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Abstract 1 

Background: Phenotypic variability of human populations is partly the result of gene polymorphism and 2 

differential gene expression. As such, understanding the molecular basis for diversity requires identifying 3 

genes with both high and low population expression variance and identifying the mechanisms underlying 4 

their expression control. Key issues remain unanswered with respect to expression variability in human 5 

populations. The role of gene methylation as well as the contribution that age, sex and tissue-specific 6 

factors have on expression variability are not well understood. 7 

Results: Here we used a novel method that accounts for sampling error to classify human genes based on 8 

their expression variability in normal human breast and brain tissues. We find that high expression 9 

variability is almost exclusively unimodal, indicating that variance is not the result of segregation into 10 

distinct expression states. Genes with high expression variability differ markedly between tissues and we 11 

find that genes with high population expression variability are likely to have age-, but not sex-dependent 12 

expression. Lastly, we find that methylation likely has a key role in controlling expression variability insofar 13 

as genes with low expression variability are likely to be non-methylated. 14 

Conclusions: We conclude that gene expression variability in the human population is likely to be 15 

important in tissue development and identity, methylation, and in natural biological aging. The expression 16 

variability of a gene is an important functional characteristic of the gene itself and the classification of a 17 

gene as one with Hyper-Variability or Hypo-Variability in a human population or in a specific tissue should 18 

be useful in the identification of important genes that functionally regulate development or disease. 19 

Keywords: Expression Variability, Tissue Specificity, Essentiality, Methylation, Aging 20 
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Background 1 

 Within the last decade, many studies have established that gene expression patterns vary 2 

between individuals, across tissue types[1], and within isogenic cells in a homogenous environment[2]. 3 

These differences in gene expression lead to phenotypic variability across a population. Differential gene 4 

expression gene expression is typically detected by analyzing expression data from a population of 5 

samples in two or more genetic or phenotypic states, for example a cancerous and non-cancerous sample 6 

or between two different individuals. Various differential gene expression algorithms, such as edgeR and 7 

DESeq, are then used to identify genes whose expression mean differs significantly between the states. 8 

While differential co-expression analyses have successfully been used to identify novel disease-related 9 

genes[3], the statistical methods used in these analyses consider gene expression variance within the 10 

sample population as a component of the statistical significance estimate. However, expression variability 11 

within populations has been emerging as an informative metric of cell state an informative metric of a 12 

phenotypic state, particularly as it relates to human disease[4, 5].  13 

There are several sources of expression variability in a population. The first are polymorphisms 14 

that contribute, both genetically and epigenetically, to promoter activity, message stability and 15 

transcriptional control. Another source of gene expression variability is plasticity, whereby an organism 16 

adjusts gene expression to alter its phenotype in response to a changing environment[6]. However, gene 17 

expression patterns can also vary among genetically identical cells in a constant environment[7–10]. This 18 

is commonly described as “noise”.  19 

Expression variability, whatever its source, is an evolvable trait subject to natural selection, 20 

whereby each genes have an optimal expression level and variance required for an organism’s fitness and 21 

selection minimizes this variability[7, 10–14]. In this case, genes with low variability have been subjected 22 

to heavy selection pressure to minimize population expression variance. Conversely, high variability genes 23 
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have been selected for high variance. Genes with high expression variability could be drivers of phenotypic 1 

diversity, as suggested by position association between expression noise and growth[15–18]. In this 2 

interpretation, genes with high variability allow for growth in fluctuating environments. Understanding 3 

the role of the gene expression variability patterns across human populations and in isogenic mice will 4 

therefore provide crucial insights into how genetic differences contribute to phenotypic diversity, 5 

susceptibility to disease[19, 20], differentiation of disease subtypes[5], development[21–24], and 6 

alterations in gene network architecture[25].  7 

In this analysis, we used a novel method to analyze global gene expression variability in non-8 

diseased human breast, cerebellum, and frontal cortex tissues. Our method differs from other protocols 9 

in that we account for sampling error in our analysis as well as estimate expression variability independent 10 

of expression magnitude. In addition, we analyzed gene methylation in conjunction with expression 11 

variability. Our work suggests that expression variability is an important part of the development and 12 

aging process and that identifying genes with very high or very low expression variability is one way to 13 

identify physiologically and important genes. 14 

 15 

Results 16 

Estimating expression variability. We measured human gene expression variability (EV)[1] in post-17 

mortem non-diseased cerebellum (n = 465) and frontal cortex samples (n = 455) and biopsied normal 18 

breast tissues (n = 144). Gene expression was measured  using the Illumina HumanHT-12 V3.0 expression 19 

BeadChip. We excluded probes corresponding to non-coding transcripts as well as those with missing 20 

probe coordinates, resulting in a list of 42,084 probes. We chose to estimate EV of a microarray probe 21 

independent of its expression magnitude. In this respect, neither the coefficient of variation nor variance 22 
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are suitable. The former has a bias for genes with low mean expression and the latter has a bias for high 1 

mean expression genes. We modified the method initially described by Alemu et al[1]. First, we calculated 2 

the median absolute deviation (MAD) for each probe. Then we modelled the expected MAD for all probes 3 

as a function of median expression using a locally weighted polynomial regression (Fig. 1A, red line). The 4 

expected MAD regression curves for each tissue type exhibit a flat, negative parabolic shape where the 5 

lowest and highest expression probes represent the troughs of the curve. Variability in gene expression 6 

levels has previously been shown to decrease as expression approaches either extrema[7, 9, 26]. The EV 7 

for each probe was calculated as the difference between its bootstrapped MAD and the expected MAD at 8 

each median expression level (Fig. 1A). Positive EV values indicate that the probe has a greater expression 9 

variability than probes with the same expression magnitude mean. Conversely, negative EV values imply 10 

reduced population expression variability. We next plotted the kernel density estimation function of EV 11 

for each tissue (Fig. 1B). The EV distribution in all three tissue types exhibit large peaks around the zero 12 

mean and a long tail for positive EV probes. Breast tissue exhibited a larger shoulder of the negative EV 13 

probes compared to cerebellum and frontal cortex tissues. This is likely attributable to the lower number 14 

of breast samples (144 compared to 456 and 455 samples respectively).  15 

We then confirmed the independence of EV on expression by modelling the relationship between 16 

the two variables using a linear regression (Fig 1C) and calculating the Kendall rank correlation coefficient 17 

for each tissue type (Table 1). Based on the poor adjusted R2 values and Kendall rank correlation 18 

coefficients, we conclude that there is no substantial correlation between probe EV and expression 19 

magnitude.  20 

Next, we then classified each probe into three categories based on their EV. We used the term 21 

“Hyper-Variable” to describe probes whose EV was greater than �̃�𝐸𝑉 + 3 ∗ 𝑀𝐴𝐷𝐸𝑉. Probes with an EV less 22 

than �̃�𝐸𝑉 − 3 ∗ 𝑀𝐴𝐷𝐸𝑉 were deemed “Hypo-Variable”. The remaining probes that fell within the range of 23 

�̃�𝐸𝑉 ± 3 ∗ 𝑀𝐴𝐷𝐸𝑉 were considered “Non-Variable”. A probe classified with a “Non-Variable” EV means 24 
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that its bootstrapped MAD is similar to the MAD of all genes with similar expression magnitude. It is 1 

important to note that these probes still have expression variability across the population. We propose 2 

that these three distinct groups, categorized based on EV, correspond to distinct functional and 3 

phenotypic gene characteristics.  4 

 5 

Table 1. Correlation analysis of EV and probe expression. Adjusted R2 values were calculated using a linear regression model. 6 

 Breast Cerebellum Frontal Cortex 

Kendall Rank Correlation Coefficient -0.208 -0.201 -0.213 

Linear Regression Adjusted R2 Value 2x10-4 8x10-4 5x10-3 

 7 

Statistical nature of Hyper-variability. A previously unexplored aspect of expression Hyper-variability is 8 

the statistical characteristics of expression amongst genes with this wide range of gene expression. 9 

