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ABSTRACT 

Alcohol exposure triggers changes in gene expression and biological pathways in human brain. 

We explored alterations in gene expression in the Pre-Frontal Cortex (PFC) of 65 alcoholics and 

73 controls of European descent, and identified 129 genes that showed altered expression (FDR < 

0.05) in subjects with alcohol dependence. Differentially expressed genes were enriched for 

pathways related to interferon signaling and Growth Arrest and DNA Damage-inducible 45 

(GADD45) signaling. A coexpression module (thistle2) identified by weighted gene co-expression 

network analysis (WGCNA) was significantly correlated with alcohol dependence, alcohol 

consumption, and AUDIT scores. Genes in the thistle2 module were enriched with genes related 

to calcium signaling pathways and showed significant downregulation of these pathways, as well 

as enrichment for biological processes related to nicotine response and opioid signaling. A second 

module (brown4) showed significant upregulation of pathways related to immune signaling. 

Expression quantitative trait loci (eQTLs) for genes in the brown4 module were also enriched for 

genetic associations with alcohol dependence and alcohol consumption in large genome-wide 

studies included in the Psychiatric Genetic Consortium and the UK Biobank’s alcohol 

consumption dataset. By leveraging multi-omics data, this transcriptome analysis has identified 

genes and biological pathways that could provide insight for identifying therapeutic targets for 

alcohol dependence.  

 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 19, 2018. ; https://doi.org/10.1101/500439doi: bioRxiv preprint 

https://doi.org/10.1101/500439
http://creativecommons.org/licenses/by-nd/4.0/


INTRODUCTION 

Alcohol dependence (AD) can be defined as a cluster of physiological, behavioral, and cognitive 

phenomena in which the use of alcohol takes a much higher priority for a given individual than 

other behaviors that once had greater value (American Psychiatric Association 1994)1. The 

development of AD is characterized by frequent episodes of intoxication, preoccupation with 

alcohol, use of alcohol despite adverse consequences, compulsion to seek and consume alcohol, 

loss of control in limiting alcohol intake, and emergence of a negative emotional state in the 

absence of the drug (American Psychiatric Association 1994)1. The changes in behavioral 

priorities not only results in increased morbidity and mortality, it is also a substantial social and 

economic burden on individual families and the nation2.  

In individuals with alcohol dependence, there is a complex interplay between genetic 

background, environmental factors, and history of alcohol exposure3. Alcohol crosses the blood 

brain barrier and triggers changes in the central nervous system4, including transcriptional 

changes in many different regions of the brain 5–9. The transcriptional effects of long-term 

alcohol consumption are associated with pathways involved in the neuro-immune system, 

neurotoxicity, and changes in neuroplasticity 6,7,9. Transcriptomes from complex tissues, such as 

human brain, may be organized into networks of co-expressed genes that better reflect the 

biological functions and organization of the tissue 7–14. Application of bioinformatics techniques, 

such as weighted gene co-expression network analysis (WGCNA)15, has uncovered networks 

associated with alcohol dependence8,9. However, past studies were performed on small numbers 

of AD cases, thus limiting the statistical power to detect small changes in alcohol-induced gene 

expression. In this study, we utilized massively parallel sequencing of RNA transcripts from 

postmortem human prefrontal cortex (PFC) of 65 alcoholics and 73 controls of European descent 
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to explore transcriptional networks and genetic variation and identified groups of coexpressed 

genes associated with alcohol dependence. Our analysis provides systems-level evidence of 

genetic networks within the PFC that contribute to the pathophysiology of alcohol drinking 

behavior in humans. 

 

MATERIALS AND METHODS 

Case selection and postmortem tissue collection  

Human autopsy brain samples were obtained from the New South Wales Tissue Resource Centre 

at the University of Sydney (http://sydney.edu.au/medicine/pathology/btrc/). Fresh frozen 

samples of the superior frontal gyrus (Brodmann area 8; referred to as prefrontal cortex (PFC) in 

this manuscript) were collected from each postmortem sample. Brain tissue was sectioned at 3 

mm intervals in the coronal plane. Alcohol dependent diagnoses were confirmed by physician 

interviews, review of hospital medical records, questionnaires to next-of-kin, and from 

pathology, radiology, and neuropsychology reports. Tissue samples were matched as closely as 

possible according to age, sex, post-mortem interval, pH of tissue, disease classification, and 

cause of death. To be included as part of the alcohol-dependent cohort, subjects had to meet the 

following criteria: greater than 18 years of age, no head injury at time of death, lack of 

developmental disorder, no recent cerebral stroke, no history of other psychiatric or neurological 

disorders, no history of intravenous or polydrug abuse, negative screen for AIDS and hepatitis 

B/C, post-mortem interval within 48 hours, and diagnosis of AD meeting the DSM-IV criteria1. 

