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Abstract: Super-resolution Optical Fluctuation Imaging (SOFI) offers a simple and affordable 

alternative to other super-resolution (SR) imaging techniques. The theoretical resolution 

enhancement of SOFI scales linearly with the cumulants’ order, while imaging conditions are 

less phototoxic to living samples as compared to other SR methods. High order SOFI could, 

therefore, be a method of choice for dynamic live cell imaging. However, due to cusp-artifacts 

and to dynamic range expansion of pixel intensities, this promise has not been materialized as 

of yet. Here we investigated and compared high order moments vs. high order cumulants SOFI 

reconstructions. We demonstrate that even-order moments reconstructions are intrinsically free 

of cusp artifacts, allowing for a subsequent deconvolution operation to be performed, hence 

enhancing the resolution even further. High order moments reconstructions performance was 

examined for various (simulated) conditions and applied to (experimental) imaging of QD 

labeled microtubules in fixed cells, and actin stress fiber dynamics in live cells.  

 

1. Introduction 

Fluorescence microscopy is widely used in biological studies due to its high sensitivity and 

specificity, affording molecular-specific visualization of molecular structures and organelles in 

live cells in real-time. However, the spatial resolution of conventional fluorescence microscopy 

is limited by the Abbe’s diffraction limit[1]. Advances in super-resolution (SR) imaging 

techniques, such as stimulated emission depletion (STED) microscopy[2], photo-activated 

localization microscopy (PALM)[3, 4], stochastic optical reconstruction microscopy 

(STORM)[5], structured illumination microscopy (SIM)[6] and their derivatives, allows us to 

overcome the diffraction limit and achieve optical resolution down to a few tens of 

nanometers[3, 7-10]. Such a dramatic resolution enhancement has already yielded significant 

discoveries[11-14]. A more recent addition to the SR toolbox is Super-resolution Optical 

Fluctuation Imaging (SOFI)[15]. SOFI is highly compatible with different imaging platforms, 

and has been demonstrated with wide-field microscopy (with either laser or Xenon lamp 

illumination)[16], total internal reflection fluorescence (TIRF) microscopy[17-21], multi-plane 

wide-field fluorescence microscopy[22], spinning-disk confocal microscopy[23], and light 

sheet microscopy[24]. The resolution enhancement of SOFI relies on the stochastic fluctuations 

of optical signals originating from the blinking emitters (see below), scatterers (as blinking 

Ramman[25]), or absorbers[26]. Blinking fluorescence probes have been most commonly used 

in SOFI, including fluorescent proteins (FPs)[21, 27], organic dyes[28], quantum dots[15], and 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 5, 2019. ; https://doi.org/10.1101/500819doi: bioRxiv preprint 

https://doi.org/10.1101/500819


carbon nanodots[19]. Other types of optical fluctuations have also been exploited for SOFI 

imaging, such as the ones originated from diffusion of probes[29], FRET due to diffusion[30], 

and stochastic speckle illumination [31]. 

Advantages of SOFI include compatibility with different imaging platforms and a wide variety 

of blinking probes, flexibility in imaging conditions[25], and a useful trade-off between spatial 

and temporal resolutions. Therefore, SOFI has the potential to democratized SR with a wide 

variety of applications 

The theoretical resolution enhancement for SOFI is n1/2 fold for nth order cumulant[15]. Once 

combined with deconvolution or Fourier re-weighting, the enhancement becomes n fold[32]. 

Such resolution enhancement with the increase of SOFI order suggests that it would be 

beneficial to seek high SR performance using high order SOFI. In practice, however, two 

fundamental issues limit the application of high-order SOFI: (i) non-linear expansion of the 

dynamic range of pixel intensities[15] and (ii) cusp-artifacts[33]. Concerning issue (i), a partial 

solution for the dynamic-range expansion has been introduced as balanced-SOFI(bSOFI)[34]. 

