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ABSTRACT 2 

After a decade of genome-wide association studies (GWASs), fundamental questions in 3 

human genetics are still unanswered, such as the extent of pleiotropy across the genome, the 4 

nature of trait-associated genetic variants and the disparate genetic architecture across human 5 

traits. The current availability of hundreds of GWAS results provide the unique opportunity 6 

to gain insight into these questions. In this study, we harmonized and systematically analysed 7 

4,155 publicly available GWASs. For a subset of well-powered GWAS on 558 unique traits, 8 

we provide an extensive overview of pleiotropy and genetic architecture. We show that trait 9 

associated loci cover more than half of the genome, and 90% of those loci are associated with 10 

multiple trait domains. We further show that potential causal genetic variants are enriched in 11 

coding and flanking regions, as well as in regulatory elements, and how trait-polygenicity is 12 

related to an estimate of the required sample size to detect 90% of causal genetic variants. 13 

Our results provide novel insights into how genetic variation contributes to trait variation. All 14 

GWAS results can be queried and visualized at the GWAS ATLAS resource 15 

(http://atlas.ctglab.nl).  16 
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MAIN TEXT 17 

Since the first genome-wide association study (GWAS) on macular degeneration in 20051, 18 

over 3,000 GWASs have been published, for more than 1,000 traits, reporting on over tens of 19 

thousands of significantly associated genetic variants2. Results from GWASs have increased 20 

our insight into the genetic architectures of investigated traits, and for some traits, GWAS 21 

results have led to further insight into disease mechanisms3,4, such as autophagy for Crohn’s 22 

disease5, immunodeficiency for Rheumatoid arthritis6 and transcriptome regulation through 23 

FOXA2 in the pancreatic islet and liver for Type 2 diabetes7. The emerging picture after over 24 

a decade of GWASs is that the majority of studied traits are highly polygenic and thus 25 

influenced by many genetic variants each of small effect4,8, with disparate genetic 26 

architectures across traits9. Fundamental questions, such as whether all genetic variants or all 27 

genes in the human genome are associated with at least one trait, with many or even all traits, 28 

and whether the polygenic effects for specific traits are functionally clustered or whether they 29 

are randomly spread across the genome, are however still unanswered4,10,11. Answers to these 30 

questions would greatly enhance our understanding of how genetic variation leads to trait 31 

variation and trait correlation. Whereas GWAS primarily aims to discover genetic variants 32 

associated with specific traits, the current availability of a vast amount of GWAS results can 33 

be used to investigate some of these fundamental questions. 34 

To this end, we compiled a catalogue of 4,155 GWAS results across 2,965 unique traits from 35 

295 studies, including publicly available GWASs and new results for 600 traits from the UK 36 

Biobank (http://atlas.ctglab.nl). These GWAS results were used in the current study to 37 

achieve the following aims; i) charting the extent of pleiotropy at trait-associated locus, gene, 38 

SNP and gene-set levels, ii) characterizing the nature of trait-associated variants (i.e. the 39 

distribution of effect size, minor allele frequency and biological functionality of trait-40 

associated or credible SNPs), and iii) understanding the nature of the genetic architecture 41 
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across a variety of traits and domains in terms of SNP heritability and trait polygenicity (see 42 

Extended Data Fig. 1). 43 

 44 

Catalogue of 4,155 GWAS summary statistics for 2,965 unique traits 45 

We collected publicly available full GWAS summary statistics (last update 23rd October 46 

2018; see Methods). This resulted in 3,555 GWAS summary statistics from 294 studies. We 47 

additionally performed GWAS on 600 traits available from the UK Biobank release 2 cohort 48 

(UKB2; release May 2017)12, by selecting non-binary traits with >50,000 European 49 

individuals with non-missing phenotypes, and binary traits for which the number of available 50 

cases and controls were each >10,000 and total sample size was >50,000 (see Methods, 51 

Supplementary Information 1 and Supplementary Table 1-2). In total, we collected 4,155 52 

GWASs from 295 unique studies and 2,965 unique traits (see Supplementary Table 3 for a 53 

full list of collected GWASs). Traits were manually classified into 27 standard domains 54 

based on previous studies13,14. The average sample size across curated GWASs was 56,250 55 

subjects. The maximum sample size was 898,130 subjects for a Type 2 Diabetes meta-56 

analysis15. The 4,155 GWAS results are made available in an online database 57 

(http://atlas.ctglab.nl). The database provides a variety of information per trait, including 58 

SNP-based and gene-based Manhattan plots, gene-set analyses16, SNP heritability 59 

estimates17, genetic correlations, cross GWAS comparisons and phenome-wide plots.  60 

For the present study, we restricted our analyses to reasonably powered GWASs (i.e. sample 61 

size >50,000), to avoid including SNP effect estimates with relatively large standard errors 62 

(see Methods). By selecting a GWAS with the largest sample size per trait, it resulted in 558 63 

GWASs for 558 unique traits across 24 trait domains. The average sample size of these 558 64 

GWASs was 256,276, and 478 GWASs (85.7%) were based on the UKB2 including 11 meta-65 

analyses with UKB2, 46 (8.2%) on the UK Biobank release 1 cohort (UKB1) including 8 66 
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meta-analyses with UKB1, and the remaining were non-UKB cohorts. All results presented 67 

hereafter concern these selected 558 GWASs unless specified otherwise. The online database, 68 

however, allows researchers to reproduce similar analyses with custom selections of GWASs. 69 

 70 

The extent of pleiotropy 71 

Results of previous GWASs have shown significant associations of thousands of genomic 72 

loci with a large number of traits2,4. Given a finite number of segregating variants on the 73 

human genome, this suggests the presence of widespread pleiotropy. Pleiotropy may be 74 

informative to the reasons of co-morbidity between traits, as it may indicate an underlying 75 

shared genetic mechanism, and may aid in resolving questions regarding causal effects of one 76 

trait on another. However, the exact extent of pleiotropy across the genome is currently 77 

unknown4. We therefore investigated pleiotropy at locus, gene, SNP and gene-set levels. We 78 

defined pleiotropy as the presence of statistically significant associations with more than one 79 

trait domain as traits within domain tend to show stronger phenotypic correlations than 80 

between domains (see Supplementary Information 2 and Extended Data Fig. 2). Our 81 

definition thus refers to ‘statistical pleiotropy’, and includes situations of true pleiotropy (e.g. 82 

one SNP directly influences multiple traits), or situations where statistical associations to 83 

multiple traits are induced via causational effects of one trait on another, via phenotypic 84 

correlations between traits, or via a third common factor18. We defined the level of pleiotropy 85 

by the number of associated domains, and further grouped into four categories; multi-domain 86 

(associated with traits from multiple domains), domain-specific (associated with multiple 87 

traits from a single domain), trait-specific (associated with a single trait) and non-associated 88 

(Methods). We then assessed whether pleiotropic associations at the locus, gene, SNP or 89 

gene set level are structurally or functionally different from trait- or domain-specific 90 

associations or non-associated sites. 91 
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 92 

Pleiotropic genomic loci 93 

The 558 GWASs yielded 41,511 trait-associated loci (from 470 traits, as 88 traits did not 94 

yield any genome-wide significant association after QC; see Methods). After grouping 95 

physically overlapping trait-associated loci, we obtained 3,362 grouped loci (Methods, 96 

Extended Data Fig. 3, and Supplementary Table 4). The total summed length of these loci 97 

(1706.0 Mb) covered 61.0% of the genome. Of these, 93.3% were associated with more than 98 

one trait and 90.0% were multi-domain loci (Table 1 and Extended Data Fig. 4a, b). The 99 

multi-domain and domain-specific loci showed a significantly higher density of protein 100 

coding genes compared to non-associated genomic regions (p=5.3e-16 and p=2.6e-4; Fig. 1a 101 

and Supplementary Table 5). 102 

The locus associated with the largest number of traits and domains (i.e. the most pleiotropic 103 

locus) was the MHC region (chr 6:25Mb-37Mb), which contained 441 trait-associated loci 104 

from 213 traits across 23 trait domains. The MHC region is well-known for its complex 105 

structure of linkage disequilibrium, spanning over 300 genes. The extremely pleiotropic 106 

nature of this region might, therefore, be explained by its long-ranged LD block due to 107 

overlap of multiple independent signals from multiple traits. Similarly, high locus pleiotropy, 108 

not limited to the MHC region, can occur purely due to the overlap of the LD blocks of the 109 

loci in the grouped locus, and they may not share the same causal SNPs. By performing 110 

colocalization (i.e. statistically identifying loci sharing the same causal SNP) for all possible 111 

pairs of physically overlapping trait-associated loci (see Methods, Supplementary 112 

Information 3 and Extended Data Fig. 3), we indeed observed a decrease in the number of 113 

associated traits and trait domains per group of colocalized loci compared to loci defined by 114 

physical overlap (Extended Data Fig. 4 and Supplementary Table 6). In addition, loci 115 

grouped based on physical overlap often contained multiple independent groups of 116 
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colocalized loci (Supplementary Table 6). Therefore, physical overlap of trait-associated 117 

loci does not necessary mean that the same causal SNPs are involved in the traits associated 118 

with such a grouped locus. Examination of pleiotropy at the gene or SNP level will provide 119 

further insight into the nature of the pleiotropy observed at the locus level. 120 

 121 

Pleiotropic genes 122 

We next investigated the extent of pleiotropy at the gene level. For this, we conducted a 123 

gene-based analysis on 17,444 protein-coding genes using MAGMA for each trait16 124 