Specifically, high EV could be the result of a multimodal distribution of gene expression with two or more 10 

distinct expression means or might simply result from a broadening of expression values around a 11 

unimodal mean value. In order to distinguish between the two possibilities, we modeled each probe 12 

expression as a mixture of two Gaussian distributions prior to estimating probe EV (Fig. 2). Next, we 13 

identified the peaks of the kernel density estimation function for each Gaussian distribution and 14 

compared the distance between the peaks as well as the ratio of peak heights. Probes with peaks that 15 

were greater than one median absolute deviation apart and displayed a peak ratio greater than 0.1 were 16 

classified as having a bimodal expression distribution. Probes that did not satisfy both criteria were 17 

considered to have a unimodal distribution. Only a small minority of the probes (16/41,968 breast tissue 18 

probes, 6/41,968 cerebellum probes, and 6/41,968 frontal cortex probes) showed a bimodal distribution 19 

of gene expression. The remaining majority of Hyper-Variable probes had a unimodal distribution. This 20 

indicates that high expression variability is a result of a widening of possible expression values across a 21 

single mean rather than the gene expression existing in two or more discrete states. 22 
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 1 

Accounting for sampling error in EV classification. We were concerned that the classification of a probe 2 

into Hyper-, Hypo- and Non-Variable classes might be the result of sampling errors. To minimize this 3 

possibility and to increase the accuracy of our EV classification method, we divided each of our tissue 4 

samples into two equally sized sample probe subsets and repeated the EV analysis. This 50-50 split-retest 5 

procedure was repeated 100 times with each iterative retest using a random split of the probes. Fig 1B 6 

shows the kernel density estimation function of a concordant EV classification for each probe into Hyper-7 

, Hypo- and Non-Variable class across the three subsets in each tissue type. Fig 3A demonstrates that 8 

classification of a probe as Hyper or Hypo-Variable based on a single analysis of the population is 9 

problematic due to sampling bias. We see a substantial decrease in the number of probes in the Hyper- 10 

and Hypo-Variable probe sets after conducting our split-retest protocol (Fig. 3B and Table 2). Thus, our 11 

split-retest method likely increases the robustness and accuracy of EV classification.  12 

 13 

Table 2. Count summary of probes before and after 50-50 split-retest procedure. Hypervariable and Hypovariable probes that 14 

were not retained after the split-retest were relabeled as “Non-Variable”. 15 

Probe Set Tissue 
Number of Probes 
Before Retesting 

Number of Probes After 
Retesting 

% of Probes After 
Retesting 

Hypervariable 
Breast 3125 1448 46.34 

Cerebellum 2987 1640 54.90 

Frontal 
Cortex 

2949 1760 59.68 

Hypovariable 
Breast 4371 957 21.89 

Cerebellum 2619 837 31.96 

Frontal 
Cortex 

3019 1254 41.54 

Non-Variable 
Breast 34456 39547 114.78 

Cerebellum 36356 39485 108.61 

Frontal 
Cortex 

35994 38948 108.21 

 16 

Tissue-specificity of EV.. We next mapped Hyper-, Hypo and Non-Variable probes onto their respective 17 

genes. Individual genes can have multiple probes attached to them and we refer to the identified genes 18 
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as being “probe-mapped”. A probe-mapped gene is assigned to a Variability group if one or more of its 1 

probes have that characteristic Variability. Thus, the possibility exists that an individual gene could be 2 

placed in one or more Variability groups based on differential behavior of probes mapped to that gene. 3 

However, the number of genes that have are classified in one or more Variability groups involved is small 4 

(Breast: 2.22%, Cerebellum: 2.76%, Frontal Cortex: 3.18%).  5 

Because we have calculated EV from different tissues, we were able to determine the extent to 6 

which tissue-specific factors might contribute to EV. This is an important question because expression 7 

variability exists not only between individuals but between different tissues in the same organism.. As 8 

shown in Fig. 4A, only a small minority of Hyper-Variable and Hypo-Variable probe-mapped gene sets are 9 

shared between the three tissues. 16% of the Hyper-Variable probe-mapped genes were classified as such 10 

in the three tissues and 18-26% of the Hypo-Variable were so classified. The Non-Variable probe-mapped 11 

gene sets contained over 82% of genes in each tissue type, with over 71% of the measured genes 12 

commonly classified as NV in all three tissue types.  13 

 14 

EV and gene structural characteristics. To understand possible genomic mechanisms by which population 15 

expression variability occurs, we first explored the relationship between EV and various structural features 16 

of the genes. Expression variability has previously been reported to be associated with gene size, gene 17 

structure, and surrounding regulatory elements[1]. However, we found no significant linear correlation 18 

between EV and a gene’s exon count, sequence length, transcript size, or number of isoforms (Additional 19 

file 1). While certain linear models exhibited statistical significance (p < 0.05), the fit of the model and 20 

subsequent comparison of the linear model against a local polynomial regression curve showed that the 21 

correlation was either too small to draw a conclusion or not correctly defined by a linear model. 22 
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While we did not find that the physical gene characteristics were correlated to EV, previous 1 

studies have shown that the position of a gene on a chromosome has considerable effects on stochastic 2 

gene expression variability [27]. We next tested if there is a relationship between expression variability 3 

and chromosomal position (Fig. 4B). To this end, each chromosome was divided into 100 bins and the 4 

mean EV all the genes within each bin determined. We display mean EV so that the graphed value does 5 

not depend on the probe density. However, bins that have a small number of probes may skew positional 6 

values. We therefore introduced a minimal threshold for number of probes in each bin. Any bin with less 7 

than 3 probes would be considered to have a zero EV value. We found that EV is not uniformly distributed 8 

across the genome, and individual regions of chromosomes exhibited peaks of high expression variability 9 

or troughs of low expression variability. To further confirm our conclusion, we tested the cosine 10 

similarities of the chromosomes within and across the tissue types (Additional file 2). This similarity 11 

analysis is consistent with the idea that EV is not randomly distributed throughout the genome. 12 

Furthermore, chromosomal EV distributions across chromosomes exhibited low similarities with each 13 

other. Because the probes used for the three different tissues are identical, this conclusion is not affected 14 

by probe density. 15 

 16 

Functional analysis of Hyper-, Hypo- and Non-Variable genes. In order to understand the overall 17 

biological significance of EV, we examined the functional aspects that are enriched in the Hyper-Variable, 18 

Hypo-Variable, and Non-Variable probe-mapped gene sets by conducting a gene set enrichment analysis 19 

in each category. We conducted a functional enrichment analyses of the gene symbols corresponding to 20 

the probes in each probe-mapped gene set. We determined the over-represented Gene Ontology (GO) 21 

terms that were unique in each tissue type, as well as GO terms that were common in all three tissue 22 

types. The resulting GO annotations were simplified and visualized using a REVIGO treemap. The top five 23 

terms for each tissue type can be found in Table 3, while the complete list of GO term treemaps can be 24 
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found in Additional file 3. It should be noted that the GO term “Proteolysis involved in cellular catabolism” 1 

appears both in the “Common Probe-Mapped Genes” and “Breast-Specific Probe Mapped Genes” for the 2 

Hypo-Variable set. The genes involved in both cases are unique but they are members of the same GO 3 

pathway. 4 

 5 

Table 3. Top 5 common and tissue-specific REVIGO GO annotations in the Hyper-Variable and Hypo-Variable probe mapped gene 6 

sets of breast, cerebellum, and frontal cortex tissues. 7 

  
Common Probe-Mapped 
Genes 

Breast-Specific Probe-
Mapped Genes 

Cerebellum-Specific Probe-
Mapped Genes 

Frontal Cortex-Specific Probe-
Mapped Genes 

Hyper-Variable 
  

Regulation of bone 
remodeling 

Epithelial cell differentiation Regulation of nervous system 
development 

Histamine secretion 

Regulation of inflammatory 
response 

Primary alcohol metabolism Regulation of transmembrane 
transport 

Regulation of cell 
morphogenesis 

Response to zinc ion Positive regulation of cellular 
component movement 

Regulation of neuron death Trans-synaptic signaling 

Carboxylic acid biosynthesis Response to corticosteroid Negative regulation of 
response to external stimulus 

Regulation of neurological 
system process 

Regulation of ion transport Transmembrane receptor 
protein tyrosine kinase 
signaling pathway 