Concerning issue (ii), cusp-artifacts are much harder to solve. In the original introduction of 

SOFI[15], cumulants were chosen over moments because the combinations of nonlinear cross-

terms originated from multiple emitters are eliminated in cumulants. We recently found, 

however, that cumulants could yield mixture of positive and negative virtual brightnesses that 

lead to cusp-artifacts[33]. By averaging cumulants calculated from different time blocks, these 

artifacts could potentially be eliminated[36], but it requires prolonged data acquisition (with no 

drift) and applicable to static features only. Theoretically, another option to avoid/eliminate 

cusp artifacts would be to manipulate emitters’ blinking behavior spatially, to yield a uniform 

sign for all cumulants across the image[33]. Such an option, however, is a challenging task, 

especially for live cell imaging where the labeling is often realized through the fusion of 

fluorescence proteins. 

In this work, we examine the mathematically non-rigorous, but practical solution of high order 

SOFI using moments reconstruction. We show that even- and high-order moments 

reconstruction eliminates cusp artifacts while still providing SR enhancement. We also provide 

in-depth comparisons between cumulants and moments for various simulated and experimental 

conditions. We also made the associated datasets[37-39], simulation code package[40], and the 

data processing scripts[41] open to the public, as posted on the online repositories. 

The outline of this manuscript is as follows: in section 2 we briefly summarize SOFI theory 

and outline the relationship between correlation functions, cumulants, and moments. In section 

3, we introduce the proposed moments reconstruction method and show that even-order 

moments are free of cusp artifacts. Moments reconstruction, however, introduces new artifacts 

due to nonlinear cross-terms. Based on the theoretical formulation, we interpret these cross-

terms as the contribution from ghost emitters in the high order SOFI image. With both theory 

and simulations, we demonstrate that even-order moments yield a pure positive image, free of 

cusp artifacts, which is suitable for subsequent deconvolution operation. In section 4 we 

introduce a new method that minimizes the ill-effects of expansion of the dynamic range of 

pixel intensities. We dub this method “local dynamic range compression” (ldrc). It locally 

compresses the dynamic range of pixel intensities, and its performance is not affected by cusp 

artifacts. This section also includes extensive simulations of various (and relevant) sample 

conditions that are subsequently analyzed by even-order moments reconstruction together with 

ldrc. In Section 5 we present 6th order moment reconstructions for experimental data along with 

deconvolution and ldrc. The data sets include the quantum dot (QDs)-labeled microtubules in 

fixed cells and the fluorescence protein-labeled β-actin in live cells. Our results are then 

compared to results obtained by operating the bSOFI[34] and SRRF[42] algorithms to the same 

data sets. A concluding discussion is given in section 6, summarizing our main findings: (I) 

even-order moments reconstruction is intrinsically free of cusp artifacts; (II) it can be 
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independently combined with deconvolution without conflicting with the commonly used 

positivity constraint in image deconvolution; and (III) application of ldrc can correct for the 

expanded dynamic range of pixel intensities. These attributes allow for SR reconstruction of 

fast (~seconds) morphological changes in live cells. 

2. Review of SOFI, correlations, cumulants, and moments 

We briefly repeat here SOFI theory[15] but re-cast it in a form that affords the virtual emitter 

interpretation of SOFI at high orders[33]. This re-casting provides insight into high order SOFI 

cumulants and the proposed moments reconstruction. In the practice of SOFI, the sample is 

labeled with stochastically blinking emitters. This labeled sample is then imaged and 

consecutive frames are recorded. The data set is then SOFI processed to yield the SOFI image. 