(Methods). Of the 558 traits, 516 yielded at least one significantly associated gene and 125 

11,443 (65.6%) genes were significantly associated to at least one trait (Supplementary 126 

Table 7). Of these, 81.0% were associated with more than one trait and 66.9% were 127 

associated with traits from multiple domains (Table 1 and Extended Data Fig. 5a, b). We 128 

found that genes associated with at least one trait are significantly longer than genes that are 129 

not associated with any of the 558 tested traits (p=2.1e-194, p=8.7e-12 and p=3.8e-29 for 130 

multi-domain, domain-specific and trait-specific genes, respectively; Fig. 1b and 131 

Supplementary Table 8). As the MAGMA algorithm is insensitive to bias caused by gene-132 

length, these findings are unlikely to be due to larger genes having an increased statistical 133 

probability to be significantly associated (Supplementary Information 4, Extended Data 134 

Fig. 5c and Supplementary Table 9). The multi-domain genes showed a significantly higher 135 

probability of being intolerant to loss of function mutations (pLI score)19 compared to trait-136 

/domain-specific and non-associated genes (p=1.2e-79, p=4.8e-22 and p=2.8e-19, 137 

respectively; Fig. 1c and Supplementary Table 10), suggesting that more pleiotropic genes 138 

are on average less tolerant to loss of function variants. The most pleiotropic genes are 139 

located in the MHC region, yet a region on chromosome 3 also spanned multiple genes with 140 
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high levels of pleiotropy (Extended Data Fig. 5a). In this region, BSN was associated with 141 

the largest number of trait domains (94 traits across 17 domains).  142 

We next tested whether tissue specificity of genes was related to the level of pleiotropy by 143 

counting the number of active tissues per gene based on gene expression profiles for 53 tissue 144 

types obtained from GTEx20 (see Methods). The results showed that the proportion of genes 145 

expressed in all 53 tissue types increases along with the level of pleiotropy (p=9.7e-05, Fig. 146 

1d and Supplementary Table 11). This indicates that more pleiotropic genes tend to be 147 

active in multiple tissue types, suggesting that those genes are involved in general biological 148 

functions across the human body.  149 

 150 

Pleiotropic SNPs 151 

The level of pleiotropy at a locus or gene level does not necessarily translate to pleiotropy at 152 

the level of the SNP. For example, within the same locus or gene, multiple SNPs may be 153 

significantly associated with different traits. A locus or gene can thus show a higher level of 154 

pleiotropy compared to individual SNPs. We, therefore, investigated the extent of pleiotropy 155 

at the level of the SNP. To do so, we extracted 1,740,179 SNPs that were present in all 558 156 

GWAS results. We first confirmed that this selection of SNPs had the same distribution of 157 

their location across the genome and their functional consequences as all known SNPs on the 158 

genome (Methods and Extended Data Fig. 6a, b). We note that some of the observed SNP-159 

pleiotropy may still be induced by LD, e.g. a SNP could reach genome-wide significance 160 

because of its strong LD with a causal SNP. However, the purpose of this analysis is to 161 

identify individual SNPs (not loci) that are associated with multiple trait domains and their 162 

functions. Of these, 237,120 (13.6%) were genome-wide significant (p<5e-8) in at least one 163 

of the 558 traits (Extended Data Fig. 6c and Supplementary Table 12). Out of 237,120 164 

SNPs that were associated with at least one trait, 60.2% were associated with more than one 165 
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trait and 32.4% were associated with more than one domain (Table 1 and Extended Data 166 

Fig. 6d).  167 

These pleiotropic SNPs spread broadly across the genome but were not evenly distributed, 168 

i.e. chromosome 1, 11, 12, 15, 17, 20 and 22 showed relative enrichment of pleiotropic SNPs 169 

(Supplementary Information 5 and Supplementary Table 13). Of all associated SNPs, the 170 

most pleiotropic SNP, located in the MHC region (rs707939; an intronic SNP of MSH5) was 171 

associated with 48 traits from 13 domains. There were 45 SNPs associated with 12 trait 172 

domains, of which 35 were located on chromosome 3, 49.8Mb-50.1Mb overlapping with 5 173 

protein coding genes, TRAIP, CAMKV, MST1R, MON1A and RBM6. These SNPs include two 174 

exonic SNPs, rs2681781 (synonymous on CAMKV) and rs2230590 (nonsynonymous on 175 

MST1R; Supplementary Table 12).  176 

To investigate whether SNPs with a higher level of pleiotropy have different functional 177 

annotations than less pleiotropic SNPs, we investigated how functional consequence and 178 

tissue specificity in terms of expression quantitative trait loci (eQTLs) were represented 179 

across different levels of SNP pleiotropy (Methods). We found that the proportion of intronic 180 

and exonic SNPs increased as a function of the level of pleiotropy (p=2.2e-3 and p=1.7e-2, 181 

respectively); the proportion of exonic SNPs increased from less than 1% to over 5%, and the 182 

proportion of intronic SNPs increased from less than 40% to over 50% (Fig. 1e and 183 

Supplementary Table 14) with increasing levels of pleiotropy. The proportion of SNPs 184 

within flanking regions such as 5’ and 3’ untranslated regions (UTR) also increased with the 185 

number of associated domains. At the same time, we observed a steep decrease of the 186 

proportion of intergenic SNPs with increasing level of SNP pleiotropy (p=8.1e-4; Fig. 1e and 187 

Supplementary Table 14). Based on active eQTLs, the proportion of SNPs being eQTLs in 188 

a greater number of tissue types (>24 tissue types out of 48) increased along with the number 189 

of associated domains (p=8.4e-3 and p=1.1e-2 for eQTLs in between 25 and 36 tissues, and 190 
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between 37 and 48 tissues, respectively) while SNPs in genes expressed in a single or less 191 

than half of available tissue types showed decreasing proportion (Fig. 1f and Supplementary 192 

Table 15). These results suggest that highly pleiotropic SNPs are more likely to be genic 193 

(exonic and intronic) and less likely to be tissue specific.  194 

 195 

Pleiotropic gene-sets 196 

Pleiotropy at the level of trait-associated loci, genes or SNPs do not necessarily suggest the 197 

presence of shared biological pathways across multiple traits. To assess the level of 198 

pleiotropy at the level of gene-sets, reflecting a biological meaningful grouping of genes, we 199 

performed MAGMA gene-set analyses for 558 traits using 10,650 gene-sets (Methods). In 200 

total, 235 (42.1%) traits showed significant association with one of 1,106 (10.4%) gene-sets. 201 

The most pleiotropic gene-set was ‘Regulation of transcription from RNA polymerase II 202 

promoter’ (GO biological process) associated with 61 traits from 9 domains, followed by 7 203 

other gene-sets associated with 7 domains, of which 5 of them were also involved in 204 

regulation of transcription (Supplementary Table 16). We observed that the number of 205 

genes in a gene-set was significantly larger for highly pleiotropic gene-sets (associated with 206 

more than one domain) compared to other gene-sets (domain-specific, trait-specific and non-207 

associated; p=4.1e-12, p=1.6e-13 and p=1.2e-29, respectively; Extended Data Fig. 7a, and 208 

Supplementary Table 17). Since GO terms (55.6% of tested gene-sets) have a hierarchical 209 

structure, the larger gene-sets are more likely to be located at the top of the hierarchy, 210 

representing more general functional categories. 211 

In contrast to the pleiotropy at gene level where 80.9% genes were associated with more than 212 

one trait, we only found 54.8% of the associated gene-sets to be pleiotropic (Table 1). We 213 

observed that the proportion of pleiotropic genes per gene-set is not uniformly distributed, 214 

and pleiotropic genes tend to cluster into a subset of gene-sets, explaining the decreased 215 
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proportion of pleiotropic gene-sets compared to pleiotropic genes (Extended Data Fig. 7b, 216 

c). At the same time, the higher proportion of trait-specific gene-sets (45.2%) compared to 217 

trait-specific genes (19.2%) suggests that, given current definitions of gene-sets, the 218 

combination of associated genes is rather unique to a trait and focusing  on gene-sets to gain 219 

insight into trait-specific biological mechanisms may be more informative than focusing on 220 

single genes (Supplementary Information 6). 221 

 222 

Genetic correlations across traits 223 

Above we showed that of all trait-associated loci, genes and SNPs that are associated with at 224 

least one trait, 90.0%, 66.9% and 32.6% are associated with more than one domain, 225 

respectively. Such wide-spread pleiotropy indices non-zero genetic correlations between 226 

traits. To test whether genetic correlations are evenly present across traits or cluster into trait 227 

domains, we computed pairwise genetic correlations (rg) across 558 traits using LDSC17.  228 

We calculated the proportion of trait pairs with an rg that is significantly different from zero 229 

across all 558 traits, within domains and between domains. Out of 155,403 possible pairs 230 

across 558 traits, 24,106 pairs (15.5%) showed significant genetic correlations after 231 

Bonferroni correction (p<0.05/155,403=3.2e-7) with an average |rg| of 0.38.  232 

In principle, if the trait domains contain traits that are biologically related, we would expect 233 

that traits within the same domain have stronger genetic correlations than traits across 234 

domains. The proportion of pairs with a significant genetic correlation within a domain was 235 

especially high in cognitive, ‘ear, nose, throat’, metabolic and respiratory domains, and for 236 

most of domains, average |rg| across significant trait pairs was higher than 0.38 (across all 237 

traits). Note that the proportion of trait pairs with significant rg may be biased by sample size 238 

and h2SNP of traits within a domain; across 558 traits, the worst case scenarios with the 239 

minimum observed h2SNP (0.0045 with sample size 385,289) or the minimum sample size 240 
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(51,750 with h2SNP =0.0704) required rg to be above 0.39 or 0.18, respectively, to gain a 241 

power of 0.8 (Methods). Within domain, the majority of significant genetic correlations was 242 

positive and the average |rg| was above 0.5 in most of the domains (Fig. 2a and 243 