Response to calcium ion Dephosphorylation 

Hypo-Variable 
  

Proteolysis involved in cellular 
protein catabolism 

Golgi vesicle transport DNA conformation change ncRNA metabolism 

Ribonucleoprotein complex 
assembly 

Nucleoside monophosphate 
metabolism 

Modification-dependent 
macromolecule catabolism 

Response to interleukin-1 

Regulation of cellular amino 
acid metabolism 

Proteolysis involved in cellular 
protein catabolism 

Response to camptothecin Regulation of enter of 
bacterium into host cell 

Innate immune response 
activating cell surface receptor 
signaling pathway 

Cellular response to nitrogen 
starvation 

Retrograde transport, 
endosome to Golgi 

 

Negative regulation of 
autophagy 

Mitochondrial respiratory 
chain complex I assembly 

Regulation of ubiquitin-protein 
transferase activity 

 

 8 

 9 

 The breast Hyper-Variable probe-mapped gene set was uniquely enriched for epithelial cell 10 

differentiation, primary alcohol metabolism, and positive regulation of cellular component movement. 11 

The cerebellum Hyper-Variable probe-mapped gene set was uniquely enriched for regulation of nervous 12 
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system development, transmembrane transport, and neuron death. The frontal cortex Hyper-Variable 1 

probe-mapped gene set was enriched for histamine secretion, regulation of cell morphogenesis, and 2 

trans-synaptic signalling. The breast, cerebellum, and frontal cortex Hyper-Variable probe-mapped gene 3 

sets were commonly enriched for regulation of tissue remodeling, inflammatory responses, and responses 4 

to inorganic substances. Of note, many of the enriched GO annotations of the Hyper-Variable genes are 5 

involved in signalling pathways.  6 

 In the case of the Hypo-Variable probe-mapped gene sets, all three tissue types were enriched for 7 

protein catabolism and metabolism, ribonucleoprotein complexes, and negative regulation of autophagy. 8 

In this respect, many of the shared Hypo-Variable genes could be considered housekeeping genes. The 9 

breast Hypo-Variable probe-mapped gene set was enriched for Golgi vesicle transport, nucleoside 10 

metabolism, and protein catabolism. The cerebellum Hypo-Variable probe-mapped gene set was enriched 11 

for DNA conformation change, modification-dependent macromolecule catabolism, and retrograde 12 

transport.  13 

 14 

Essentiality enrichment in variable genes. Previous studies in yeast have shown that gene expression 15 

variability is reduced in genes that are essential for survival. It is believed that evolution has selected for 16 

transcriptional networks that limit stochastic expression variation of essential genes[13]. If this were true 17 

for humans, we would expect a significant number of essential genes to exhibit Hypo-Variable expression 18 

and a depletion of essential genes within the Hyper-Variable probe sets. 19 

 20 

Table 4. Pearson’s Chi-squared test for Essentiality in Hyper-Variable, Hypo-Variable, and Non-Variable probe mapped gene sets.  21 

Tissue Probe Set Total Gene Count 
Essential 

Gene Counts 
Standardized 

Residuals 
P-Value 
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Breast 
Hyper 1448 165 8.65 

1.48 x 10-22 Hypo 957 103 4.94 

NV 39547 2095 -9.87 

Cerebellum 
Hyper 1640 160 5.88 

4.85 x 10-10 Hypo 837 76 2.69 

NV 39485 2128 -6.42 

Frontal Cortex 
Hyper 1760 181 7.28 

1.43 x 10-16 Hypo 1254 121 4.15 

NV 38948 2062 -8.38 

 1 

 In order to examine a potential correlation between expression variability and essentiality in 2 

human tissues, we first tested the independence between EV classification and annotation of human 3 

essentiality (Table 4). Essentiality annotations were obtained from the CCDS[28] and MGD[29] databases. 4 

Here, direct human orthologs of genes essential for prenatal, perinatal, or postnatal survival of mice were 5 

classified as essential. Using the Pearson’s chi-square test using the chisq.test function[30] in R for the 6 

number of essential genes in each probe set (Additional File 4), we find that that the Hypo-Variable probe-7 

mapped gene set in breast, cerebellum, and frontal cortex tissues were significantly enriched for genes 8 

with essentiality annotation. Thus, expression variability for many essential genes is constrained in 9 

humans, likely reflecting a similar biology to essential yeast genes. However, we surprisingly  observe a 10 

significant enrichment of essential genes within the Hyper-Variable probe-mapped gene sets.  11 

To better understand the implications of high variability in essential genes, we examined the 12 

functional annotations associated with Hyper-Variable essential genes (Table 5 and Additional file 5). The 13 

breast essential Hyper-Variable probe-mapped gene set was enriched for chordate embryonic 14 

development, cellular response to growth factor stimulus, mesenchymal cell apoptotic process, carboxylic 15 

acid biosynthesis, and cell-substrate junction assembly. The cerebellum essential Hyper-Variable probe-16 

mapped gene set was enriched for regulation of cell development, epithelial cell migration, positive 17 

regulation of cell proliferation, cellular response to growth factor stimulus, and anterograde trans-18 

synaptic signalling. Lastly, the frontal cortex essential Hyper-Variable probe-mapped gene set was 19 
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enriched for positive regulation of cell differentiation, transmembrane receptor protein tyrosine kinase 1 

signalling pathway, epithelial cell migration, regulation of actin cytoskeleton organization, and regulation 2 

of lipase activity. Overall, the Hyper-Variable essential probe-mapped gene sets tended to be enriched for 3 

morphogenic, tissue, and organ system development.  4 

 5 

Table 5. Top 5 common and unique REVIGO GO annotation subsets of Hyper-Variable and Hypo-Variable essential genes in breast, 6 

cerebellum, and frontal cortex tissues. 7 

  Breast-Specific Probe-Mapped Genes 
Cerebellum-Specific Probe-Mapped 
Genes 

Frontal Cortex-Specific Probe-Mapped 
Genes 

Hyper-Variable 
Essential Genes 

Chordate embryonic development Regulation of cell development Positive regulation of cell differentiation 

Cellular response to growth factor 
stimulus 

Epithelial cell migration Transmembrane receptor protein 
tyrosine kinase signalling pathway 

Mesenchymal cell apoptotic process Positive regulation of cell proliferation Epithelial cell migration 

Carboxylic acid biosynthesis Cellular response to growth factor 
stimulus 

Regulation of actin cytoskeleton 
organization 

Cell-substrate junction assembly Anterograde trans-synaptic signalling Regulation of lipase activity 

Hypo-Variable 
Essential Genes 

DNA repair DNA repair DNA repair 

Regulation of cellular protein 
localization 

Protein oligomerization Peptide transport 

Mitochondrial genome maintenance Positive regulation of viral process Regulation of type I interferon 
production 

Chordate embryonic development Negative regulation of cell cycle Response to UV 

Protein modification by small protein 
removal 

Lysosomal transport Phosphorylation 

 8 

DNA methylation and expression variability. One factor that has been postulated to regulate EV is DNA 9 

methylation. While the relationship between methylation and gene expression is complex, low promoter 10 

methylation is associated with high levels of gene expression[31–34]. Like gene expression, DNA 11 

methylation is highly variable at the cell, tissue, and individual level[35], suggesting that EV could result 12 

from variations in gene methylation. To explore this idea, we used DNA methylation annotations that 13 

were available in 724 out of 911 brain tissue samples.  14 
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DNA methylation in CpG sites is thought to be bimodal, meaning that the gene is either 1 

hypomethylated or hypermethylated[34]. In order to differentiate between low, medium, and high 2 

methylation states in our samples, we modelled gene methylation using Gaussian mixture models for the 3 

mean methylation for each gene. The distribution of gene methylation in both cerebellum and frontal 4 

cortex tissue was best modelled as a three-component system. The first component was a sub-population 5 

Gaussian mixture while the second and third components were modelled as single Gaussian distributions. 6 

Genes whose methylation fell within the first component were classified as Non-Methylated genes. Genes 7 

were classified as Medium Methylated for those in the second component and Highly Methylated if they 8 

were in third. The distribution of methylation amongst the genes is predominantly bimodal with only a 9 

minority of genes being Medium Methylated (Fig. 5A). In contrast, over 62% of cerebellum genes are non-10 

methylated and 23% highly methylated. Similarly, 58% of frontal cortex genes are non-methylated and 11 

