg/mL) and 854 

incubated for 6 h. The mRNA expression of TNF-α (A), MCP-1 (CCL-2) (B), 855 

Arginase II (C), IL-10 (D), IL-1β (E), IL-6 (F) and CXCL-10 (G) was measured 856 

by qRT-PCR. Data were expressed as means ± SD (n = 3). ####, p ≤ 0.0001 857 

versus control group. ns, p > 0.05; ∗∗, p ≤ 0.01; ∗∗∗, p ≤ 0.001; ∗∗∗∗, p ≤ 0.0001 858 

versus LPS group. The content of NO (H) in cell supernatant was determined by 859 

Griess assay. Values are means ± SD (n = 5). ####, p ≤ 0.0001 versus control 860 

group. ∗∗, p ≤ 0.01; ∗∗∗∗, p ≤ 0.0001 versus LPS group.  861 

FIG 6 RNA-seq analysis of macrophage RAW264.7 cells. (A) Principle component 862 
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analysis of RAW264.7 cells treated with and without rFIP-glu. (B) Heatmap of 863 

RAW264.7 cells treated with and without rFIP-glu. (C) Scatter plots of 864 

differentially expressed genes between PBS- and rFIP-glu-treated macrophages. 865 

Up-regulated genes are depicted in red and down-regulated gene in green (FDR 866 

≤ 0.001, fold change > 1). (D) GO analysis of the differentially expressed genes. 867 

(E) GO enrichment analysis of the differentially expressed genes. (F) KEGG 868 

pathway enrichment analysis of the differentially expressed genes. (G) 869 

Confirmation of RNA-seq results by qRT-PCR.  870 

FIG 7 Effect of rFIP-glu on signaling pathways. RAW264.7 cells were pre-treated 871 

with 50 μM of LY294002 for 30 min and then treated with 4 μg/ml of rFIP-glu 872 

for 6 h. The mRNA expression of MCP-1 (CCL-2) (A) and TNF-α (B) was 873 

measured by qRT-PCR. RAW264.7 cells were pre-treated with 20 μM of U0126, 874 

30 μM of SP600125 or 10 μM of SB203580 for 30 min and then treated with 4 875 

μg/ml of rFIP-glu for 6 h. The mRNA expression of TNF-α (D), MCP-1 (CCL-2) 876 

(E) and iNOS (F) was measured by qRT-PCR. Data were expressed as means ± 877 

SD (n = 3). ####, p ≤ 0.0001 versus control group. ∗∗∗, p ≤ 0.001; ∗∗∗∗, p ≤ 878 

0.0001 versus rFIP-glu group.  879 

FIG 8 Possible immunomodulatory signaling mechanism of rFIP-glu in RAW264.7 880 

macrophages. 881 

 882 

Supplementary legends 883 

FIG S1 The effect of rFIP-glu on morphological changes of RAW264.7 cells. 884 
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RAW264.6 cells were incubated with LPS, rFIP-glu or both for 6 h. Cells were 885 

subjected to microscopic analysis (200×). All experiments were performed in 886 

duplicates. The data from one representative experiment out of two independent 887 

experiments were shown. Bar is 50 μm. A, untreated cells. Untreated RAW 264.7 888 

cells as control exhibited a round morphology. B, LPS-treated cells. LPS-treated 889 

RAW 264.7 cells exhibited changes of morphology including pseudopodia 890 

formation and cell spreading. C, rFIP-glu-treated cells. After stimulated by 891 

rFIP-glu, the volume of RAW 264.7 cells increased and agglutination happened. 892 

D, rFIP-glu and LPS-stimulated cells. rFIP-glu treatment reversed morphology 893 

change in LPS-stimulated RAW 264.7 cells, with increase in volume and 894 

agglutination.  895 

FIG S2 Heatmap of Toll-like receptors pathway in RAW264.7 cells treated with and 896 

without rFIP-glu. RAW264.7 cells were treated with 4 μg/mL of rFIP-glu for 6 h. 897 

FIG S3 Heatmap of MAPK receptors pathway in RAW264.7 cells treated with and 898 

without rFIP-glu. RAW264.7 cells were treated with 4 μg/mL of rFIP-glu for 6 h. 899 

FIG S4 Heatmap of FcγR-mediated phagocytosis pathway in RAW264.7 cells treated 900 

with and without rFIP-glu. RAW264.7 cells were treated with 4 μg/mL of 901 

rFIP-glu for 6 h. 902 

FIG S5 Effects of rFIP-glu on the mRNA level of TLR4 in RAW264.7 cells. The cells 903 

were treated with 4 μg/mL of rFIP-glu for 6 h. The mRNA expression of TLR4 904 

was measured by qRT-PCR.  905 

FIG S6 Effects of rFIP-glu on the mRNA level of HO-1 in RAW264.7 cells. The cells 906 
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were treated with different concentrations of rFIP-glu (1, 2, 4 and 8 μg/mL) for 6 907 

h. The mRNA expression of HO-1 was measured by qRT-PCR. Data were 908 

expressed as means ± SD (n = 3). ∗∗∗∗, p ≤ 0.0001 versus control group.  909 

TABLE S1 Primers used in this study. 910 

 911 
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