Supplementary Table 18). Between domains, the proportion of pairs with significant genetic 244 

correlations was generally lower than within domains, and most of the domain pairs showed 245 

average |rg|<0.4 (Fig. 2b and Supplementary Table 19). Some trait domains showed a 246 

predominance of negative genetic correlations with other domains, i.e. activity, cognitive, 247 

reproduction and social interaction domains. We further clustered traits based on genetic 248 

correlations, which resulted in the majority of clusters contained traits from multiple domains 249 

(Methods, Supplementary Information 7 and Extended Data Fig. 8). These results 250 

suggest that although |rg| is higher within domain than across domains, the trait domains do 251 

not necessary reflect genetic similarity across traits. 252 

 253 

The nature of trait-associated variants 254 

We now address the question whether trait-associated variants differ from genetic variants 255 

that are not associated with any trait. For this purpose, we extracted all lead SNPs from each 256 

of the 558 GWASs. Lead SNPs were defined per trait at the standard threshold for genome-257 

wide significance (p<5e-8) and using an r2 of 0.1 to obtain near-independent lead SNPs, 258 

based on the population-relevant reference panel (see Methods). Lead SNPs with minor 259 

allele count (MAC) £100 (based on MAF and sample size of the SNP) were excluded due to 260 

lower statistical power and a high false positive rate of effects of SNPs with extremely small 261 

MAF. This resulted in 82,590 lead SNPs for 476 traits, reflecting 43,455 unique SNPs. Out of 262 

558 traits, 82 traits did not yield any genome-wide significant lead SNP after QC. 263 

 264 

Distribution of MAF and effect sizes of lead SNPs 265 
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12.3% of the 43,455 (unique) lead SNPs derived from the 558 GWASs had a MAF below 266 

0.01 which is significantly less than expected given the proportion of rare variants in the 267 

reference panels (p<1e-323; Supplementary Information 8), while the distribution of lead 268 

SNPs with a MAF above 0.01 was nearly uniform (Fig. 3a). 269 

To gain insight into the distribution of effect sizes across lead SNPs, we calculated the 270 

standardized effect size (β) from Z-statistics as a function of MAF and sample size21, and 271 

inspected the distribution of the squared standardized effect sizes (β2) for lead SNPs across 272 

all traits (Methods). β ranged between 0.01 and 1.70, and β2 is proportional to the variance 273 

explained. The median β2 of the lead SNPs across all traits was 5.7e-4 (4.9e-4 and 6.0e-2 for 274 

lead SNPs with MAF³0.01 and <0.01, respectively), and 94.6% of lead SNPs had a β2 below 275 

0.05 (Fig. 3b). Thus, the vast majority of lead SNPs thus explained less than 0.05% of the 276 

trait variance. We observed a relationship between MAF and standardized effect size, with 277 

rare variants (MAF<0.01) showing larger effect sizes (Fig. 3c). This is in line with the notion 278 

that rare variants are more likely to have large effects compared to common variants, as they 279 

are less likely to be under strong selective pressure22. However, we also note that statistical 280 

power for detecting the rare variants is un-stable23. Given that the proportion of rare lead 281 

SNPs is larger than the proportions in other MAF bins, it is possible that the distribution of 282 

the effect sizes has longer tails for SNPs with MAF<0.01. For most of the traits, a similar 283 

relationship between MAF and standardized effect size was observed (Extended Data Fig. 284 

9), but large variation across traits was seen in terms of the number of rare lead SNPs, with 285 

e.g. a large proportion of rare variants influencing nutritional and connective tissue domains 286 

(see Supplementary Information 8, Extended Data Fig. 10 and Supplementary Table 20-287 

21). 288 

 289 

Characterization of trait-associated loci and lead SNPs 290 
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Here we sought to characterise differences in the distribution of functional annotations when 291 

comparing SNPs within trait-associated loci to all SNPs in the genome, and comparing lead 292 

SNPs to SNPs in the trait-association loci (Methods). We first compared SNPs in the trait-293 

associated loci against the entire genome. The strongest enrichment of SNPs in trait 294 

associated loci was seen in flanking regions (upstream, downstream, 5’ and 3’ UTR) with 295 

average fold enrichment (E) 1.31 (Fig. 3d and Table 2). Non-coding SNPs, in total, covered 296 

93.1% of SNPs in the trait-associated loci, while intergenic SNPs were significantly depleted 297 

(E=0.83) and intronic SNPs significantly enriched compared to all SNPs in the genome 298 

(E=1.17; Table 2). SNPs in trait-associated loci were also slightly enriched for being exonic 299 

compared to the entire genome (E=1.07). Active chromatin states and eQTLs were also 300 

significantly enriched with notably high enrichment of eQTLs (E=1.61 and 5.95, 301 

respectively; Table 2).  302 

We next compared lead SNPs with SNPs in the trait-associated loci. The strongest 303 

enrichment for lead SNPs was seen in exonic SNPs (E=2.84) followed by flanking regions 304 

(E=1.38), while intronic and intergenic regions were slightly depleted (average E=0.95; Fig. 305 

3d and Table 2). These results clearly indicate that SNPs located in exonic and flanking 306 

regions tend to show stronger effect sizes than other SNPs in the trait-associated loci. On the 307 

other hand, active chromatin states showed slight enrichment (E=1.08) while eQTLs were 308 

significantly depleted (E=0.80; Fig. 3e-f and Table 2). This suggests that SNPs within the 309 

trait-associated loci largely overlap with regulatory elements but these elements do not 310 

always have the strongest effect sizes within the loci. 311 

 312 

Characterization of credible set SNPs based on fine-mapping 313 

Owing to the small effect sizes of variants in complex traits and extensive LD throughout the 314 

human genome, there is a reasonable chance that lead SNPs (i.e. defined based on LD and P-315 
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values) are not the causal SNPs in the trait-associated loci24, even when the causal SNPs are 316 

actually measured or imputed. Statistical fine-mapping utilizes evidence of the associations at 317 

each variant in the loci (effect sizes and LD structure) to assign posterior probability of each 318 

specific model at particular locus, which are then used to infer the posterior probabilities of 319 

each SNP being included in the model (posterior inclusion probability, PIP) and ascertain the 320 

minimum set of SNPs required to capture the likely causal variant. We performed fine-321 

mapping using FINEMAP software25 for each trait-associated locus, setting the maximum 322 

number of SNPs in the causal configuration (k) to 10 and using randomly selected 100k 323 

individuals from UKB2 as a reference panel (see Methods). From all of the loci associated 324 

with at least one of the 558 traits, we obtained a list of credible SNPs with PIP>0.95 consists 325 

of 196,542 SNPs (Supplementary Information 9). 326 

Next we characterized credible SNPs in respect to their functional annotations, similar as 327 

done above with lead SNPs. We thus compared SNPs in the fine-mapped regions to all SNPs 328 

in the genome, and credible SNPs to SNPs in the fine-mapped regions. The enrichment 329 

pattern of SNPs in the fine-mapped regions was similar to SNPs in the trait-associated loci; 330 

i.e. significant enrichment of SNPs in intronic and flanking regions but the fold enrichment 331 

was much smaller (Fig. 3d and Table 2). This is mainly because the fine-mapped regions are 332 

often larger than the trait-associated loci by taking 50kb around the top SNPs of the trait-333 

associated loci. In contrast, fold enrichment of exonic SNPs was slightly higher than trait-334 

associated loci (Table 2). As we observed higher gene-density around the trait-associated 335 

loci, expanding the loci resulted in larger proportion of exonic regions. Both active chromatin 336 

state and eQTLs were significantly enriched, however, fold enrichment of eQTLs was 337 

notably less than trait-associated loci (Fig. 3e-f and Table 2). Similar to the lead SNPs, 338 

credible SNPs showed strong enrichment in exonic (E=1.40) and flanking regions (E=1.29), 339 

as well as intronic regions (E=1.17; Table 2). Although an enrichment of active chromatin 340 
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state is consistent with the result observed in the lead SNPs (E=1.51), eQTLs were also 341 

significantly enriched in credible SNPs with very strong fold increase (E=4.14; Fig. 3e-f and 342 

Table 2).  343 

In summary, the number of credible SNPs is 4.5 times larger than the number of lead SNPs, 344 

since for determining lead SNPs, all SNPs that have high LD with lead SNPs are discarded 345 

while the fine-mapping captures likely causal SNPs given the observed pattern of association 346 

and LD structure. Lead SNPs and credible SNPs show different distributions of enrichment in 347 

tested biological functions. We observed a decreased proportion of exonic SNPs and an 348 

increased proportion of non-coding or regulatory SNPs within the credible SNPs compared to 349 

the lead SNPs. These findings may be due to the fact that coding SNPs tend to have higher 350 

effect sizes and are more often assigned as lead SNPs, while the fine-mapping in regions 351 

containing some of these causal coding variants may disperse a proportion of probability to 352 

adjacent variants. On the other hand, in loci where causal variants are acting through 353 

regulatory mechanisms, the credible sets may be more likely to capture the actual, single or 354 

multiple causal variants as compared to the lead SNPs. 355 

 356 

The nature of genetic architecture 357 

The genetic architecture of a trait reflects the characteristics of genetic variants that 358 

contribute to the phenotypic variability, and is defined by e.g. the number of variants 359 

affecting the trait, the distribution of effect sizes, the MAF and the level of interactions 360 

between SNPs 9. To gain insight into how the genetic architecture varies across multiple 361 

complex traits, we assessed the SNP heritability (h2SNP) and the polygenicity of 558 traits. 362 