Given a sample with N emitters that independently blink, the fluorescence signal captured at 

location r  and time t is given by:   
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where k is the index of the emitter, ϵk is the ‘on’-state brightness of the kth emitter, bk(t) is the 

stochastic time dependent blinking profile of kth emitter where:  
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( )U r  is the point-spread-function (PSF) of the imaging system, and kr  is the location of the 

kth emitter. In SOFI calculations, we first take the raw data with T total number of frames, and 

calculate the time-average of each pixel as follows:  
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We subtract the time average ,( ) trF t   from ,( )F r t  to yield the temporal fluctuations 

( , )F r t of each pixel: 

                                           ( , ) ( , ) ( , )
t
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Substitution of (2.3) and (2.4) into (2.1) leads to an expanded expression of : 
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Then, we calculate the nth-order auto-correlations of ( , )F r t  along the time axis with time 

lags 1 2, ,...( ), n   :  

                       1 2 1 2( , ,..., ) ( , ) ( , ) ( , ),n n n
t

r F r t F r t F r tG                                 (2.6) 

It is common to set the first time lag  to 0. Cross-correlations using ( , )F r t  from different 

pixel locations (different r  values) can also be calculated: 

         1 2 1 2 1 1 2 2,..., ,( , ; ,..., ) ( , ) ( , ) ( , )n n n n n
t

r r r F r t F r t F r tG                        (2.7) 

By replacing ( , )i iF r   with the notation iF  , equation (2.7) can be simplified: 

( , )F r t
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G F F F F F F                                           (2.8) 

We address 21( , ,..., )n nF F FG     as the joint correlation function for set { | }[1, ]iF i n  , 

which is defined by the chosen combinations of pixels and time lags. We also address 

21( , ,..., )n nF F FG     as the joint-moment of set { | }[1, ]iF i n  . The next step is to calculate 

the nth order cumulant, denoted as 21( , ,..., )n nF F FC    , which we address as the joint-

cumulant of set { | }[1, ]iF i n  . Note that the special case of equation (2.7)  with 

1 nr r r   reduces to equation (2.6), where the former addresses cross-correlation 

functions of signal traces from non-identical pixels, and the later addresses auto-correlation 

functions of signal trace from an identical pixel. Consequently, the differences between auto-

correlation functions and cross-correlation functions are diminished while we form our 

discussion under the framework of joint-moments and joint-cumulants.  

 

Fig. 1. Calculation of the 5th order joint-cumulants. A set of five elements is shown in (a), where 

the elements are the fluctuation profiles of five pixels. Duplication of pixels are allowed but not 

enforced. For example, if element A and B are duplicated pixels, we have 1 2r r  . Simplified 

notations for the five elements are {FA, FB, FC, FD, FE} respectively. (b) demonstrates all 
possible partitions of the set of five elements, and how each partition contributes a term to the 

summation series (as the product of f1 and f2) to yield the joint-cumulant. Note that all the 

partitions that contain a part of size 1 are equal to 0, because 0( )
t

F t  . The graphical 

demonstration of partitions is inspired by the work by Tilman Piesk [1]. 

The calculation of the joint-cumulant of set { | }[1, ]iF i n   is illustrated in (2.9), using the 

case of 5th order as an example. In the general sense, regardless of the choices of 

{ | }[1, ]iF i n  , n fluorescence fluctuations profiles are selected from individual pixels (with 
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or without duplicated pixels) to form the set { | }[1, ]iF i n  (Fig. 1 (a)), from which all the 

possible partitions are identified as shown in Fig. 1(b). Partitions possesses different numbers 

of parts where each part possess a certain numbers of elements (1st and 2nd columns in Fig. 

1(b)). For each partition, the elements of set { | }[1, ]iF i n   are grouped into specific parts, 

where each part is a subset of { | }[1, ]iF i n   (3rd column in Fig. 1(b)). Each specific partition 

of set { | }[1, ]iF i n   contributes a term to a summation series to construct the joint-cumulant, 

where each term can be expressed as the product of two factors. This is shown in the 4th and 5th 

column in Fig. 1(b). The first factor f1 depends on the size of this partition (denoted as q in 1st 

column in Fig. 1(b)) and is defined as: 1
1 ( 1) ( 1)!qf q    (4th column in Fig. 1(b)). The second 

factor f2 is the product of all the joint-moments of each part within this partition, as illustrated 

in the 5th column in Fig. 1(b): if we use I to represent set { | }[1, ]iF i n   and Ip (with 

p=1,2,3,…,q) to represent different parts that belong to this partition (as different subsets of I 

), we have 1 2 qI I I I    . The joint-moments for each part Ip (denote as G(Ip)) are 

multiplied together to yield G(I1)⸱G(I2)⸱⸱⸱G(Iq) as the second factor (f2).  