Sample preparation  

The Qiagen RNeasy and Lipid Tissue kit (Qiagen, Valencia, CA, USA) was used to extract total 

RNA from human PFC brain tissue, and RNA concentration was measured with a NanoDrop 
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8000 spectrophotometer (ThermoFisher Scientific). An Agilent Bioanalyzer (Agilent 

Technologies, Santa Clara, CA, USA) was used to test the integrity of RNA samples. Samples 

with an RNA integrity number (RIN) <5.5 were removed from futher analyses. Sixty samples 

were processed at the Waggoner Center for Alcohol and Addiction Research (WCAAR), The 

University of Texas at Austin while 83 samples were processed at the Ronald M. Loeb Center 

for Alzheimer disease, Icahn School of Medicine at Mount Sinai. Details about the library 

preparation and sequencing is provided in the supplementary document. 

Mapping and quantification of gene expression 

Raw reads were aligned to human genome 19 (hg19) using STAR aligner (version 2.5.3.a)16. We 

used QC tools RSeQC (http://code.google.com/p/rseqc/) and Picard 

(https://broadinstitute.github.io/picard/) to evaluate RNA sequence quality including the %GC, 

%duplicates, gene body coverage, unsupervised clustering, and the library complexity. We used 

the Picard “MarkDuplicates” option to flag and remove duplicate reads. Gene quantification was 

performed with featureCounts (SUBREAD package; release 1.6.0)17 using Gencode annotations 

(Release 19 (GRCh37.p13)).  

Selection of covariates to for analyses 

Linear regression: We first performed a linear regression with alcohol dependence as a 

dependent variable to identify possible covariates (e.g. sex, age, PMI). The mean age of AD 

subjects was 55.65 years and was not significantly different from the age of control subjects 

(54.96) (Table 1). There was no significant difference in distribution of RIN and brain pH 

between cases and controls (Table 1). Postmortem interval (PMI) was significantly lower for the 

alcohol dependent subjects.  
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Variance partition analysis: We used the variancePartition package18 in R to calculate the 

proportion of variance in RNA expression explained by known covariates such as age, gender, 

RIN and PMI, using the variancePartition package in R. The variancePartition18 package uses 

linear mixed model based statistical methods to quantify the contribution of multiple sources of 

variation and identify the covariates that required correction in the final analysis. Supplementary 

figure 1A shows violin plots depicting drivers of variation in gene expression data without 

accounting for covariates. The figure shows that sequencing batch is a major driver of variation 

in a large proportion of genes, while RIN and sex have large effects on only a few genes. We 

used the voom function in the Limma package 

(https://www.bioconductor.org/packages/devel/bioc/vignettes/limma/) to account for the effect of 

sequencing batch, RIN, age, sex and PMI on gene expression. After removing the effects of these 

covariates, alcohol-related phenotypes explained the largest proportion of the remaining 

variation in gene expression (Supplementry figure 1B).  

Differential gene expression analysis 

Gene-level analyses started with the featureCounts-derived sample-by-gene read count matrix. 

The basic normalization and adjustment pipeline for the expression data matrix consisted of: (i) 

removal of low expression genes ( < 1 CPM in > 50% of the individuals); (ii) differential gene 

expression analysis based upon adjustment for the chosen covariates. We filtered out all genes 

with lower expression in a substantial fraction of the cohort, with 18,463 genes with at least 1 

CPM in at least 50% of the individuals; note that only these genes were carried forward in all 

subsequent analyses. The following design was used for the final differential expression analysis 

using the DeSeq2 19 package as implimented in R: gene expression ~ DSM4 alcohol 

classification +sex + age + PMI + RIN + batch. 
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Pathway analyses of differential expression 

Ingenuity® Pathway Analysis (IPA®) was used to perform pathway, canonical pathways, and 

causal network analysis. All genes that passed the threshold of significance at 25% FDR were 

included in the analysis.  