 363 

SNP heritability 364 
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h2SNP is an indication of the total amount of variance that is captured by the additive effects of 365 

all variants included in a GWAS. h2SNP depends on several factors, such as the number of 366 

SNPs included in the analyses based on their MAF given the current sample size, the 367 

polygenicity of the trait (i.e. how many SNPs have an effect) and the distribution of effect 368 

sizes. We estimated h2SNP for each trait using LDSC17 and SumHer from LDAK26,27 369 

(Methods). The estimates of h2SNP using LDSC and SumHer showed strong positive 370 

correlation (r=0.77 and p=3.8e-111; Fig. 4a). Therefore, we focus on estimates based on 371 

LDSC, hereafter, however complete results are available in Supplementary Table 22 and 372 

discussed in Supplementary Information 10 (Extended Data Fig. 11). The highest h2SNP 373 

was observed for height (h2SNP=0.31) followed by bone mineral density (h2SNP=0.27). Of 558 374 

traits, 214 traits, with an average sample size 292,267, showed h2SNP less than 0.05. Most of 375 

these traits are classically regarded as ‘environmental’ (e.g. current employment status, 376 

illness of family members and transport types or activity traits including frequency and type 377 

of physical activities and type of accommodation), and tend to have a low H214. For these 378 

traits, the number of detected trait-associated loci is also very low with a median 3. Given the 379 

combination of current sample size of > 200,000 and low h2SNP, this suggests that for these 380 

traits increasing the sample size may not lead to a substantial increase in detected loci.  381 

 382 

Polygenicity and discoverability of complex traits 383 

The general observation from GWASs is that with increasing sample size, detected signals 384 

become not only more reliable but also more numerous, as with increasing power, smaller 385 

SNP effects may be detected. The total number of associated SNPs, the amount of variance 386 

they collectively represent, the distribution of effect sizes across the associated SNPs and 387 

how many additional individuals are expected to be needed for the detection of a fixed 388 
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number of novel SNPs, are indications of the polygenicity of a trait. Such polygenicity may 389 

vary across traits, and can be informative for designing SNP-discovery studies. 390 

To obtain an indication of trait-polygenicity, we applied the Causal Mixture Model for 391 

GWAS summary statistics (MiXeR)28 to estimate π (fraction of independent causal SNPs, 392 

polygenicity) and σβ2 (variance of effect sizes of the causal SNPs, discoverability; see 393 

Methods). π ranges between 0 and 1, and a high π indicates a high level of polygenicity, 394 

while a high σβ2 indicates a high level of discoverability of causal SNPs for the traits. Since 395 

the standard error of the model estimates become larger for traits with very small h2SNP due to 396 

the small effect sizes, we only discuss the results of 197 out of 558 traits with h2SNP>0.05 and 397 

standard error of π less than 50% of the estimated value (as recommended by O. Frei; full 398 

results are available in Supplementary Table 23). We observed, as expected, a negative 399 

relationship between polygenicity and discoverability (r=-0.89 and p=4.93e-70), confirming 400 

that highly polygenic traits tend to have less causal SNPs with larger effect sizes (Fig. 4b). 401 

The majority of traits (i.e. 116 traits) showed high polygenicity with π>1e-3 (more than 0.1% 402 

of all SNPs are causal). The highest polygenicity was observed in Major depressive disorder 403 

with 0.6% of SNPs being causal, while some traits, such as fasting glucose and serum urate 404 

level showed relatively low polygenicity (Fig. 4b and Supplementary Table 23). The traits 405 

with polygenicity >0.1% showed, on average, 8 times less discoverability compared to other 406 

traits with <0.1% of causal SNPs. The GWAS discoveries for traits with lower polygenicity 407 

and high discoverability will saturate with a lower sample size compared to the traits with 408 

higher polygenicity. Indeed, the estimated sample size, which is required to explain 90% of 409 

SNP heritability by genome-wide significant SNPs, is positively correlated with polygenicity 410 

(r=0.84 and p=6.30e-54), and extremely polygenic traits require tens of millions of subjects 411 

to identify 90% of causal SNPs at a genome-wide significant level (Fig. 4c). 412 

 413 
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Discussion 414 

The availability of hundreds of GWAS results provides the unique opportunity to gain insight 415 

into currently understudied questions regarding the genetic architecture of human traits. To 416 

facilitate such insight, we compiled a catalogue of 4,155 GWASs which can be queried 417 

online (http://atlas.ctglab.nl). We selected 558 well-powered GWASs to answer fundamental 418 

questions concerning the extent of pleiotropy of loci, genes, SNPs and gene-sets, 419 

characteristics of trait-associated variants and the polygenicity of traits. 420 

We found that the total summed length of trait-associated loci for the 558 analysed traits 421 

covered more than half (60.1%) of the genome. 90% of the grouped loci contained 422 

associations with multiple traits across multiple trait domains. High locus pleiotropy can 423 

occur in two scenarios; i) when the same gene in a locus is associated with multiple traits or 424 

ii) when different genes or SNPs in the same locus are associated with multiple traits but due 425 

to LD the same locus is indicated. Our results showed that the proportion of pleiotropic 426 

associations dropped from 90% at the locus level to 63% at the gene level, and to 31% at the 427 

SNP level. These results show that although locus pleiotropy is widespread, pleiotropy at the 428 

level of genes and SNPs is much less abundant. This suggests that a gene can be involved in 429 

two distinct traits but how that gene is affected by the causal SNPs might differ. For instance, 430 

the function of the gene can be disrupted through a coding SNP for one trait, but expression 431 

of the same gene can be affected through a regulatory SNP for another trait.  432 

Genes and SNPs that had a higher level of pleiotropy, were less tissue specific in terms of 433 

gene expression and active eQTLs. This suggests that SNPs and genes associated with 434 

multiple trait domains are more likely to be involved in general biological functions. Indeed, 435 

the top highly pleiotropic gene-sets were mostly involved in regulation of transcription which 436 

is an essential biological mechanism for any kind of cell to be functioning. Highly pleiotropic 437 

genes, therefore, can explain general vulnerability to a wide variety of traits, yet they may be 438 
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less informative when the aim is to understand the causes of a specific trait. Although a large 439 

proportion of trait-associated genes are pleiotropic, the majority of trait associated gene-sets 440 

were trait-specific. Thus, the trait-specific combination of genes is highly informative, and 441 

future studies aimed at improved annotation of gene-functions will be needed to understand 442 

trait-specific gene association patterns. 443 

It has been widely acknowledged that almost 90% of GWAS findings fall into non-coding 444 

regions2. Our results indeed show that 89.1% of the lead SNPs are non-coding, including 445 

intergenic (34.3%) and intronic (43.6%) SNPs. similarly, of the credible SNPs 92.4% were 446 

non-coding (intergenic 33.4% and intronic 48.1%). However, we showed different patterns 447 

when considering lead and credible SNPs; intergenic SNPs were depleted and the intronic 448 

SNPs were enriched in both the lead and credible SNPs. We also observed strong enrichment 449 

of the lead and credible SNPs in coding and flanking regions. These results indicate that both 450 

SNPs with the largest effect size (the lead SNPs) and the most likely causal SNPs (credible 451 

SNPs) within a locus tend to be located within or close to the genes. Although active 452 

chromatin states were enriched in both lead and credible SNPs, eQTLs were only enriched in 453 

credible SNPs but depleted in lead SNPs. This implies that likely causal regulatory SNPs do 454 

not necessarily have the strongest effect sizes in a locus. 455 

Our analyses showed that the majority of analysed traits are highly polygenic with more than 456 

0.1% of SNPs being causal. For those highly polygenic traits, over 10s of millions of 457 

individuals are required to identify all SNPs at genome wide significance (p<5e-8) that can 458 

explain at least 90% of the phenotypic variance explained by additive genetic effects. In the 459 

case of polygenic traits, individuals have almost unique combinations of risk/effect alleles for 460 

a specific disease or trait. With higher levels of polygenicity, and thus larger quantities of 461 

causal SNPs, the possible combinations of them also increase. This substantially increases the 462 

degree of genetic heterogeneity of the trait, and complicates the detection of genetic effects as 463 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2018. ; https://doi.org/10.1101/500090doi: bioRxiv preprint 

https://doi.org/10.1101/500090
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

the effect sizes of individual SNPs that are yet to be detected are even smaller than those 464 

observed in current GWASs.  465 

In conclusion, our analyses have provided novel insight into the extent of pleiotropy, the 466 

nature of associated genetic regions and how traits differ in genetic architectures. This 467 

knowledge can guide the design of future genetic studies.    468 
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METHODS 469 

Publicly available GWAS summary statistics 470 

GWAS summary statistics were curated from multiple resources and were included only 471 

when the full set of SNPs were available. We excluded whole exome sequencing studies. 472 