In conclusion, given a set of intensity trajectories from a group of pixels (set I) (either with or 

without duplicated pixels), the joint-cumulant of I is constructed as a function of the joint-

moments of all parts over all possible partitions of set I, based on the following formula[43]: 
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Note here that in equation (2.9), the joint-moments G(Ip) are essentially the lower order 

correlation functions discussed in the original work of SOFI [15]. If a partition contains a part 

that has only one element, we have the corresponding G(Ip) as ( ) 0tF t   . As a result, the 

corresponding f2 factor will be 0, and this partition will not contribute to the joint-cumulant. 

The calculation of C5(I) is shown in Fig. S1[47] as an example.  

By substituting equation (2.1) - (2.8) into equation (2.9), the nth order joint-cumulant of set 

{ | }[1, ]iF i n   can be expressed as follows: 
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where 1( ,..., )n nW r r  is the distance factor[15]. The PSF can be approximated by a Gaussian 

function:  
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Detailed derivation of equation (2.10) can be found in Appendix 1[47]. Once the distance factor 

is solved and divided from both sides of equation (2.10), the cumulant value at location gcr  is 

obtained.  

The vector that describes the location of a SOFI pixel is equivalent to the average of the vectors 

that describe the locations of all the selected pixels. In the case when duplication of pixels 

exists, the corresponding location vectors are duplicated as well. The choice of pixel 

combination imposes a trade-off between noise contribution and the attenuation of cumulant 
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value imposed by the distance factor 1( ,..., )n nW r r  (defined in (2.10)). On one hand, noise could 

potentially contribute to the resultant cumulant value if there is pixel duplication in the 

selection. On the other hand, when the selected pixels are distributed too far away from each 

other, the distance factor becomes small and attenuates the recovered pixel value. Existing 

approaches have been focused on avoiding the noise contribution from duplicated pixels[44], 

but here we explore and present the opposite of this trade-off, where we want to diminish the 

effect of the distance factor at the cost of potential noise contribution. A detailed explanation 

for our choice of pixel combinations for high order SOFI is given in Appendix 2[47] and Fig. 

S2[47]. 

Under the framework of virtual emitter interpretation[33], the physical meaning of the joint-

cumulant calculated for a set of pixels (with or without duplicated pixels) is as follows: The 

image of the cumulants is as formed by virtual emitters at the locations of the original emitters, 

but having virtual brightnesses. These virtual brightnesses are the products of ϵn (meaning the 

nth power of the original ‘on-state’ brightness of the emitter) and wn(bk(t)) (meaning the nth 

order cumulant of the blinking profile of the kth emitter). Considering that the blinking statistics 

of emitters across the image are not necessarily spatially uniform, especially in the case of live-

cell imaging with fluorescence protein fusion. The ‘on-time ratio’, defined as the percentage of 

time the emitter spent at ‘on’ state, can vary, causing cumulant values to have different signs at 

different parts of the image (Fig. 2). Since images are usually presented with positive pixel 

values, taking the absolute value could yield an image with cusp-artifacts, degrading the image 

quality of high-order SOFI cumulants[33]. Furthermore, the cusp-artifacts limit the subsequent 

deconvolution process because the absolute value of the image is no longer a convolution 

process, while the original image carries negative values that conflict with the commonly used 

positivity constraint in deconvolution algorithms. 