Gene ontology analysis 

Gene ontology analyses were performed using the clusterProfiler package 20 as implemented in 

R. All differentially expressed genes that passed the threshold of significance at 25% FDR were 

included in the analysis. Results for the enrichment analysis were extracted and plotted using the 

ggplot2 package in R. 

Gene co-expression analysis 

Scale-free co-expression networks were constructed using the weighted gene coexpression 

network analysis (WGCNA) package in R15. WGCNA provides a global perspective, 

emphasizing the correlation between genes to classify different molecular groupings, rather than 

focusing on individual genes. WGCNA defines modules using a dynamic tree-cutting algorithm 

based on hierarchical clustering of expression values (minimum module size=100, cutting 

height=0.99, deepSplit=TRUE). The networks were constructed at a soft power of 14 at which 

the scale free topology fit index reached 0.90 (Supplementary Figure 2B). We further merged 

modules that had similar co-expression patterns by calculating the eigengenes and merging those 

having a correlation > 75% (Supplementary Figure 2C). Correlation of module eigengenes with  

alcohol dependence, alcohol consumption, AUDIT scores and number of years of drinking  

(module-trait correlation analysis) was evaluated using Spearman’s rank correlation analysis. We 

used the DSM4 criteria for alcohol dependence classification as provided by the New South 

Wales Tissue Resource Centre at the University of Sydney. For each individual in the RNA-Seq 
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dataset a module eigen value was calculated for each module. This module eigen value was used 

to perform the correlation analysis of the traits (e.g. alcohol dependence, alcohol consumption 

and Audit scores) with each whole module. Digital deconvolution showed no significant 

differences in the percentage of neurons, astrocytes and microglia in the PFC of alcoholics and 

controls (Supplementary Figure 3)21; therefore we did not perform any correction for cell-type 

heterogeneity. Assigned modules were functionally annotated against known 

molecular/functional categories and pathways using Ingenuity Pathway Analysis (IPA).  

GWAS enrichment analysis 

The summary statistics from a GWAS of alcohol dependence (PGC-AD) were provided by the 

Psychiatric Genetics Consortium Substance Use Dependence working group22 (Walters et al, 

2018). Summary statistics for the UKBB alcohol consumption (UKBB-AC) GWAS 23 were 

provided by Dr. Toni Clarke. We also downloaded the summary statistics for Tobacco and 

Genetics (TAG) Consortium’s GWAS24 of cigarettes per day from the PGC website 

(https://www.med.unc.edu/pgc/results-and-downloads). SNPs from the PGC-AD and UKBB-AC 

studies were mapped to PFC expression quantitative trait loci (eQTLs) in 461 post-mortem 

brains from the Religious Orders Study and Memory and Aging Project (ROS/MAP)25 (Bennett 

et al). Enrichment analysis was performed for SNPs meeting the criteria of eQTL P < 5 X 10-8 in 

the ROSMAP dataset and tested for overrepresentation in GWAS of AD (PGC-AD), alcohol 

consumption (UKBB-AC) and TAG-CPD.  Since there are a few loci that passed the genome-

wide significance threshold in alcohol and smoking GWAS analysis, we tested the polygenicity 

of alcoholism and smoking by exploring the overenrichment in variants that passed nominal 

threshold of significance in these datasets. The enrichment analysis was focused on eQTLs for 

the genes within modules that were correlated with AD in the module-trait correlation analysis. 
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The two modules (thistle and brown4) that showed significant enrichment (p < 0.05) in the 

Fisher exact test were subjected to 100,000 permutations to report the final P value of 

enrichment.  We also performed the gene based analysis by Multi-marker Analysis of GenoMic 

Annotation (MAGMA)26  on summary statistics of PGC-AD, UKBB-AC and TAG-CPD GWAS 

using Functional Mapping and Annotation of GWAS (FUMA-GWAS)27. The summary statistics 

of this gene based analysis were overlaid on the IPA networks to identify the genes in these 

networks that also have nominal to moderate evidence of genetic contributions. 