This yielded 2,288 GWASs from 33 consortia and any other resources where summary 473 

statistics are available (last update 23rd October 2018). From dbGAP, we obtained 2,659 474 

unique datasets (ftp://ftp.ncbi.nlm.nih.gov/dbgap/Analyses_Table_of_Contents.txt, last 475 

accessed 4th July 2017) and extracted 896 GWAS summary statistics in which a matched 476 

publication was available and sample size for a specific trait was explicitly mentioned in the 477 

original study. We excluded non-GWAS studies (e.g. PAGE (Prenatal Assessment of 478 

Genomes and Exomes) studies) and GWASs with immune-chip, whole exome sequencing 479 

and replication cohorts (exact reasons of exclusion for each dataset is available in 480 

Supplementary Table 24).  481 

Together this resulted in a total of 3,555 GWAS summary statistics. The complete list and 482 

detailed information for each GWAS with summary statistics is available in Supplementary 483 

Table 3 (atlas ID 1-3184, 3785-4155). 484 

 485 

UK Biobank GWAS summary statistics 486 

Additional to the summary statistics available from external studies, we performed GWASs 487 

of traits from UK Biobank release 2 cohort (UKB2)12 under application ID 16404. We only 488 

used phenotype fields with first visit and first run (e.g. f.xxx.0.0) with exceptions for multi-489 

coded phenotypes, which allowed to assign more than one code for a single subject (see 490 

Supplementary Information 1, 2). From the 1,940 unique field IDs to which we had access, 491 

755 had >50,000 subjects with non-missing values. They are assigned to field name using 492 

ukb_field.tsv obtained from http://biobank.ctsu.ox.ac.uk/crystal/download.cgi (last accessed 493 
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31st August 2017). Note that for newly available phenotypes for release 2, we annotated field 494 

names manually based on the UK biobank data showcase. From these phenotypes, we 495 

excluded baseline characteristics, phenotypes used as covariates, date and place phenotypes, 496 

status phenotypes (i.e. completion status, answered a specific question), ethnicity, genomic 497 

phenotypes and any other phenotypes that are not relevant for performing a GWAS. For each 498 

phenotype, we provided reason of exclusions in Supplementary Table 1. This resulted in 499 

434 unique fields including 49 multi-coded phenotypes. 385 phenotypes were considered 500 

quantitative when the phenotype value was quantitative or categorical, and could be ordered. 501 

Phenotypes coded by yes/no were considered as binary with a few exceptions 502 

(Supplementary Table 1). For quantitative and binary phenotypes, subjects with phenotype 503 

codes -1 for “Do not know” or -3 for “Prefer to not answer” were excluded and the original 504 

phenotype code as described in the UK biobank data showcase was used unless specified in 505 

Supplementary Text or Supplementary Table 1, 2. For 49 multi-coded phenotypes, we 506 

dichotomized each code to dummy binary phenotypes (cases for 1 and controls for 0) and 507 

included subjects with phenotype code -7 for “None of the above” as controls. Again, 508 

subjects with phenotype codes -1 for “Do not know” or -3 for “Prefer to not answer” were 509 

excluded. For example, field 670 based on UKB Data-Coding 100286 is coded from 1 to 5 510 

and dichotomization results in five phenotypes such as 1 vs all others, 2 vs all others and so 511 

on. Detailed definitions of multi-coded phenotypes are described in Supplementary Table 2.  512 

After phenotyping, we selected phenotypes that had at least 50,000 European subjects. For 513 

binary traits, we further restricted to traits with at least 10,000 cases and controls. This 514 

resulted in a total of 600 traits (260 quantitative and 340 binary traits). Note that the final 515 

total sample size encoded in the atlas database (http://atlas.ctglab.nl) might be less than 516 

50,000 due to lack of genotype data or missing values in covariates. 517 
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GWAS was performed for up to 10,846,944 SNPs with MAF > 0.0001 using PLINK 229, 518 

while correcting for array, age (f.54.0.0), sex (f.31.0.0), Townsend deprivation index 519 

(f.189.0.0), assessment centre (f.21003.0.0) and 20 PCs. Linear or logistic models were used 520 

for quantitative or binary traits, respectively. 521 

The complete list of traits from UK biobank release 2 analysed in this study is available in 522 

Supplementary Table 3 (atlas ID 3185-3784). 523 

 524 

Pre-processing of GWAS summary statistics 525 

Curated summary statistics were pre-processed to standardize the format. SNPs with p£0 or 526 

>1, or non-numeric values such as “NA” were excluded. For summary statistics with non-527 

hg19 genome coordinates, liftOver software was used to align to hg19. When only rsID was 528 

available in the summary statistics file without chromosome and position, genome 529 

coordinates were extracted from dbSNP 146. When rsID was missing, it was assigned based 530 

on dbSNP 146. When only the effect allele was reported, the other allele was extracted from 531 

dbSNP 146. 532 

 533 

Definition of lead SNPs and trait-associated loci 534 

For each GWAS, we defined lead SNPs and genomic trait-associated loci as described before 535 

30. First, we defined independent significant SNPs with p<5e-8 and independent at r2<0.6, 536 

and defined LD blocks for each of independent significant SNPs based on SNPs with p<0.05. 537 

Of these SNPs, we further defined lead SNPs that are independent at r2<0.1. We finally 538 

defined genomic trait-associated loci by merging LD blocks closer than 250kb. Each trait-539 

associated locus was then represented by the top SNP (with the minimum P-value) and its 540 

genomic region was defined by the minimum and maximum position of SNPs which are in 541 
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LD (r2³0.6) with one of the independent significant SNPs within the (merged) locus. We 542 

used 1000 genome phase 3 (1000G)31 as a reference panel to compute LD for most of the 543 

GWASs in the database. For each GWAS, the matched population (from AFR, AMR, EAS, 544 

EUR, SAS) was used as the reference based on the information obtained from the original 545 

study. For trans-ethnic GWASs, the population with the largest total sample size was used. 546 

When the GWAS was based on the UKB release 1 cohort (UKB1), we used 10,000 randomly 547 

sampled unrelated White British subjects from UKB1 as reference. For other GWASs 548 

performed in this study or GWASs based on the UKB2, 10,000 randomly selected unrelated 549 

EUR subjects were used as a reference. Non-bi-allelic SNPs were excluded from any 550 

analyses.  551 

The reference panel used for each GWAS is provided in the column “Population” of 552 

Supplementary Table 3. For trans-ethnic GWASs, the first population was used as 553 

reference, e.g. EUR+EAS+SAS means EUR had the largest sample. GWASs based on the 554 

UKB cohort was encoded either “UKB1 (EUR)” for UKB release 1 or “UKB2 (EUR)” for 555 

UKB release 2. 556 

 557 

MAGMA gene and gene-set analysis 558 

We performed MAGMA v1.0616 gene and gene-set analyses for every GWAS in the 559 

database. For gene-analysis, 20,260 protein-coding genes were obtained using the R package 560 

BioMart (Ensembl build v92 GCRh37). SNPs were assigned to genes with 1kb window at 561 

both sides. The reference panel of corresponding populations used for each GWAS was based 562 

on either 1000G, UKB1 or UKB2 as described in the previous section. The gene-set analysis 563 

was performed with default parameters (snp-wise mean model). Gene-set analysis was 564 

performed for 4,737 curated gene-sets (C2) and 5,917 GO terms (C5; 4,436 biological 565 
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processes, 580 cellular components and 901 molecular functions) from MsigDB v6.1 566 

(http://software.broadinstitute.org/gsea/msigdb, last accessed 20 Apr 2018)32. 567 

 568 

SNP heritability and genetic correlation with LD score regression 569 

We performed LD score regression (LDSC)17 for each GWAS to obtain SNP heritability and 570 

pairwise genetic correlations. Pre-calculated LD scores for 1000G EUR and EAS populations 571 

were obtained from https://data.broadinstitute.org/alkesgroup/LDSCORE/ (last accessed 26 572 

Nov 2016) and LD score regression was only performed for GWASs with either an EUR or 573 

EAS population and when the number of SNPs in the summary statistics file was > 450,000. 574 

LDSR was performed only for HapMap3 SNPs excluding the MHC region (25Mb-34Mb). 575 

When the signed effect size or odds ratio was not available in the summary statistics file, “--576 

a1-inc” flag was used. As recommended previously33, we excluded SNPs with chi-square 577 

>80. For binary traits, the population prevalence was curated from the literature (only for 578 

diseases whose prevalence was available, Supplementary Table 25) to compute SNP 579 

heritability at the liability scale with “--samp-prep” and ”--pop-prep” flags. For most of the 580 

personality/activity (binary) traits from UKB2 cohort, we assumed that the sample prevalence 581 

is equal to the population prevalence since the UK Biobank is a population cohort and not 582 

designed to study a certain disease/traits. Likewise, when population prevalence was not 583 

available, sample prevalence was used as population prevalence for all other binary traits. 584 

Genetic correlations were computed for pair-wise GWASs with the following criteria as 585 

suggested previously33:  586 

• GWASs of EUR population or more than 80% of samples are EUR. 587 

• The number of SNPs >450,000 588 

• Signed effect size or odds ratio is available 589 

• Effect and non-effect alleles are explicitly mentioned in the header or elsewhere. 590 
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• SNP heritability Z score >2 591 

In total, pairwise genetic correlations were computed for 1,090 GWASs in the database. 592 
 593 
 594 
Selection of GWASs for cross-phenotype analyses 595 