22% are highly methylated).  12 

Next, we explored the correlation between methylation and expression based on the EV. When 13 

we subset the methylation distribution by EV classification (Fig. 5B), we observe that Hypo-Variable genes 14 

have a visibly different methylation pattern than Hyper- or Non-Variable genes insofar as Hypo-Variable 15 

genes are visibly overrepresented in the Non-Methylated gene group compared to both the Hyper-16 

Variable and Non-Variable genes.  17 

To further quantify the overrepresentation of Hypo-Variable genes in the Non-Methylated gene 18 

group, we conducted a chi-squared test of independence between the methylation state clusters and the 19 

EV classifications (Table 6 and Additional file 4). Both the cerebellum and frontal cortex tissues exhibited 20 

a significant relationship between the methylation clusters and EV classifications (p = 7.57 x 10-36 and p = 21 

1.58 x 10-59, respectively). By examining the standardized residuals of the chi-square test of independence, 22 

we quantitatively confirmed the enrichment of Non-Methylated genes within the Hypo-Variable probe-23 

mapped gene set. We also observe a significant enrichment of Highly Methylated genes in the Non-24 
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Variable gene set as well as an enrichment of Medium Methylated genes in the Hyper-Variable probe-1 

mapped gene set. This indicates that methylation and EV classification are correlated. 2 

 3 

Table 6. Pearson’s Chi-Squared Test Standardized Residuals. We tested the independence between the methylation state clusters 4 

and the EV classifications in cerebellum and frontal cortex tissues and found a significant relationship between the two variables 5 

(p = 7.57 x 10-36 and p = 1.58 x 10-59, respectively).  6 

 
Cerebellum Tissue  Frontal Cortex Tissue 

Non-
Methylated 

Medium 
Methylated 

Highly 
Methylated 

 
Non-

Methylated 
Medium 

Methylated 
Highly 

Methylated 

Hypo-Variable 11.98 -5.69 -9.04  14.84 -7.11 -10.79 

Non-Variable -7.52 0.06 8.59  -10.00 -0.04 11.73 

Hyper-Variable 0.07 4.21 -3.58  -0.23 6.23 -5.47 
 7 

 8 

Effects of age, sex, and PMI on variability. To further understand the biological relevance of EV, we 9 

focused on the Hyper-Variable genes to identify potential mechanisms of decreased constraint on gene 10 

expression across the samples. We systematically analyzed expression as a function of sex, age, and post-11 

mortem interval (PMI). The breast tissue dataset lacked these clinical annotations and was excluded from 12 

this analysis. We employed a probe-wise linear regression analysis to model the relationship between 13 

Hyper-Variable probe expression and age, sex, and PMI. The resulting p-values were adjusted for multiple 14 

comparisons using the Benjamini-Hochberg procedure and considered significant when the adjusted p-15 

value was less than 0.01. The total number of Hyper-Variable probes with sex, PMI or age as co- are shown 16 

in Table 7. 17 

 18 
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Table 7. Probe-Wise Multiple Linear Regression of Sex, PMI, and Age. Probes that exhibit an FDR < 0.01 are considered significant 1 

for the specific coefficient. 2 

 Sex PMI Age 

 Up Down Total Up Down Total Up Down Total 

Cerebellum 12 10 22 2 0 2 247 267 514 

Frontal 8 15 23 7 9 16 373 354 727 

 3 

PMI might be a source of apparent expression variability because an extended PMI might 4 

compromise sample RNA integrity and lead to degradation of labile RNA[36]. Brain samples had PMI times 5 

ranging from 1 hour to 94 hours (mean = 36.14 hr), but we observe a negligible number of probes that are 6 

correlated with PMI (2 out of 1640 and 16 out of 1760 probes for cerebellum and frontal cortex, 7 

respectively). This suggests that sample integrity is unlikely to be a source of EV changes. Somewhat more 8 

surprisingly, however, is the low number of probes that are correlated with sex. Only 22 out of 1640 9 

Hyper-Variable cerebellum probes and 23 out of 1760 Hyper-Variable frontal cortex probes show sex-10 

dependent differences in EV. While other studies have shown widespread sex differences in post-mortem 11 

adult brain gene expression[37], EV is not substantially dependent on sex in our analysis. 12 

However, we observe that age has a substantial effect on expression variability. Age is correlated 13 

with over 31% of Hyper-Variable cerebellum probes and over 41% of Hyper-Variable frontal cortex probes. 14 

This means that the expression of these probes becomes either more or less constrained during aging. In 15 

the cerebellum, there were 247 Hyper-Variable probes whose expression increased as a function of age 16 

and 267 genes with decreased expression. Similarly, the frontal cortex contained 373 probes with 17 

increased expression and 354 probes with reduced expression. Given that age is correlated with a 18 

considerable number of Hyper-Variable probes, we classified the age of the samples in the cerebellum 19 

and frontal cortex tissues into three age clusters according to BIC for expectation-maximization (EM) 20 

initialized by hierarchical clustering for parameterized Gaussian mixture models. The oldest cluster 21 

contained samples whose ages were between 58 and 98 (�̅�1 = 79). The second cluster ranged between 22 
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32 and 57 years (�̅�2 = 45), while the youngest age cluster contained samples aged 1 through 31 (�̅�3 =1 

17).  2 

To further explore this effect, we examined the age-dependent changes in expression of the 3 

Hyper-Variable probes across the three clusters. In each tissue type, we labeled probes whose expression 4 

was positively correlated with age as “Upregulated”, while the negatively correlated probes were termed 5 

“Downregulated”. Then, we used a hierarchical clustering method with an expression heatmap to visualize 6 

how these upregulated and downregulated probes are expressed throughout the age clusters (Fig. 6). The 7 

resulting probe hierarchical trees were clustered into groups via manual tree cutting. The complete list of 8 

GO term treemaps for significant gene clusters can be found in Additional file 6. 9 

While the cerebellum is generally considered a regulator of motor processes, it is also implicated 10 

in cognitive and non-motor functions[38]. Many of these age-dependent upregulated Hyper-Variable 11 

genes corroborate previous studies exploring the relationship between brain aging and changes in gene 12 

expression, including cellular responses to chemical stimuli (gold cluster). In particular, reactive oxygen 13 

and nitrogen species have been shown to change ion transport channel activity, and serve as an important 14 

mechanism in brain aging[39]. While all the genes selected were age-regulated, some genes exhibit outlier 15 

samples whose expression remains high across all genes in the dark orange cluster, regardless of age. 16 

These genes are more likely to be overexpressed in the samples as age increases and are enriched for 17 

peripheral nervous system neuron development and neuron apoptotic pathways. Similar enrichments of 18 

neurogenic and chemical stimuli response pathways are seen in the upregulated frontal cortex genes (gold 19 

cluster). The dark orange cluster in the upregulated frontal cortex age-dependent genes exhibits a sample-20 

specific over- or under-expression of genes. These bimodally expressed genes are enriched for glial cell 21 

differentiation, adenosine receptor signaling pathways, and antigen processing. Lastly, we see a random 22 

scattering of expression in the yellow cluster of the frontal cortex heatmap that steadily increases with 23 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/500785doi: bioRxiv preprint 

https://doi.org/10.1101/500785
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

age. These genes are enriched for glial cell differentiation, cellular response to alcohol, and defense 1 

responses to fungus. 2 

Most of the downregulated age-dependent Hyper-Variable genes in the cerebellum fall into the 3 

green cluster where expression of the genes in the cluster increases with age. These genes are involved 4 

in leukocyte-mediated immunity and defense responses to other organisms, which is supported by 5 

previous studies[40]. Interestingly, the yellow cluster exhibits U-shaped expression levels, whereby the 6 

lowest expression is seen in the middle age cluster. These genes are enriched for optic nerve 7 

development, response to interferon-gamma, and synaptic signalling. In the frontal cortex, the majority 8 

of downregulated age-dependent genes fall in the red cluster, and are enriched for ion transport, cell 9 

morphogenesis, and trans-synaptic signalling. Overall, the functional annotations of the age-regulated 10 

Hyper-Variable gene clusters suggest that population EV is one outcome of age-dependent gene 11 

expression changes.  12 

We next investigated a possible impact of methylation status on gene expression in the Up- and 13 