 

Results  

Differential expression analysis 

Analysis of PFC tissue derived from 65 alcoholics and 73 controls identified 827 differentially 

expressed genes at 25% FDR, 298 genes at 10% FDR and 129 genes at 5% FDR (Figure 1A, 

Supplemental table 1; protein coding genes only). Transient Receptor Potential Cation Channel 

Subfamily C Member 3 (TRPC3) was the top differentially expressed gene with significantly 

lower expression in alcohol-dependent subjects (FC 0.82; p = 4.6 x 10-9), while Kinesin Family 

Member 19 (KFM19) showed significantly higher expression in alcohol dependent subjects (FC 

1.24; p = 5.7 x 10-9). IPA analysis of the differentially expressed genes (FDR < 25%) showed 

significant enrichment for pathways involved in interferon signaling, GADD45 signaling, and 

other immune-related pathways (Figure 1B). Gene-ontology enrichment analysis using 

clusteProfiler mapped a large proportion of genes to biological processes involved in blood 

coagulation and fluid transport (Figure 1C). The network analysis in IPA mapped the significant 

genes to networks involved in neurodegenerative disorders and organismal injury. Several genes 
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that were part of this network were also nominally significant (p < 0.05) in the PGC-AD and 

UKBB-AC GWAS (Figure 1D).  

Identification of gene co-expression networks and modules 

After correcting for the effects of batch, age, and RIN, the hierarchical clustering of expression 

data from nearly 18,000 genes generated 27 different modules (Supplementary Figure 1). Trait-

module correlation analyses identified five modules that were significantly correlated to at least 

one alcohol related trait (Figure 2). Of these five modules, the thistle2 module (containing 72 

genes), was negatively correlated with alcohol dependence and other alcohol related traits. The 

brown4 module (containing of 795 genes) was positively correlated with AD, AUDIT, alcohol 

consumption and duration of alcohol use. 

 

Thistle2 module 

Pathway enrichment analysis of the thistle2 module showed a significant down-regulation of 

pathways related to calcium signaling (Figure 3A). Gene-ontology enrichment analysis using the 

clusterpProfiler showed significant enrichment for biological processes involved in “response to 

nicotine” and “excitatory postsynaptic potential” (Figure 3B). Several genes in the thistle2 

module that were significantly down-regulated in the PFC of alcohol dependent subjects. 

Differentially expressed genes in the thistle2 module mapped to networks involved in G-protein 

coupled receptor signaling, calcium signaling, and opioid signaling (Figure 3C). Cholinergic 

Receptor Nicotinic Alpha subunits 6 and 2 (CHRNA6 UKBB-AC P = 7.60x 10-3; CHRNA2 PGC-

AD P = 1.4 x 10-2), Meningioma 1 (MN1, PGC-AD P = 9.1 x 10-3) and Hyaluronan And 

Proteoglycan Link Protein 1 (HAPLN1, UKBB-AC P = 1.9 x 10-2) are some exmples where 
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differntialy expressed genes in thistle 2 module also showed some evidence of genetic 

contribution towards alcohol consumption or dependence.  

 

Brown4 module 

Pathway analysis for differentially expressed genes in the brown4 module showed 

significant enrichment for Growth Arrest and DNA Damage (GADD45) signaling and for 

biological processes related to the inflammatory response (Figure 4). Other genes that were also 

significantly upregulated in the PFC of alcoholics mapped to networks involved in infectious and 

respiratory diseases.  

 

GWAS enrichment analysis 

GWAS enrichment analysis of significant eQTLs (P < 5 X 10-8) for all genes in the top 5 

modules  (ranked by P value in module-trait correlation analysis),  showed evidence of 

enrichment for SNPs associated with AD (GWAS p < 0.05) in PGC-AD and alcohol 

consumption in UKBB-AC datasets. The brown4 module was also enriched for GWAS 

association in the TAG-CPD dataset. The thistle2 module did not show enrichment of GWAS 

association. Surprisingly, genes in the thistle2 modules were significantly depleted for GWAS 

signals in the PGC-AD and UKBB-AC GWAS analyses. This finding was confirmed by 

permutation analysis. 

 

Discussion 

To our knowledge, this is the largest transcriptome analysis comparing PFC of alcohol-

dependent cases and controls. The present study identified 129 genes (FDR < 0.05) that were 
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differentially expressed in alcohol dependent subjects (Supplementary table 1). FKBP5, a well 

studied gene that is asoociated with alcohol use28–31, showed increased expression in the PFC of 

alcohol dependent subjects in our differential gene expression analysis (l2FC 0.27; P = 4.57 x 10-

7). Other studies have also shown that FKBP5 plays a role in alcohol drinking behaviors in 

rodents28,29  and humans32 . FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor 

(GR)-binding protein implicated in various psychiatric disorders and alcohol withdrawal 

severity30. Qiu and colleagues30 reported that Fkbp5 KO mice exhibited increased alcohol 

consumption compared with wild-type mice. Another study has shown that the absence of Fkbp5 

enhances sensitivity to alcohol withdrawal in mice33. Recent findings also suggested that Fkbp5 

expression in mesocorticolimbic dopaminergic regions is associated with early life-stress 

mediated sensitivity to alcohol drinking and that there is a gene environment interaction among 

FKBP5 genotype and parent-child relationship that influences alcohol drinking.  