From the 4,155 curated GWASs in the database, we selected 558 GWASs with unique traits 596 

for cross-phenotype analyses based on the following criteria. 597 

• Minimum sample size 50,000 and both cases and controls are >10,000 for binary 598 

phenotypes. 599 

• The number of SNPs in the summary statistics is >450,000. 600 

• GWAS is based on EUR population or >80% of the samples are EUR. If summary 601 

statistics of both trans-ethnic and EUR-only are available, use EUR-only GWAS. 602 

• Exclude sex-specific GWAS, unless the phenotype under study is only available for a 603 

specific sex (e.g., age at menopause). If  sex-specific and sex-combined GWASs are 604 

available, use sex-combined GWAS. 605 

• Z-score of h2SNP computed by LDSC is >2 606 

• Signed effect size (beta or odds ratio) is available in the summary statistics. 607 

• Effect and non-effect alleles are explicitly mentioned in the header or elsewhere. 608 

• From GWASs that met the above criteria, we selected a GWAS per trait with the 609 

maximum sample size.  610 

 611 

UKB2 GWASs performed in this study are further filtered based on the following: 612 

• Exclude cancer screening or test phenotypes. 613 

• Exclude item level phenotypes (i.e., Neuroticism and Fluid intelligence tests) 614 

• Exclude phenotypes of parents’ age and parents’ still alive. 615 

• Exclude medication, treatment, supplements and vitamin traits. 616 
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• If exactly the same traits were diagnosed by an expert (e.g. doctor) and self-reported, 617 

use the expert qualification. 618 

• If exactly the same traits were present as main and secondary diagnoses, both are 619 

included. 620 

• Phenotypes with large extremes were excluded from the analyses when the difference 621 

between the maximum value and 99 percentiles of the standardized phenotype value 622 

is >50. 623 

There was one exception for height GWAS, where a meta-analysis by Yengo et al.34 (ID 624 

4044) has the larger sample size, however the meta-analysis was limited to ~2.4 million 625 

HapMap 2 SNPs. Since over 10 million SNPs are included in most of the selected GWASs, 626 

this smaller number of SNPs can bias our analyses. Therefore, the second largest GWAS 627 

(UKB2 GWAS performed in this study, ID 3187) was used instead. This resulted in total of 628 

558 GWASs, across 24 domains, which were subsequently used in the cross-phenotype 629 

analyses in this study. These 558 GWASs are specified in Supplementary Table 3. 630 

 631 

Pleiotropic trait-associated loci 632 

To define pleiotropic loci for the 558 traits (GWASs), we first extracted trait-associated loci 633 

on autosomal chromosomes. We excluded any locus with a single SNP (no other SNPs have 634 

r2>0.6) as these loci are more likely to be false positives. We then grouped physically 635 

overlapping loci across 558 traits. In a group of loci, it is not required that all individual trait-636 

associated loci are physically overlapping but merging them should result in a continuous 637 

genomic region. For example, when trait-associated loci A and B physically overlap and trait-638 

associated loci B and C also physically overlap, but A and C do not, these three trait-639 

associated loci were grouped into a single group of loci (Extended Data Fig. 3). Therefore, a 640 

grouped locus could contain more than one independent locus from a single trait when gaps 641 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2018. ; https://doi.org/10.1101/500090doi: bioRxiv preprint 

https://doi.org/10.1101/500090
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

between them were filled by loci from other traits. The grouped loci were further assigned to 642 

three categories, i) multi-domain locus when a loci group contained traits from more than one 643 

domain, ii) domain specific locus when a loci group contained more than one trait from the 644 

same domain, and iii) trait specific locus when a locus did not overlap with any other loci. 645 

We compared the distribution of gene density across four association categories of the loci; 646 

multi-domain, domain specific and trait specific loci, and non-associated genomic regions. 647 

To define non-associated genomic regions, we extracted the minimum and maximum 648 

positions that were covered by 1000G, and the gap regions of grouped trait-associated loci 649 

were defined as non-associated regions. The gene density was computed as a proportion of a 650 

region that was overlapping with one of 20,260 protein-coding genes obtained from Ensembl 651 

v92 GRCh37. We then performed pairwise Wilcoxon rank sum test (two sided). 652 

 653 
Colocalization of trait-associated loci 654 

To evaluate if physically overlapping trait-associated loci also share the same causal SNPs, 655 

we performed colocalization using the coloc.abf (Approximate Bayes Factor colocalization 656 

analysis) function of the coloc package in R35. Colocalization analysis was performed for all 657 

possible pairs of physically overlapping trait-associated loci across 558 traits. When two loci 658 

from different traits were physically overlapping but there were no SNPs that were present in 659 

both GWAS summary statistics in that overlapping region, colocalization was not performed. 660 

The inputs of the coloc.abf function are P-value, MAF and sample size for each SNP. When 661 

MAF was not available in the original summary statistics, it was extracted from the matched 662 

reference panel. For binary traits, sample prevalence was additionally provided based on total 663 

cases and controls of the study. 664 

The coloc.abf function assumes a single causal SNP for each trait and estimates the posterior 665 

probability of the following 5 scenarios for each testing region; H0: neither trait has a genetic 666 
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association, H1: only trait 1 has a genetic association, H2: only trait 2 has a genetic 667 

association, H3: both trait 1 and 2 are associated but with different causal SNPs and H4: both 668 

trait 1 and 2 are associated with the same single causal SNP. In this study, as we pre-define 669 

the trait-associated loci for each trait which already discard scenarios H0 to H2, we are only 670 

interested whether H4 is most likely. We therefore defined, a pair of loci as colocalised when 671 

the posterior probability of H4 is >0.9. We note that it is possible that genomic regions 672 

outside of the pre-defined trait-associated loci can also colocalize with other traits. However, 673 

we limited the analyses to the pre-defined trait-associated loci in this study, to be consistent 674 

with the level of pleiotropy measured by physical overlap of the loci. 675 

Within a grouped locus defined based on physical overlap (see above), we further grouped 676 

loci based on a colocalization pattern. To do so, we considered colocalization pattern across 677 

group of physically overlapping loci as a graph in which nodes represent trait-associated loci 678 

and edges represent colocalization of the loci First, loci which did not colocalized with any 679 

other loci were considered as independent loci. For the rest of the loci, we identified 680 

connected components of the graph (Extended Data Fig. 3). This does not require all loci 681 

within a component to be colocalized with each other. For example, when locus A is 682 

colocalized with locus B, and locus B is colocalized with locus C, but locus A is not 683 

colocalized with locus C, all loci A, B and C are grouped into a single connected component. 684 

Detailed results are discussed in the Supplementary Information 3. 685 

 686 

Pleiotropic genes 687 

For gene level pleiotropy, we extracted MAGMA gene analysis results for the 558 traits 688 

where 17,444 genes on autosomal chromosomes were tested in all GWASs. For each trait, 689 

genes with p<2.87e-6 (0.05/17,444) were considered as significantly associated. We did not 690 

correct the P-value for testing 558 traits since our purpose is not to identify genes associated 691 
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with one of the 558 traits but to evaluate the overlap of trait-associations (when GWAS was 692 

performed for a single trait) across the 558 traits, and this applies to SNPs and gene-set level 693 

pleiotropy. The trait associated genes were further categorized into three groups in a similar 694 

way as for trait-associated loci, i.e. i) multi-domain genes that were significantly associated 695 

with traits from more than one domain, ii) domain-specific genes that were significantly 696 

associated with more than one trait from the same domain and iii) trait-specific genes that 697 

were significantly associated with a single trait. 698 

We compared gene length and pLI score across genes in three different association categories 699 

and non-associated genes. Gene length was based on the start and end position of genes 700 

extracted from the R package biomaRt and pLI score was obtained from 701 

ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/functional_gene_constraint (last 702 

accessed 27 April 2017). We performed t-tests for gene length in log scale and Wilcoxon 703 

rank sum tests for pLI scores (both two sided). 704 

For each protein coding gene, we first assessed whether a gene is expressed or not in each of 705 

53 tissue types based on expression profile obtained from GTEx v720. We defined genes as 706 

expressed in a given tissue type if the average TPM is >1. For each of 17,444 genes, we then 707 

counted the number of tissue types where the gene is expressed and grouped them into six 708 

categories, i.e. genes expressed in i) a single tissue type (tissue specific genes), ii) between 2 709 

and 13, iii) between 14 and 26, ix) between 27 and 39, x) between 40 and 52, and xi) 53 (all) 710 

tissue types. At each number of associated domains (from 1 to 10 or more domains), we re-711 

calculated the proportion of genes in each of the 6 categories, and performed the Fisher’s 712 

exact tests (one-sided) against baseline (the proportion relative to all 17,444 genes) to 713 

evaluate if the proportion is higher than expected. 714 

 715 

Pleiotropic SNPs 716 
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We extracted 1,740,179 SNPs that were present in all 558 GWASs. To evaluate if the select 717 

ion of ~1.7 million SNPs biased the results, we compared distribution of these analysed SNPs 718 

with the all known SNPs in the genome (SNPs exist in 1000G EUR population, UKB1 and 719 

UKB2 reference panels) by computing the proportion of SNPs per chromosome. In addition, 720 

distribution of functional consequences of SNPs annotated by ANNOVAR36 was also 721 

compared with the all SNPs in the genome. For each SNP, we counted the number of traits to 722 

which a SNP was significantly associated at p<5e-8, and then grouped the associated SNPs 723 

into multi-domain, domain-specific and trait-specific SNPs using the same definitions as at 724 

the gene level. 725 

Functional consequences of SNPs were annotated using ANNOVAR36. To test if a SNP from 726 

a certain functional category is enriched at a given number of associated domains compared 727 

to all analysed SNPs, a baseline proportion was calculated from the 1,740,179 SNPs for each 728 

functional category. At each number of associated domains (from 1 to 10 or more domains), 729 

we re-calculated the proportion of SNPs with each functional category and performed the 730 