Down-regulated Hyper-Variable genes. Fig. 7 shows the histogram distribution of correlation between 14 

paired gene expression and gene methylation for each gene. We observe no strong correlation between 15 

expression and methylation, suggesting age-dependent changes in expression of the age-regulated Hyper-16 

Variable genes are not the result of methylation changes.  17 

 18 

Discussion 19 

Gene expression variability in a population is the cumulative result of intrinsic genetic factors, 20 

extrinsic environmental factors, and stochastic noise. A fundamental issue in biology is understanding the 21 

cause of expression variability within an individual organism and between isogenic and genetically 22 
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dissimilar individuals of a population [42]. Expression variability has been postulated to be part of 1 

evolution, differentiation and organ homeostasis [43,44]. In this report, we study population gene 2 

expression variability in human breast, cerebellum, and frontal cortex tissues.  3 

Our investigation into human gene expression variability yielded several main findings. First, we 4 

find that Hyper-Variability in population gene expression is fundamentally unimodal and does not 5 

represent population switching between two or more discrete expression stages. In addition, both Hypo-6 

Variable (highly constrained expression) and Hyper-Variable (lowly constrained expression) probe-7 

mapped gene sets are enriched for essential genes. We observe only a small (16-26%, Figure 4A) overlap 8 

in Hyper- and Hypo-Variable probe-mapped gene sets between the three tissues, consistent with the idea 9 

that EV could be controlled by tissue-specific factors. We also find that gene methylation could have a 10 

role in expression variability. Lastly, we find that only a small number of Hyper-Variable probe-mapped 11 

genes exhibit co-variability with sex (22/1640 cerebellum probes, and 23/1760 frontal cortex probes). On 12 

the other hand, substantially more Hyper-Variable probes exhibit a strong linear association with age 13 

(514/1640 in Cerebellum and 727/1760 in Frontal Cortex). 14 

A confounding issue with our study is the bulk nature of the tissue samples used. It is likely that 15 

multiple cell types are found in each tissue sample and that the magnitude of this heterogeneity varies 16 

between samples. This issue is not unique to our study and is common to all non-single cell sequencing 17 

studies. With respect to expression variance, cell type heterogeneity is likely to manifest itself in the 18 

identification of a gene as Hyper-Variable based on the fluctuating presence of a cell type with a unique 19 

gene expression profile. This could be one explanation for the presence of cell-type specific process in the 20 

Hyper-Variable genes associated with aging (e.g. Glial Cell Differentiation) or in the Frontal cortex-specific 21 

Hyper-Variable genes (e.g. Histamine Secretion).  22 
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However, tissue heterogeneity is only one possible explanation for Hyper-Variability. We have 1 

several reasons to suspect that tissue heterogeneity and concomitant sampling heterogeneity does not 2 

fatally compromise our analysis. First, we used large samples sizes (n>400) which would help mitigate (but 3 

not completely eliminate) heterogeneity issues. Secondly, we identified common Hyper-Variable genes 4 

between the breast, cerebellum and frontal cortex. Because of the drastic tissue type differences between 5 

these three tissues, we propose that tissue composition heterogeneity is a poor explanation for high 6 

variance gene expression common across these three tissue types. Rather, we propose that this common 7 

high variability reflects an important functional descriptor of the genes involved. Lastly, we observed that 8 

Hyper-Variable probes have an almost exclusively unimodal expression pattern (41,956/41,968 breast 9 

tissue probes, 41,962/41,968 cerebellum probes, and 41,962/41,968 frontal cortex probes). This is 10 

significant because it suggests that high EV is not the result of a chance observation of rare cell types with 11 

an unusual gene expression pattern. Nonetheless, we acknowledge that this study has not taken tissue 12 

heterogeneity into account and is a caveat to our interpretations of Hyper-Variability. Ideally, single cell 13 

analysis or sorting of the cell samples will clarify the issue. In one single cell study, Osorio et al [45] used 14 

single cell RNA-Seq to estimate gene expression variability in genetically identical human cells of three 15 

different types.  Their analysis revealed that within these lines, subsets of genes with high and low 16 

expression variability could be found. They also found a positive correlation between  a gene’s expression 17 

variability within a specific cell group to its variability between individuals in a population. Some genes, 18 

notably those with GO annotations for B cell activation involved in the immune response, cytokine 19 

receptor activity, cellular response to drug, and regulation of tyrosine phosphorylation of STAT protein, 20 

have a strong correlation between expression variability in single cells and in that in the population.  Thus, 21 

it is likely that some of the HyperVariable genes we identified from our individuals will be genes with 22 

highly variable expression amongst cells of the same type.  23 
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On the other hand, our identification of Hypo-Variable probe-mapped genes is not affected by 1 

any potential tissue and sampling heterogeneity. These Hypo-Variable probes exhibit a restricted range 2 

of expression values in each of the samples, independent of sample heterogeneity. Shared GO annotations 3 

provided by the functional enrichment analysis of the Hypo-Variable probe-mapped genes in breast and 4 

brain tissues (Table 3) indicate that many of these genes are likely to have housekeeping functions. The 5 

definition of what constitutes a housekeeping gene is arbitrary but, in a traditional sense, it implies a 6 

strong requirement in all cell types of an organism and a limited tolerance for variations in gene 7 

expression. Some common Hypo-variable genes that would typically be considered housekeeping ones 8 

include genes for Ribonucleoprotein Complex Assembly and Regulation of Cellular Amino Acid 9 

Metabolism and Proteolysis. However, we were surprised to find a broad range of functional annotations 10 

amongst the Hypo-Variable genes. Amongst these are Negative Regulation of Autophagy, Cellular 11 

Response to Nitrogen Starvation, and Response to Interleukin-1, which would be typically be thought of 12 

as induced processes rather than obligate ones. Thus, tissues tightly regulate the expression of genes in a 13 

wide variety of processes and Hypo-Variability, similar to Hyper-Variability, is likely to be an important 14 

physiological characteristic of a gene.  15 

The enrichment of essential genes in the Hypo-Variable probe-mapped gene sets is in agreement 16 

with previous findings in yeast showing that essential yeast genes are likely to have low expression 17 

variability. However, we detected a significant number of essential genes amongst the Hyper-Variable 18 

probe-mapped gene sets in breast, cerebellum, and frontal cortex tissue. Inactivation of these essential 19 

genes leads to pre- or neonatal fatality in mice and humans[46]. This was a surprise to us since we 20 

expected that expression of developmental genes should be tightly regulated. Our functional enrichment 21 

analysis indicates that these Hyper-Variable genes are enriched for morphogenic, tissue, and organ system 22 

development, consistent with an “essential” function yet we observe highly variable expression being 23 

tolerated. One possible explanation would be tissue heterogeneity in the samples (see above). Another 24 
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possibility is these “essential” genes are required for embryonic development but have different post-1 

embryonic roles and may not be essential postnatally. Alternatively, it is possible that these essential 2 

genes are not dose-sensitive in humans, meaning that only a certain level of baseline expression is 3 

required and expression above this baseline might be well tolerated. One additional possibility is that their 4 

protein abundance could be regulated translationally rather than transcriptionally. Inefficient translation 5 

of certain genes may have been selected for during evolution to prevent fluctuations in protein 6 

concentrations[32]. Perhaps a combination of these factors is at play.  7 

The non-random distribution of Hyper-Variable and Hypo-Variable genes across the genome 8 

suggests that EV is dependent on epigenetic factors. Examining the methylation status of the genes 9 

allowed us to determine the relationship between gene methylation and expression variability. Firstly, we 10 

find that Non-Variable genes in the cerebellum and frontal cortex are likely to have high gene methylation. 11 

Secondly, we find that Hypo-Variable genes are likely to be non-methylated. We propose a model for 12 

methylation-dependent expression variability where the highly constrained levels of Hypo-Variable gene 13 

expression require non-methylated genes. We speculate that the lack of methylation allows 14 

transcriptional regulators requiring non-methylated DNA for binding to tightly control gene expression. 15 

On the other hand, high gene methylation reduces transcription noise and epigenetically inhibits 16 

promoter variability in human populations. Future studies should investigate the role that these putative 17 

regulators of expression play on EV, including cis-regulatory elements and transcription factors.  18 

We find that there is limited (<26%) overlap in gene identity between Hyper- and Hypo-Variable 19 

probes in breast and brain tissue. Indeed, the chromosomal pattern of EV differs between tissue types. 20 