Genes showing significant differences in expression between alcohol dependent subjects and 

controls were enriched in pathways related to interferon and GADD45 signaling (Figure 1 B). 

Interferons are cytokines that have antiviral, antiproliferative, and immunomodulatory effects 

and the interferon pathway plays a critical role in human innate and adaptive immune 

responses34. Our pathway analysis results are consistent with earlier findings showing induction 

of innate immune genes by stress and drug abuse 35,35. Furthermore, mRNA expression studies in 

human brain showed significant changes in expression of genes related to immune or 

inflammatory responses in hippocampus7  and nucleus accumbens8. The neuroinflammation 

associated with chronic alcohol exposure and withdrawal may be attributed to microglial 

activation and is associated with the neuropathology of chronic alcohol exposure36. Differentially 

expressed genes (FDR < 25% ) also mapped to networks associated with neurodegenerative 
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disorders and organismal injury (Figure 1 D). Many differentially expressed genes in this 

network are involved in nervous system development and function. Specifically TRPC3 and 

calcium dependent protein kinase 4 (CAMK4) are involved in excitatory post-synaptic current 

while Ampa receptor, Glutamate Ionotropic receptor AMPA type subunit 4 (GRIA4), Calcium 

dependent protein kinase ii (CaMKII) and CAMK4 are involved in synaptic transmission. 

Although we identified several genes that were differentially expressed in the PFC of alcohol-

dependent subjects, the variance explained by individual genes was very small (0.15-1%). The 

differential expression observed here is smaller than that reported in earlier differential 

expression studies of alcoholism, but it is consistent with differential expression studies of larger 

sample size37. For example, the CommonMind consortium reported similar fold changes in the 

differential expression study of schizophrenia and they showed that their observation is 

consistent with plausible models for average differential gene expression and the polygenic 

inheritance of schizophrenia.  The polygenicity of AD has also been observed by the GWAS of 

alcoholism and other complex behavioral/psychiatric disorders 22,38–41, and  it was demonstrated 

that effect size for each individual genetic variant is very small. Studies that used a co-expression 

network approach also showed that alcohol dependence is shaped, in part, by persistent 

alterations in networks of co-expressed genes that collectively mediate excessive drinking and 

other alcohol-dependent phenotypes8,9. These and other studies also demonstrated that the gene 

network structure is significantly correlated with lifetime alcohol consumption in addition to an 

overall loss in network structure; furthermore, the neurobiology of alcohol dependence may be 

due to altered covariation of gene modules, rather than discrete changes in differentially 

expressed genes across the transcriptome9,13.  
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Trait-module correlation analysis for the thistle2 module showed a significant negative 

correlation with alcohol dependence (-0.28, P = 9.0 x 10-4), alcohol consumption (-0.22, P = 9.0 

x 10-3), and AUDIT score (-0.25, P = 3.0 x 10-3), while the brown4 module showed a positive 

correlation (0.18, P = 4.0 x 10-2) with alcohol dependence (Figure 2). The salmon4 module was 

associated with the total number of drinking years (-0.24, P = 4.0 x 10-3), independent of the age 

of the subjects. Genes in the thistle2 module were significantly down-regulated in the PFC from 

alcoholics. Many genes in the thistle2 module mapped to networks involved in opioid signaling 

and nicotine response, highlighting the importance of this module in addiction-related traits. 