Fisher’s exact test (one-sided) against the baseline (the proportion relative to all 1,740,179 731 

SNPs), to test if the proportion if higher than expected.  732 

eQTLs for 48 tissue types were obtained from GTEx v7 (https://www.gtexportal.org/home/; 733 

last accessed 20 January 2018)20 and we considered SNPs with gene q-value <0.05 with any 734 

gene in any tissue as eQTLs. For each eQTL, we counted the number of tissue types of being 735 

eQTL (regardless of associated genes) and categorized them into five groups, i.e. being 736 

eQTLs in i) a single tissue type (tissue specific eQTLs), ii) between two and 12, iii) between 737 

13 and 24, ix) between 25 and 36 and x) and being in more than 37 tissue types. At each 738 

number of associated domains, we re-calculated the proportion of SNPs in each of the 5 739 

categories, and performed the Fisher’s exact test (one-sided) against baseline (the proportion 740 

relative to all 1,740,179 SNPs), to test if the proportion if higher than expected. 741 
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 742 

Pleiotropic gene-sets 743 

For gene-set level pleiotropy, we extracted 10,650 gene-sets tested in all 588 traits. We then 744 

considered gene-sets with p<4.69e-6 (0.05/10,650) as significantly associated. The trait 745 

associated gene-sets were grouped into multi-domain, domain-specific and trait-specific 746 

gene-sets with the same definitions as at the gene level. 747 

We compared the number of genes and average gene-length across gene-sets in different 748 

association categories and non-associated genes. Gene length was based on the start and end 749 

position of genes extracted from R package, biomaRt. We performed two-sided t-test in log 750 

scale of the number of genes and average gene-length. 751 

 752 

Power calculation of genetic correlation 753 

Power calculations were performed using the bivariate analysis of GCTA-GRML power 754 

calculator (http://cnsgenomics.com/shiny/gctaPower/)37, to estimate the minimum rg that 755 

obtain a power of 0.8 in the worst case scenario. From 558 traits, two traits with the worst 756 

case scenarios were selected, one with the minimum h2SNP estimated by LDSC and another 757 

with the minimum sample size. For each case, we obtained the minimum rg to obtain power 758 

of 0.8 by assuming both traits are quantitative with same sample size and h2SNP and have 759 

phenotypic correlation 0.1. 760 

 761 

Hierarchical clustering of trait based on genetic correlation 762 

Hierarchical clustering was performed on the matrix of pair-wise rg’s as calculated between 763 

the 558 traits. After Bonferroni correction for all possible trait pairs, non-significant genetic 764 

correlations were replaced with 0. The number of clusters k was optimized between 50 and 765 

250 by maximizing the silhouette score with 30 iterations for each k. 766 
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 767 

Estimated standardized effect size of lead SNPs 768 

To enable comparison of effect sizes across GWASs from different studies, we first 769 

converted P-values into Z-statistics (two sided) and expressed the estimated effect size as a 770 

function of MAF and sample size as described previously21 using the following equations: 771 

!" = $
%2&(1 − &)(* + $2)

, -. = 1
%2&(1− &)(* + $2)

	772 

where p is MAF and n is the total sample size. We used the MAF of a corresponding 773 

European reference panel (either 1000G, UKB1 or UKB2) as described in the previous 774 

section “Definition of lead SNPs and genomic trait-associated loci”. Since we were not 775 

interested in the direction of effect, we used squared standardized effect sizes for analyses in 776 

this study. 777 

 778 

Fine-mapping of trait-associated loci 779 

We defined the region to fine-map by taking 50kb around the top SNPs of the trait-associated 780 

loci. When trait-associated loci were larger than the 50kb window, the largest boundary was 781 

taken. Due to the complex LD structure, loci overlapping with the MHC region (chr6:25Mb-782 

36Mb) were excluded. The fine-mapping was performed using the FINEMAP software 783 

(http://www.christianbenner.com/#) with shotgun stochastic search algorithm25. Since the 784 

coverage of true causal SNPs is affected by the sample size of the reference panel and 785 

GWASs38, we used randomly selected unrelated 100k EUR individuals from UKB2 cohort 786 

for all 558 GWASs. We limited the number of maximum causal SNPs (k) per locus to 10. 787 

When the number of SNPs within a locus is relatively small (around 30 or less), the algorithm 788 

can fail to converge. In that case, k was decreased by 1 until FINEMAP was successfully run. 789 

Loci with less than 10 SNPs were excluded from the fine-mapping. 790 
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FINEMAP outputs a set of models (all possible combination of k causal SNPs in a locus) 791 

with posterior probability (PP) of being a causal model. A 95% credible set was defined by 792 

taking models from the highest PP until the cumulative sum of PP reached 0.95. Then 95% 793 

credible set SNPs were defined as unique SNPs included in the 95% credible set of models. 794 

For each SNP, a posterior inclusion probability (PIP) was calculated as the sum of PPs of all 795 

models that contains that SNP. To select most likely causal SNPs, we further defined credible 796 

SNPs consists of SNPs with PIP>0.95. Detailed results are discussed in Supplementary 797 

Information 9. 798 

 799 

Annotation and characterization of lead SNPs and credible SNPs 800 

Functional consequences of SNPs were annotated using ANNOVAR36 based on Ensembl 801 

gene annotations on hg19. Prior to ANNOVAR, we aligned the ancestral allele with dbSNP 802 

build 146. 15-core chromatin states of 127 cell/tissue types were obtained from Roadmap39 803 

(http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/co804 

reMarks/jointModel/final/all.mnemonics.bedFiles.tgz; last accessed 16 Mar 2016) and we 805 

annotated one of the 15-core chromatin states to each of the lead SNPs based on chromosome 806 

coordinates. Subsequently, consequence state was assigned for each SNP by taking the most 807 

common state across 127 cell/tissue types. SNPs with consequence state£7 were defined as 808 

active. eQTLs in 48 tissue types were obtained from GTEx v720 and we only used the 809 

significant eQTLs at gene q-value<0.05. eQTLs were assigned to SNPs by matching 810 

chromosome coordinate and alleles. 811 

As we showed that trait-associated loci have higher gene density compared to non-associated 812 

regions, and GWAS signals are known to be enriched in regulatory elements40, we first 813 

identified background enrichment by comparing SNPs within trait-associated loci or fine-814 

mapped regions with the entire genome. For this all known SNPs were extracted by 815 
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combining all SNPs in 1000G, UKB1 and UKB2 reference panels (~28 million SNPs in 816 

total). SNPs within the trait-associated loci were defined as the ones with P-value<0.05 and 817 

r2>0.6 with one of the independent significant SNPs as described above (see section 818 

‘Definition of lead SNPs and trait-associated loci’). Therefore, it does not necessary include 819 

all SNPs physically located within the trait-associated loci. On the other hand, SNPs within 820 

fine-mapped region include all SNPs physically located within 50kb window from the most 821 

significant SNP of a locus. To characterize lead SNPs and credible SNPs given background 822 

enrichments, we compared these SNPs against all SNPs within trait-associated loci or fine-823 

mapped regions, respectively. 824 

 825 

SNP heritability estimation with SumHer using LDAK model 826 

We estimated SNP heritability of 558 traits using the SumHer function from the LDAK 827 

software v5.0 (http://dougspeed.com/ldak/) 27. Since our purpose was to compare estimates 828 

from LDSC and SumHer, we used the 1000G EUR reference panel and extracted HapMap3 829 

SNPs as consistent with LDSC. We used unique ID’s of SNPs (consisting of 830 

chromosome:posision:allele 1:allele2) instead of rsID to maximize the match between 831 

GWAS summary statistics and the reference panel. The MHC region (chr6:25Mb-34Mb) was 832 

excluded. As recommended by the author, SNPs with large effects (Z2/(Z2+n)>100 where Z2 833 

is chi-squared statistics and n is sample size of the SNP) were excluded. 834 

To obtain SNP heritability in a liability scale, we provided population prevalence and sample 835 

prevalence with flags ‘--prevalance’ and ‘--ascertainment’ for binary traits. The same 836 

population prevalence was used as described in the section of SNP heritability estimate with 837 

LDSC (Supplementary Table 25). Details results are discussed in Supplementary 838 

Information 10. 839 

 840 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2018. ; https://doi.org/10.1101/500090doi: bioRxiv preprint 

https://doi.org/10.1101/500090
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

Estimation of polygenicity and discoverability with MiXeR 841 

In the causal mixture model for GWAS summary statistics (MiXeR) proposed by Holland et 842 

al., the distribution of SNP effect sizes is treated a mixture of two distributions for causal and 843 

non-causal SNPs as the following28: 844 

/ = 	1230, 4526 + (1− 1)2(0,0)	845 

where π is the proportion of (independent) causal SNPs and σβ2 is the variance of the effect 846 

sizes of causal SNPs. Therefore, π and σβ2 respectively represent polygenicity and 847 

discoverability of the trait. We estimated both parameters for the 558 traits using MiXeR 848 

software (https://github.com/precimed/mixer)28. As recommended in the original study, we 849 

used 1000G EUR as a reference panel and restricted to HapMap 3 SNPs. SNPs with c2>80 850 

and the MHC region (chr6:26Mb-34Mb) were excluded. To estimate the sample size required 851 

to explain 90% of the additive genetic variance of a phenotype, we used an output of GWAS 852 

power estimates calculated in the MiXeR software, which contains 51 data points of sample 853 

size and the proportion of chip heritability explained28. We then estimated the sample size 854 

required to reaches 90% by using the interp1 function from the pracma package in R. 855 