3. High-order moments reconstruction – theory and Interpretation 

Inspired by the interchangeable relation between cumulants and moments[35], we investigated 

the statistical behavior of high-order moments of emitter blinking trajectories expressed as a 

function of the ‘on time ratio’  in a similar way to cumulant analysis[33]: 

                                     ) ( ) (1( ) (1 )n n
nM                                    (3.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

Fig. 2 shows the comparisons of moments (Fig. 2(a)) and cumulants (Fig. 2(b)) of different 

orders as a function of . While cumulants exhibit oscillation between positive and negative 

values, even-order moments have pure positive values (and odd-order moments are bi-modal 

and have a single node).  

 

Fig. 2. Moments and cumulants as a function of the ‘on time ratio’ . (a) shows different 

moments as a function of  and denoted as Mn(), and (b) shows different cumulants as a 

function of  and denoted as Wn(). In both notations, n represents the order. 

In practice, blinking behavior of fluorophores are not well controlled, therefore, can be 

composed of mixtures of positive and negative virtual brightnesses[33], leading to cusp 

artifacts[33]. Since even-order moments are always positive, therefore, eliminate cusp artifacts, 

we decided to examine their ability and fidelity in reconstructing SR images of the high orders. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 5, 2019. ; https://doi.org/10.1101/500819doi: bioRxiv preprint 

https://doi.org/10.1101/500819


As explained in the introduction, we note here that such a reconstruction is mathematically non-

rigorous due to nonlinear cross-terms containing mixed signals from multiple emitters. Our 

examination could, however, evaluate the benefits of eliminating cusp artifacts vs. the 

drawbacks of introducing additional virtual emitters (originated from cross-terms). Moreover, 

since even-order moments reconstruction contains pure sign (purely positive), and the absolute-

value image is free of cusp artifacts, subsequent deconvolution operation (that often carries 

positivity constraint) could further enhance the resolution.  

In order to better understand the physical meaning of moments, we look at the form of 

moments derived from cumulants according to Kendall et al[35]: 
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where [{ 1| }, ]pI p    is one partition of set { }| [1, ]iF i n  ,  is the size of this partition (i.e. 

the total number of parts within this partition), Sp is the size of Ip, and , 0( )ps rC    is the Sp
th 

order cumulant of fluorescence fluctuation at location r  with all the time lags equal to 0. Note 

here that we use  (instead of q) to represent the size of the partition to distinguish moments 

reconstruction from cumulants reconstruction. The reconstruction algorithm is shown in the 

flow diagram of Fig. S3.[47]. With the goal of achieving nth order moments reconstruction, we 

can interpolate all calculated cumulants (2nd order to nth order) onto a unified high resolution 

spatial grid that supports all orders. This re-mapping provides a full set of cumulants for each 

pixel if we need interpolation. Next, different orders of cumulants are combined (as shown in 

equation (3.2)) to reconstruct the moments at each pixel. A similar re-mapping could be 

achieved using fSOFI[45] with interpolation performed on each frame of the acquired image, 

followed by correlation calculations to directly compute the moments. When all the time lags 

used in the correlation calculation are zero, the computational cost for the moments 

computation at each interpolated pixel is greatly reduced. The analytical expression for 

reconstructed moments is: 
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where W is the ‘emitter distance factor’, whose analytical form is the same with that of the 

distance factor[15] that is dependent on the mutual distances between different pixels (instead 

of different emitters here) as shown in (2.10). Detailed derivations of equation (3.3) is given in 

Appendix 3[47]. We also define mr  as: 
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1
pm p k
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r r
n

s
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to be the mass center of the mass points (indexed with p as shown in (3.4)) at  locations pkr  

(index pk  is defined in (3.3)) with mass values Sp. Therefore, we can re-index the summation 

series of equation (3.3) into the summation over all possible mass centers. Consequently, the 

moments reconstruction is formed as the convolution between a virtual PSF ( ( )nU r ) and a 

virtual ground truth location map constitutes of all the mass centers. The virtual PSF is the 
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original PSF raised to the power of n that maintains the theoretical resolution enhancement, and 

the virtual ground truth location map is described by the superposition of virtual emitters with 

locations described by (3.4). To gain more intuitive insight, the summation series in equation 

(3.3) can be divided into two parts. The first part is the case when all the emitter vectors in (3.4) 

are identical, they describe the virtual emitter that is located at the original real emitter location. 