Pathway analysis showed that all genes that overlapped with genes involved in calcium signaling 

were significantly downregulated (Figure 3A). Acute ethanol exposure has been shown to inhibit 

Ca2+ currents induced by PKC-dependent phosphorylation of mGluR5 in neurons42. Early studies 

in PC12 cell cultures also showed that ethanol has a significant inhibitory effect on the influx of 

Ca2+ through L-type voltage-gated Ca2+ channels43. Alcohol exposure also modulates Ca2+ 

signaling between astrocytes and neurons44 (Warden et al, 2016), and Ca2+ acts as a second 

messenger that controls multiple processes in immune cells, including chemotaxis and secretion 

of pro- and anti-inflammatory cytokines. Our analyses provide further evidence that alcohol 

exposure alters Ca2+ signaling in the brains of alcoholics and could potentially alter 

communication between neurons and brain immune cells. Another module that correlated with 

alcohol dependence, brown4, was also enriched in immune response and infectious diseases, 

providing additional evidence for the role of the neuroimmune system in the etiology of alcohol 

dependence. Some of the differentially expressed genes in this network were also statistical 

significant in the gene-based tests (RASD1, UKBB-AC, P = 1.64 x 10-5 and ARID5A, UKBB-

AC, P 1.4 x 10-3).  The differentially expressed FKBP5 gene was also part of the brown module, 
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but it was not identified as hub gene according to intra-modular connectivity (supplementary 

table 2). 

Enrichment analysis of nominally significant GWAS variants (p < 0.05) that were also eQTLs (p 

< 5 X 10-8) for genes in the thistle2 module showed significant under enrichment in the two-tail 

Fisher test. The under-enrichment remained significant even after 100,000 permutations. This 

might be due to the small size of this module (N = 72 genes). Although some of the differntialy 

expressed genes were significant in the gene-based tests performed in UKBB-AC and PGC-AD 

datasets using MAGMA (CHRNA6, CHRNA2, MN1 and HAPLN1). In the calcium signaling 

network (Figure 3 C),  a few genes that were not part of the thistle2 module, but were essential to 

create network connections, were also found to be significant (3.4 x 10-2 < P > 4.8 x 10-2) in the 

gene-based tests (circled in red; Fig 4C). This suggests possible gene-environment (alcohol 

exposure) interactions in the etiology of alcohol dependence. This also reinforces the need for 

multi-omics data to understand a complex disorder like alcoholism.  eQTLs for genes in the 

brown4 module (N = 726 genes) were significantly enriched for GWAS signals (P = 4.2 x 10-3) 

in the PGC-AD GWAS. Interestingly this module was also positively correlated with alcohol 

dependence (0.18, P = 4.0 x 10-2) in trait-module correlation analysis.  

Because of limited availability of human post-mortem tissue with DSM4 alcohol dependence 

phenotype, we tried to look for validation in rodent RNA-expression datasets (Supplementary 

methods; supplementary table 2). The hub genes identified in present analysis were found to be 

significant enriched for association signals in the rodents. This observation adds to the validity of 

hub genes in the identified modules. 

In the present study, we focused on integrating the genomic information to transcriptomic data to 

identify gene (genetic background) x environment (alcohol exposure) interactions in the etiology 
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of alcohol use disorders. As mentioned in the discussion we identified that genes that have 

altered expression due to alcohol exposure interact with risk genes (GWAS) to increase an 

individual’s risk of becoming dependent on alcohol. So, to translate these findings in animals, 

one has to mimic expression of hub genes as well as the risk gene to alter the pathways 

associated with alcoholism.  We are also reporting the direction of effect of the differential 

expression. That should provide information that can be used to see whether knock-down or 

overexpression of key genes alters risk for AUD phenotypes in models.  Also, the replication of 

the modules in rodent models indicates which models might be useful to study the effects of 

dysregulation in these models. 

Multiple lines of evidence derived from this study allowed us to prioritize the genes altered by 

exposure to alcohol. The gene co-expression network analysis also identified networks of genes 

altered in alcohol-dependent subjects. Further support for our findings comes from work 

showing that many genes in these networks were also associated with alcohol dependence and 

alcohol consumption in large GWAS study cohorts. This  systematic exploration of 

transcriptomic organization in the PFC from alcoholics provides further support for the role of 

the neuroimmune system in alcohol dependence. The biological pathways and networks of genes 

identified in the current study will help prioritize genes for functional studies and may help 

advance targeted treatment approaches for alcohol use disorders. 
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Table 1: Demographic profile of alcohol-dependent and control subjects 

Trait 
 

Alcohol Dependent 
(N = 65) 

Control 
(N = 73) 

Male (%) 51 (78%) 60 (82%) 
Mean Age (SD) (yrs) 55.65 (11.81) 54.96 (12.11) 
Mean PMI (SD) (hrs) 33.66 (15.59)* 26.63 (13.25) 
Brain pH (SD) 6.54 (0.23) 6.58 (0.29) 
RIN (SD) 6.84 (0.96) 7.0 (1.01) 