Our favored explanation for this is that tissue identity is created and preserved, at least in part, by changes 21 

in gene expression control pathways. Thus, genes mapped by Hypo-Variable probes in any given tissue 22 

have a constrained expression pattern because they are likely to be important in the tissue-specific 23 

function and physiology of that organelle. While there is limited overlap of genes within the corresponding 24 
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EV probe-mapped gene sets of different tissues, the Hyper-Variable probe-mapped gene sets of the 1 

different tissues have similar functional enrichments and cellular protein localizations. Specifically, 2 

proteins encoded by genes mapped by Hyper-Variable probes tend to localize at the cell periphery and 3 

are enriched for cell surface signalling pathways and tissue development, including tissue remodeling and 4 

ion transport. In this respect, our work is broadly consistent with previous findings on transcript 5 

abundance in mice[23, 24]. We therefore propose that tissue identity involves high expression variability 6 

in specific tissue development pathways.  7 

We did not observe any substantial sex dependent effects in expression variability. However, an 8 

important conclusion of our study is that many Hyper-Variable probes have age-dependent expression 9 

variability: that is, their expression significantly increases or decreases during aging. One main cause of 10 

accelerated brain aging and a causal factor of neurodegeneration is a reduction in immunological 11 

functions[47, 48]. We see evidence of downregulated immune responses in the cerebellum, specifically 12 

Leukocyte Mediated Immunity, Defense Responses to Other Organisms, and Interferon-Gamma Response 13 

pathways. Many studies also suggest that aging is associated with the upregulation of inflammatory 14 

responses[49], which is a pathogenic mechanism implicated in many age-related diseases, including 15 

cardiovascular disease, Alzheimer’s disease, and Parkinson’s disease[50]. Consistent with this idea, we see 16 

an enrichment of acute inflammatory response in the cerebellum gold cluster. Another mechanism that 17 

has been implicated with age-related diseases, such as Alzheimer’s disease and Parkinson’s disease, is 18 

synaptic dysfunction that can affect neuroendocrine signaling[51–53]. We see a downregulation of ion 19 

transport and trans-synaptic signaling in the frontal cortex, which are key components of 20 

neurotransmission and membrane excitability, and whose downregulation likely causes deficiencies in 21 

these complex processes. Furthermore, we see an upregulation of genes associated with glial cell 22 

differentiation in the frontal cortex across multiple gene clusters. Initially thought of as cells that merely 23 

support neurons, emerging research shows that neuron-astrocyte-microglia interactions are crucial for 24 
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the functional organization of the brain[54]. In addition, genes specific to astrocytes and 1 

oligodendrocytes, two different types of glial cells, have been shown to shift regional expression patterns 2 

upon aging, and are better predictors of biological age than neuronal-specific genes[55]. This suggests 3 

that the Hyper-Variability and age-dependent upregulation of genes associated with glial cell 4 

differentiation or an increase in the number of glial cells in the samples.  5 

Without examining the mechanistic control of individuals genes, it is difficult to determine if 6 

changes in gene expression result in repression or activation of their associated pathways. For example, 7 

we see an upregulation in neurogenesis-associated genes during aging in both the cerebellum and the 8 

frontal cortex, despite the common theory that neurodegeneration is a ubiquitous effect of normal brain 9 

aging. An emerging concept in neuroscience is that homeostatic plasticity of neurons is maintained 10 

through local adjustments of neural activities[56]. This overexpression of genes in pathways whose 11 

function is known to decline over time may be a compensatory mechanism for an inefficient, aging system. 12 

Within the cerebellum, a decline in neuronal function that occurs with aging may cause an upregulation 13 

of genes associated with neurogenesis pathways. In addition to mitigating neuronal dysfunction, localized 14 

increases in neurogenesis may be induced in response to cerebral diseases or acute injuries for self-15 

repair[57]. Lastly, chronic antidepressant usage has also been shown to result in an increase in 16 

neurogenesis[58], suggesting that psychopharmaceuticals can alter neurochemistry and mimic 17 

compensatory anti-aging responses. Overall, EV plays an important role in aging, specifically in immune 18 

responses and inflammation, neurotransmission, and neurogenesis. Age-dependent gene expression 19 

could reflect a loss of regulatory control or be a part of a regulated pathway of development. 20 

 21 

Conclusion. 22 
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 Our work shows that gene expression variability in the human population is likely to be important in 1 

development, tissue-specific identity, methylation, and in aging. As such, the EV of a gene is an important 2 

feature of the gene itself. Therefore, the classification of a gene as one with Hypervariability or 3 

Hypovariability in a human population or in a specific tissue should be useful in the identification of 4 

important genes that functionally regulate development or disease. In addition, we propose that the split-5 

retest procedure describer here is a useful technique for quantifying gene expression differences in a 6 

sample population.  7 

 8 

Methods 9 

Illumina gene expression and methylation microarray data. The analysis was conducted on two separate 10 

datasets, both utilizing the Illumina HumanHT-12 V3.0 expression BeadChip. The first dataset provides 11 

high quality RNA-derived transcriptional profiling of breast-adjacent tissue from 144 samples. The 12 

associated genotype and expression data have been deposited at the European Genome-Phenome 13 

Archive (EGA, http://www.ebi.ac.uk/ega/), which is hosted by the European Bioinformatics Institute, 14 

under accession number EGAS00000000083. The microarray readings were preprocessed using the 15 

author’s own custom script based on existing functionality within the beadarray package[59] in R and 16 

were reported as a log2 intensity. This dataset is referred to as breast tissue. 17 

The second gene expression and the methylation datasets were catalogued by the North 18 

American Brain Expression Consortium and UK Human Brain Expression Database (UKBEC)[37, 60]. The 19 

expression data was obtained from the Gene Expression Omnibus (GEO) database[61] under accession 20 

number GSE36192. A total of 911 tissue samples were analyzed from frozen brain tissue from the 21 

cerebellum and frontal cortex from 396 subjects (Table 8). The microarray readings were processed using 22 
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a cubic spline normalization method in Illumina Genome Studio Gene Expression Module v3.2.7. The 1 

expression levels were log2 transformed before any analysis. The methylation data was also obtained 2 

from GEO under accession number GSE36194. A total of 724 tissue samples were analyzed from frozen 3 

brain tissue from the cerebellum and frontal cortex from 318 subjects. The methylation microarray 4 

readings were processed using BeadStudio Methylation Module v3.2.0 with no normalization.  5 

Table 8. Description of brain sample dataset cohorts. Clinical annotations were not available for breast tissue samples. 6 

Clinical Annotation Dataset Min Q1 Median Mean Q3 Max 

Age 
 

Expression 1 24 46 47.79 71 98 

Methylation 1 21 44 47.48 74 96 

PMI 
 

Expression 1 14 25 36.14 61 94 

Methylation 1 14 21 26.65 36 62 

 Dataset Females (n) Males (n) Females (%) Males (%) 

Sex Expression 289 622 31.72% 68.28% 

Methylation 243 481 33.56% 66.44% 

 7 

Preprocessing the datasets. Since the brain expression and methylation datasets were individually 8 

processed by different tissue banks and in several batches, we corrected for the batch effect using the 9 

limma package[62] in R. The breast tissue dataset was previously batch corrected by the authors. Next, 10 

we subset the data into groups based on the available clinical annotations provided by the NABEC/UKBEC 11 

database. These annotations included tissue type (Cerebellum and Frontal Cortex), sex (Male and Female), 12 

and age (ranging from 0 to 98 years old). We clustered the age annotations into groups using a K-Means 13 

clustering algorithm (Additional File 7), whereby the optimal number of clusters was determined using 14 

the elbow method. After four clusters, the change in total within-clusters sum of squares did not explain 15 

a significant amount of additional variance, therefore k=3 was chosen as the optimal number of clusters 16 

for the age annotation. We then converted the continuous, numeric age annotation into three categorical 17 

age groups (0-21 years, 22-73 years, 74+ years).  18 
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We then compared the 12 possible clinical annotation permutations to determine the optimal method to 1 

subset the brain samples. For each of the 12 groups, we calculated the median expression for each probe 2 

and performed a hierarchical clustering via multiscale bootstrap resampling using the pvclust package[63] 3 

in R (Additional File 7). Using an approximately unbiased (AU) p-value of 0.99, analogous to a p-value 4 

significance level of 0.01, the ideal clustering method was to subset the data solely by tissue type. Thus, 5 

we divided the brain dataset into the cerebellum tissue and frontal cortex tissue datasets. Due to the 6 

paired nature of the methylation and expression data, the methylation brain dataset was also subset into 7 

cerebellum and frontal cortex tissue subsets.  8 

 9 

Estimating expression variability. To calculate a magnitude-independent measure of variability for 10 

expression and methylation, we used a modified method described in Alemu et al[1]. Briefly, we first 11 

calculated a bootstrapped estimate of the median absolute deviation of each gene using 1000 bootstrap 12 

replicates. Next, a local polynomial regression curve (loess function with default parameters on R version 13 