 856 

Data and materials availability 857 

All publicly available GWAS summary statistics (original) files curated in this study are 858 

accessible from the original links provided at http://atlas.ctglab.nl. GWAS summary statistics 859 

for 600 traits from UK Biobank performed in this study are also provided at 860 

http://atlas.ctglab.nl and an archived file will be made available upon publication from 861 

https://ctg.cncr.nl/software/summary_statistics. 862 

  863 
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Table 1. Count and proportion of pleiotropic trait-associated loci, genes, SNPs and 971 

gene-sets. 972 

  Loci Genes SNPs Gene-set 
  Length (Mb) % Count % Count % Count % 
Total in genome 2796.10 100.00 17,444 100.00 1,740,179 100.00 10,650 100.00 
Associated 1706.00 61.01 11,443 65.60 236,388 13.58 1,106 10.38 
    Pleiotropic* 1592.53 93.35 9,252 80.85 142,376 60.23 606 54.79 
    Multi-domain 1535.76 90.02 7,657 66.91 76,650 32.43 361 32.64 
    Domain specific 56.77 3.33 1,595 13.94 65,726 27.80 245 22.15 
    Trait specific 113.48 6.65 2,191 19.15 94,012 39.77 500 45.21 

Non-associated 1090.10 38.99 6,001 34.40 1,503,791 86.42 9,544 89.61 

*The count of pleiotropic loci, genes, SNPs and gene-sets is the sum of the multi-domain and 973 

domain specific categories. Proportion of pleiotropic, multi-domain, domain specific and trait 974 

specific categories are relative to the associated loci, SNPs, genes or gene-sets, respectively. 975 
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Table 2. Characteristics of lead SNPs and credible SNPs with PIP>0.95 across 558 traits versus all SNPs in the genome. 977 

Annotation 
categories 

Genome Trait-associated loci lead SNPs 50kb around the top SNPsa Credible SNPs (PIP>0.95)b 
% % E Pc % E Pd % E Pc % E Pe 

Non-coding 94.37 93.06 0.99 < 1e-323 89.13 0.96 1.14E-185 94.04 1.00 < 1e-323 92.39 0.98 7.60E-192 
  Intergenic 44.11 36.88 0.84 < 1e-323 34.31 0.93 1.20E-27 41.41 0.94 < 1e-323 33.40 0.81 < 1e-323 
  Intronic 38.29 44.88 1.17 < 1e-323 43.85 0.98 2.38E-05 41.14 1.07 < 1e-323 48.07 1.17 < 1e-323 
  scRNA intronic 11.98 11.29 0.94 1.34E-115 10.98 0.97 0.044458 11.49 0.96 < 1e-323 10.92 0.95 2.49E-15 
Coding 2.15 2.40 1.12 7.42E-73 4.60 1.92 1.33E-147 2.27 1.06 4.02E-186 2.86 1.26 7.38E-63 
  Exonic 1.06 1.13 1.07 2.27E-14 3.22 2.84 1.30E-230 1.20 1.14 < 1e-323 1.68 1.40 1.62E-73 
  Splicing 1.16E-02 1.13E-02 0.98 8.62E-01 2.11E-02 1.86 0.102234 1.29E-02 1.11 7.00E-05 1.95E-02 1.51 1.59E-02 
  ncRNA exonic 1.07 1.25 1.16 6.02E-71 1.36 1.09 0.04846 1.05 0.98 5.12E-11 1.16 1.10 4.14E-06 
  ncRNA splicing 5.40E-03 5.09E-03 0.94 7.03E-01 2.35E-03 0.46 0.72602 5.25E-03 0.97 5.06E-01 3.07E-03 0.59 2.66E-01 
Flanking regions 3.48 4.54 1.31 < 1e-323 6.27 1.38 4.60E-57 3.68 1.06 1.04E-299 4.75 1.29 1.48E-125 
  Upstream 1.09 1.33 1.22 9.09E-124 1.64 1.23 1.08E-07 1.09 1.00 7.59E-01 1.29 1.18 5.45E-16 
  5' UTR 0.30 0.44 1.48 4.61E-151 0.78 1.76 1.64E-20 0.35 1.16 4.71E-183 0.57 1.66 8.75E-55 
  3' UTR 0.98 1.32 1.34 2.41E-260 2.06 1.56 5.69E-34 1.13 1.15 < 1e-323 1.67 1.48 2.47E-98 
  Downstream 1.10 1.45 1.32 4.18E-256 1.79 1.23 3.38E-08 1.11 1.01 9.73E-03 1.21 1.09 5.23E-05 
Active chromatin 17.24 27.74 1.61 < 1e-323 30.10 1.08 1.24E-27 20.63 1.20 < 1e-323 31.06 1.51 < 1e-323 
eQTLs 9.66 57.41 5.95 < 1e-323 46.15 0.80 7.54E-190 11.45 1.19 < 1e-323 47.47 4.14 < 1e-323 
E: fold enrichment (proportion of SNPs with a certain annotation divided by the proportion of SNPs with the same annotation in background). 978 

aOnly including the fine-mapped regions (for loci larger than 50kb windows from the top SNPs, the largest boundaries were taken). bFrom 95% 979 

credible set SNPs, only SNPs with posterior inclusion probability (PIP)>0.95 were selected. cP-value of Fisher’s exact test (two-sided) against 980 

the entire genome. dP-value of Fisher’s exact test (two-sided) against trait-associated loci. eP-value of Fisher’s exact test (two-sided) against 981 

50kb around the top SNPs. 982 
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 983 

Fig. 1. Trait-associated locus, gene and SNP pleiotropy across the genome. a. 984 

Distribution of gene density of loci with different association types. b. Distribution of gene 985 

length in log scale with different association types. c. Distribution of pLI score of genes with 986 

different association types. For a-c, multi_domain: associated with traits from >1 domain, 987 

domain: associated with >1 traits from a single domain, trait: associated with a single trait, 988 

non_assoc: not associated with any of 558 traits. d. Tissue specificity of genes at different 989 

levels of pleiotropy. Each data point represents a proportion of genes expressed in a given 990 

number of tissues for a specific number of associated domains. e. Proportion of SNPs with 991 

different functional consequences at different levels of pleiotropy. Each data point represents 992 

the proportion of SNPs with a given functional consequence for a specific number of 993 
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associated domains. f. Tissue specificity of SNPs based on active eQTLs at different levels of 994 

pleiotropy. Each data point represents the proportion of SNPs being eQTLs in a given 995 

number of tissues for a specific number of associated domains. For d-f, dashed lines refer to 996 

the baseline proportions (relative to all 17,444 genes (d) or all 1,740,179 SNPs (e-f)), and 997 

stars denote significant enrichment relative to the baseline (Fisher’s exact test, one-sided). 998 
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 1000 

Fig. 2. Within and between domains genetic correlations. a. Proportion of trait pairs with 1001 

significant rg (top) and average |rg| for significant trait pairs (bottom) within domains. Dashed 1002 

lines represent the proportion of trait pairs with significant rg (top) and average |rg| for 1003 

significant trait pairs (bottom) across all 558 traits, respectively. Connective tissue, muscular 1004 

and infection domains are excluded as these each contains less than 3 traits. b. Heatmap of 1005 

proportion of trait pairs with significant rg (upper right triangle) and average |rg| for 1006 

significant trait pairs (lower left triangle) between domains. Connective tissue, muscular and 1007 

infection domains are excluded as each contains less than 3 traits. The diagonal represents the 1008 

proportion of trait pairs with significant rg within domains. Stars denote the pairs of domains 1009 

in which the majority (>50%) of significant rg are negative. 1010 
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 1011 

Fig. 3. Distribution and characterization of lead SNPs and credible SNPs of 558 traits. a. 1012 

Histogram of MAF of the unique lead SNPs. b. Histogram of squared standardized effect size 1013 

of lead SNPs. c. Scatter plot of MAF and squared standardized effect sizes of lead SNPs 1014 

grouped by trait domains. d. Distribution of functional consequences of SNPs. e. Proportion 1015 

of SNPs that overlap with active consequence chromatin state (£7) across 127 tissue/cell 1016 

types. f. Proportion of SNPs overlapping with significant eQTLs from any of 48 available 1017 

tissue types. 1018 
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 1020 

Fig. 4. SNP heritability and polygenicity of 558 traits. a. Comparison of SNP heritability 1021 

estimated by LDSC (x-axis) and SumHer (y-axis). Horizontal and vertical error bar represent 1022 

standard errors of LDSC and SumHer estimates, respectively. b. Polygenicity and 1023 

discoverability of traits, both on log 10 scale. Out of 558 traits, only 197 traits with reliable 1024 

estimates (i.e. h2SNP>0.05 (estimated by MiXeR) and standard error of π is less than 50% of 1025 

the estimated value) are displayed. Traits are colored by domain. c. Polygenicity and 1026 

estimated sample size required to reach 90% of total SNP heritability explained by genome-1027 

wide significant SNPs, both in log 10 scale. Traits are colored by domain. Full results are 1028 

available in Supplementary Table 22, 23. 1029 
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