*P-value= 0.0049 

 

Table 2: Results of GWAS enrichment analysis in modules correlated with alcohol dependence 

and alcohol consumption 

		 RNA-Seq	data	(N=138)	 GWAS	data	
		 Module	trait	correlation	 GWAS	P	0.05,	eQTL	P	<	5	X	10-8	
ID	 AD	 P	 Audit	 P	 AC	 P	 PGC-AD	 UKBB-AC	 TAG-CPD	
Thistle2	 -0.28	 9.00E-04	 -0.25	 3.00E-03	 -0.22	 9.00E-03	 1.50E-02*	 1.30E-02*	 5.52E-01*	
Brown4	 0.18	 4.00E-02	 0.14	 1.00E-01	 0.12	 1.00E-01	 4.20E-03+	 2.28E-01+	 4.81E-03+	

 

*Permuted P-value for the left-tail Fisher’s exact test (under-enriched); 

 +Permuted P-value to test right-tail Fisher’s exact test (over-enriched) 

(AD = Alcohol Dependence; Audit = Audit scores; AC = Alcohol consumption)  
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Figures 

Figure 1: Top genes, pathways and networks from differential gene expression in DLFPC 

region from 68 alcoholics and 70 controls. (A) Volcano plot showing top differentially expressed 

genes among cases and controls. (B) The genes passing FDR threshold of 20% were inputted to 

IPA for pathway enrichment analysis. The figure shows some of the top pathways identified by 

IPA. P values here are from right tail Fisher’s exact test. (C) Enrichment analysis of gene ontology 

“biological process” terms. Color depicts the qvalues with red being the strongest evidence of 

enrichment (D) Network analysis on top genes (FDR <=20%) mapped to networks involved in the 

neurodegenerative disorders and organismal injuries. P value under the gene is the uncorrected p-

value for differential expression among alcoholics and controls. The nominally significant genes 

in the UKBB-alc and PGC-SUD GWAS are highlighted with purple border and blue annotation. 

Figure 2: Trait module correlations with P values for the top 5 modules. WGCNA identified 

27 modules, out of which 5 modules showed nominal- moderate statistical significance with any 

of 4 alcohol related trait (AUDIT, alcohol consumption (gms/ day), duration of drinking (years), 

DSM4 AD (classification). Thistle2 module also passed the multiple test correction (27 modules, 

4 traits; 0.05/31 = 1.6 x 10-3). 

Figure 3: Enrichment analysis of genes in thistle2 module that are differentially expressed 

in alcoholics and controls. (A) More than 50% of genes in calcium signaling pathways were 

found to be down-regulated in the thistle2 module. (B) Enrichment analysis for GO:BP terms 

showed downregulation of genes related to response to nicotine and postsynaptic potential. (C) 

Nearly 15 genes mapped to network related to amino-acid metabolism with many genes that 

were involved in G-protein coupled receptor signalling, calcium signaling and opioid signaling 

pathway. The nominally significant genes in the UKBB-alc and PGC-SUD GWAS are marked 
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with red boundaries (ADCY5 P = 7.07 x 10-7 in UKBB-AC, ADCY7, P = 2.2 x 10-4 in UKBB-

AC), IL12B, P = 1.1 x 10-2 in PGC-AD, PIK3C2G, P = 6.8 x 10-3 in UKBB-AC,  PIK3R4, P = 

3.4 x 10-2 in PGC-AD, CHRNA6 in UKBB-AC P = 7.60x 10-3, CHRNA2 in PGC-AD P = 1.4 x 

10-2, MN1 in PGC-AD P = 9.1 x 10-3 and HAPLN1 in UKBB-AC P = 1.9 x 10-2). 

Figure 4: Enrichment analysis of brown4 module genes that were differentially expressed 

genes (FDR* < 0.05) among alcoholics and controls. (A) Pathway analysis showed significant 

upregulation of genes related immune signaling and metabolism. (B) Enrichment analysis for 

GO:BP terms showed enrichment of genes related to inflamatory response. (C) The genes in the 

brown4 module mapped to network involved in infectious and respiratory diseases. The genes that 

were nominally significant in the UKBB-Alc and PGC- SUD GWAS are highlighted with purple. 
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