3.4.2) was used to determine the expected gene expression MAD as a function of the median value. No 14 

additional smoothing was used for the regression curve. We calculated gene EV as the difference between 15 

the bootstrapped MAD and the expected MAD at each gene’s median expression level.  16 

 17 

Identification and removal of bimodal expression probes. Probes expressions that exhibited a bimodal 18 

distribution were thought of as having two exclusive phenotypic states. However, our focus in this analysis 19 

was to examine the factors affecting the tightly regulated expression of Hypo-Variable probes or the highly 20 

variable gene expression of Hyper-Variable probes. In order to identify if a gene’s expression was 21 

unimodal or bimodal, we modeled each gene expression as a mixture of two gaussian distributions using 22 

the mixtools package[64] in R. Next, we identified the peaks of the kernel density estimation functions for 23 
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each gaussian distribution and compared the distance between the peaks as well as the ratio of peak 1 

heights. Probes with peaks that were greater than one MAD apart and displayed a peak ratio greater than 2 

0.1 were treated as having a bimodal expression and subsequently removed from the analysis. Probes 3 

that did not satisfy these criteria were considered to have a unimodal distribution and were kept for 4 

further analysis. 5 

 6 

EV gene set classification. We classified the probes into three distinct probes sets based on their 7 

expression variability: 8 

 �̃�𝐸𝑉 ± 3 ∗ 𝑀𝐴𝐷𝐸𝑉 (1)  9 

where �̃�𝐸𝑉 is the EV median for each dataset, and 𝑀𝐴𝐷𝐸𝑉 is the bootstrapped estimate of the median 10 

absolute deviation of EV using 1000 replicates. Probes whose EV fell within the range were considered 11 

Non-Variable, those above this range termed Hyper-Variable, and the remaining were considered Hypo-12 

Variable. 13 

For the subsequent analyses, we used the probe sets for initial classifications then proceeded with the list 14 

of corresponding gene symbols. As such, there is a small subset of duplicate gene symbols in different EV 15 

classifications. However, the small number of duplicate genes does not significantly affect the results of 16 

the analyses. 17 

 18 

Bootstrapping EV gene set classifications. To statistically validate our EV classifications, we split our data 19 

into two equally sized subsets and repeated the previously explained EV method. This 50-50 split-retest 20 

procedure was repeated 100 times per tissue. Next, we determined the accuracy our of original 21 

classifications by comparing original classification of each gene with the 50-50 split classifications using a 22 
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binomial test with a probability of success greater than 0.5. In this hypothesis, a “success” is defined as 1 

consistent EV classification across all three subsets, and gene classifications were considered significant 2 

with a p-value < 0.05. We also calculated the methylation variability (MV) using an identical method to 3 

EV, but did not find significant correlations between any MV classes and EV classes based on Spearman's 4 

rank-order correlation (Additional File 8). 5 

 6 

Structural analysis of EV genes. Data regarding the structural features of the genes was obtained from 7 

the GRCh38/hg38 assembly of UCSC Table Browser[65]. Linear regression analyses were conducted to find 8 

any correlation between gene EV and their structural features. For the linear regression analysis of 9 

transcript size, we individually examined the largest and smallest transcripts separately. The sequence 10 

lengths excluded introns, 3’ and 5’ UTR exons, and any upstream or downstream regions. 11 

 12 

Gene cluster analysis. The GO term enrichment analyses were conducted using ConsensusPathDB gene 13 

set over-representation analysis[28]. The complete list of unique Illumina HumanHT-12 V3.0 expression 14 

BeadChip genes was used as a background list of genes. The resulting GO terms were then filtered 15 

manually using a q-value cutoff of 0.05. Common and unique GO terms were summarized using 16 

REVIGO[66] and visualized through treemaps by the provided R scripts. The parameters used were a 17 

medium allowed similarity (0.7) using Homo sapiens database of GO terms. 18 

 19 

Enrichment analyses. Using the Pearson’s chi-square test, we tested for enrichment of essential genes in 20 

each probe-mapped gene set relative to the total number of essential genes in the Illumina HumanHT-12 21 

V3.0 expression BeadChip. A list of 20,029 protein coding genes from the CCDS database was used to test 22 
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for essentiality enrichment[28]. Only genes that are solely classified as essential are considered in the 1 

analysis, resulting in a list of 2377 essential genes present in the dataset. Once the number of annotated 2 

genes and gene sets were deemed dependent variables, we determine the enrichment of annotated 3 

genes using the Pearson residuals.  4 

The Pearson’s chi-square test was also used to test the enrichment of methylation clusters across 5 

the Hyper-Variable, Hypo-Variable, and Non-Variable probe sets. 6 

 7 

Classification of methylation status. In order to merge the brain expression dataset with the brain 8 

methylation dataset, we first identified the corresponding ID_REF to match the samples from each 9 

dataset. Since we could not match specific expression probe mappings to specific methylation probe 10 

mappings of CpG islands, we calculated the median probe values with a single gene mapping for both 11 

expression and methylation for each sample. This resulted in a list of median expression and median 12 

methylation of each gene for each sample. Next, we calculated the correlation between paired expression 13 

and methylation values for each gene. Lastly, we classified the genes into one of three methylation 14 

clusters based on their median methylation using Gaussian mixture models for each tissue type. In both 15 

the cerebellum and frontal cortex tissue, the distribution of median gene methylation was best modelled 16 

as a three-component system. The first component was a sub-population Gaussian mixture while the 17 

second and third components were modelled as single Gaussian distributions. Genes whose methylation 18 

fell within the first component were classified as Non-Methylated genes. Genes were classified as Medium 19 

Methylated for those in the second component and Highly Methylated if they were in third. 20 

 21 

Hierarchical clustering of age-dependent Hyper-Variable genes. With the exception of a few groups, the 22 

hierarchical clustering groups with the opposite sex and the same age groups tended to cluster together. 23 
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While the p-values of the sex and age groupings during the hierarchical clustering were too high to warrant 1 

further subsetting of the brain dataset samples into distinct groups, they were significant enough to 2 

inspect on a gene-by-gene basis. 3 

We used a multiple linear regression model to measure the changes in expression of the Hyper-4 

Variable probes as a function of age, sex, and post-mortem interval (PMI): 5 

 𝑌𝑖 =  𝛽 +  𝛽1𝐴𝑔𝑒 +  𝛽2𝑆𝑒𝑥 +  𝛽3𝑃𝑀𝐼 (2) 6 

where 𝑌𝑖  is the expression level of a probe and 𝛽𝑛 is the coefficient for each term. The p-values were 7 

calculated using a type III sum of squares regression and adjusted for multiple comparisons using the 8 

Benjamini-Hochberg method. Probes that exhibit an FDR < 0.01 were considered significant for the 9 

specific coefficient, and the sign of the coefficient determines if the probe is positively or negatively 10 

correlated with the factor.  11 

The choice to use three age clusters as the optimal number of clusters to examine changes of EV 12 

across age samples was determined using an expectation-maximization (EM) algorithm initialized by 13 

hierarchical clustering for parameterized Gaussian mixture models in the mclust package of R. The 14 

Bayesian information criterion for each hierarchical clustering model was determined, and both the 15 

cerebellum and frontal cortex displayed identical optimal numbers of age clusters. Once the samples were 16 

correctly clustered by age, the gene clusters were selected by cutting the gene dendrograms manually. 17 

The gene expressions were then visualized as heatmaps using the gplots package[67] in R. 18 
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EGA European Genome-Phenome Archive 1 

EM Expectation-Maximization 2 

EV Expression Variability 3 

GEO Gene Expression Omnibus 4 

GO Gene Ontology 5 

MAD Median Absolute Deviation 6 

MV Methylation Variability 7 

PMI Post-Mortem Interval 8 

UKBEC UK Human Brain Expression Database 9 
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Figure Legends 1 

Figure 1. Expression variability (EV) in human breast, cerebellum, and frontal cortex tissue. (A) 2 

Expected expression MAD for curve as a function of median probe expression (solid black line). (B) 3 

Kernel density estimation function of EV. The vertical black lines represent the EV classification ranges. 4 

(C) Expression variability as a function of median gene expression. Adjusted R2 values for the linear 5 

regression model shown in red were 0.0002, 0.0008, and 0.005 and the associated Kendall rank 6 

correlation coefficients were -0.208, -0.201, -0.213 for breast, cerebellum, and frontal cortex tissues 7 

respectively. 8 

 9 

Figure 2. Bimodal Hyper-Variable gene expression detection. Gaussian mixture modelling method of 10 

detecting bimodal probes. The dashed lines represent the overall gene kernel density estimation 11 

function of gene expression. The two Gaussian models are shown in dark grey and light grey, and the 12 

dotted vertical lines represent the distribution means. 13 

 14 

Figure 3. Cross-Validation of EV Classifications. (A) Relative frequency of EV classification accuracy 15 

between original distribution and 50-50 split retest replicates (n=100). (B) Number of probes in each EV 16 

probe set before and after split-retest protocol. 17 

 18 

Figure 4. Tissue Specificity of EV. (A) Venn diagrams comparing EV classifications of probe mapped 19 

genes sets between breast, cerebellum, and frontal cortex tissues. (B) Effect of genomic position on EV. 20 

Each chromosome is divided into 100 bins (x-axis) based on the maximum gene coordinate annotation, 21 

and the average EV in each bin is measured (y-axis). Bins with an average EV greater than 0 are 22 
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40 
 

represented in green, while those with a negative EV are represented in red. Bins with less than three 1 

probes were assigned an average EV of zero. 2 

 3 

Figure 5. Methylation in human cerebellum and frontal cortex tissue. (A) Kernel density estimation 4 

function of average gene methylation. Gaussian mixture models were used to classify the genes into 5 

Non-, Medium- and Highly- methylated clusters. (B) Kernel density estimation function of average gene 6 

methylation by EV classification. The dashed vertical lines represent the methylation state cluster cut-7 

offs generated by the Gaussian mixture modelling. 8 

 9 

Figure 6. Hierarchical clustering of Hyper-Variable genes by age in (A) cerebellum tissue, and (B) 10 

frontal cortex tissue. The vertical axis represents the age-regulated Hyper-Variable genes while the 11 

samples were clustered by age and plotted on the horizontal axis. The top heatmaps represent the 12 

positively correlated age-regulated genes while the bottom heatmaps represent the negatively 13 

correlated age-regulated genes. The age clusters decrease in age from left to right in both heatmaps and 14 

correspond to the following age ranges: x̅1 = 79 [58,98], x̅2 = 45 [32,57], and x̅3 = 17 [1,31]. 15 

 16 

Figure 7. Expression and methylation correlation. Histogram of Pearson correlation coefficient between 17 

paired gene expression and gene methylation levels in the Hyper-Variable and Hypo-Variable probe sets. 18 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/500785doi: bioRxiv preprint 

https://doi.org/10.1101/500785
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 Click here to access/download;Figure;Figure 1.tiff
.CC-BY-NC-ND 4.0 International licenseunder a

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 
The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/500785doi: bioRxiv preprint 

https://www.editorialmanager.com/gics/download.aspx?id=714673&guid=f6c5f32a-b437-4b87-b4a2-2a178df6f028&scheme=1
https://www.editorialmanager.com/gics/download.aspx?id=714673&guid=f6c5f32a-b437-4b87-b4a2-2a178df6f028&scheme=1
https://doi.org/10.1101/500785
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2 Click here to access/download;Figure;Figure 2.tiff
.

C
C

-B
Y

-N
C

-N
D

 4.0 International license
under a

not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade available 
T

he copyright holder for this preprint (w
hich w

as
this version posted N

ovem
ber 14, 2019. 

; 
https://doi.org/10.1101/500785

doi: 
bioR

xiv preprint 

https://www.editorialmanager.com/gics/download.aspx?id=714674&guid=3818f97c-e902-4a5b-84ba-76e8dae7c534&scheme=1
https://www.editorialmanager.com/gics/download.aspx?id=714674&guid=3818f97c-e902-4a5b-84ba-76e8dae7c534&scheme=1
https://doi.org/10.1101/500785
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3 Click here to access/download;Figure;Figure 3.tiff
.

C
C

-B
Y

-N
C

-N
D

 4.0 International license
under a

not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade available 
T

he copyright holder for this preprint (w
hich w

as
this version posted N

ovem
ber 14, 2019. 

; 
https://doi.org/10.1101/500785

doi: 
bioR

xiv preprint 

https://www.editorialmanager.com/gics/download.aspx?id=714675&guid=d0197e26-b6ba-44f6-a325-6cb523cec04f&scheme=1
https://www.editorialmanager.com/gics/download.aspx?id=714675&guid=d0197e26-b6ba-44f6-a325-6cb523cec04f&scheme=1
https://doi.org/10.1101/500785
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4 Click here to access/download;Figure;Figure 4.tiff
.

C
C

-B
Y

-N
C

-N
D

 4.0 International license
under a

not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade available 
T

he copyright holder for this preprint (w
hich w

as
this version posted N

ovem
ber 14, 2019. 

; 
https://doi.org/10.1101/500785

doi: 
bioR

xiv preprint 

https://www.editorialmanager.com/gics/download.aspx?id=714676&guid=b4b71475-d4d8-4465-9303-1657357cae7f&scheme=1
https://www.editorialmanager.com/gics/download.aspx?id=714676&guid=b4b71475-d4d8-4465-9303-1657357cae7f&scheme=1
https://doi.org/10.1101/500785
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5 Click here to access/download;Figure;Figure 5.tiff
.

C
C

-B
Y

-N
C

-N
D

 4.0 International license
under a

not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade available 
T

he copyright holder for this preprint (w
hich w

as
this version posted N

ovem
ber 14, 2019. 

; 
https://doi.org/10.1101/500785

doi: 
bioR

xiv preprint 

https://www.editorialmanager.com/gics/download.aspx?id=714677&guid=e87fa66b-22bd-4615-865c-8c4fad9ba578&scheme=1
https://www.editorialmanager.com/gics/download.aspx?id=714677&guid=e87fa66b-22bd-4615-865c-8c4fad9ba578&scheme=1
https://doi.org/10.1101/500785
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6 Click here to access/download;Figure;Figure 6.tif
.

C
C

-B
Y

-N
C

-N
D

 4.0 International license
under a

not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade available 
T

he copyright holder for this preprint (w
hich w

as
this version posted N

ovem
ber 14, 2019. 

; 
https://doi.org/10.1101/500785

doi: 
bioR

xiv preprint 

https://www.editorialmanager.com/gics/download.aspx?id=714678&guid=4d682d9a-fa98-4844-9884-7349dab91f99&scheme=1
https://www.editorialmanager.com/gics/download.aspx?id=714678&guid=4d682d9a-fa98-4844-9884-7349dab91f99&scheme=1
https://doi.org/10.1101/500785
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7 Click here to access/download;Figure;Figure 7.tiff
.

C
C

-B
Y

-N
C

-N
D

 4.0 International license
under a

not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade available 
T

he copyright holder for this preprint (w
hich w

as
this version posted N

ovem
ber 14, 2019. 

; 
https://doi.org/10.1101/500785

doi: 
bioR

xiv preprint 

https://www.editorialmanager.com/gics/download.aspx?id=714679&guid=f15724ba-9011-443e-9878-7d3b1fe9a546&scheme=1
https://www.editorialmanager.com/gics/download.aspx?id=714679&guid=f15724ba-9011-443e-9878-7d3b1fe9a546&scheme=1
https://doi.org/10.1101/500785
http://creativecommons.org/licenses/by-nc-nd/4.0/