As shown below: 
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M1n is the part with identical location vectors representing real emitters at locations kr  . The 

equation can be simplified into the following form (as shown in Appendix 8[47]):  
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From equation (3.6) we deduce that this portion of the signal (M1n) is equivalent to an image 

formed by virtual emitters located at the same locations as the original emitters but with 

changed brightnesses ϵk
nMn(bk(t)) (for the kth virtual emitter). These brightnesses differ from 

the ones derived for cumulants[33]: ϵk
nCn(bk(t)). For the kth virtual emitter, its virtual 

brightness is the product between the nth power of its on-state brightness ϵk
n multiplied by the 

nth order moment (instead of cumulant) of its blinking fluctuation bk(t). Because ϵk
n is always 

positive, even order moments are always positive. Therefore the virtual brightness for this 

portion of the moments signal is always positive.  

The second, non-physical part of the summation series in equation (3.3) is the case where the 

partitions contain non-identical emitter location vectors. The corresponding virtual emitters are 

located at locations where there are no real emitters (unless by coincidence the mass center 

overlaps with the location of a real emitter). It originates from cross-terms of signals coming 

from non-identical emitters. They take the form of virtual emitters at new locations and dubbed 

here as ‘ghost’-emitters. The brightnesses of these ‘ghost’-emitters are attenuated by the emitter 

distance factor, ranging from 0 to 1 as represented in the same analytical form of the original 

distance factor[15].  

4. High-order moments reconstruction of simulated data 

To take a close look of the resolution enhancement and assess the contribution of ‘ghost’-

emitters, we simulated 3 near-by Poisson-blinking fluorophores and reconstructed the moments 

of the simulated movie (Fig. 3). The parameters used to generate the blinking trajectories are 

tabulated in Fig. 3(a), and the positions of the 3 emitters are shown in Fig. 3(b). Fig. 3(c) 

compares 6th order moments-reconstruction of the simulated movie with the prediction 

(calculated from equation (3.3)) using the ground truth of blinking parameters used in the 

simulation). The resolution enhancement mechanism is also confirmed in Fig. 3(d) with 

increasing order of moments and decreasing size of the PSFs of the three emitters. We note that 

the prediction is affected by the time-binning introduced by the camera’s frame integration 

time. A correction for the binning effect could be introduced to the theoretical framework as 

was done by Kendall et al.[35]. (but this is beyond the scope of the work presented here).  
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Fig. 3. Moments reconstruction of simulated data for 3 near-by blinking fluorophores. (a) shows 
the photophysical parameters used in the blinking simulation of the three emitters. (b) shows the 

ground truth location of the three emitters. Other parameters used for the simulations: emission 
wavelength of 520nm, numerical aperture of NA=1.4, frame integration time of 2 ms. The pixel 

size was set to be small (17.78 nm) to avoid artifacts due to binning. (c) shows the comparison 

between the prediction (Pred.) and reconstruction (Recon.) of the 6th order moment. (d) shows 
the average image (Ave.) and moments of the simulated movie (M2 to M7). Scale bars: 160 nm. 

Because the emitter distance factor W(sp, rk) attenuates the virtual brightnesses of the ghost 

emitters (see Fig. S5[47]), their contribution to the image is to ‘fill-in’ the space in between the 

real emitters #1, #2 and #3. Nonetheless, despite this smoothing-out effect, SR enhancement is 

still maintained (Fig. S4[47]).  Importantly, even order moments are free of cusp-artifacts (see 

Fig. S5[47]). As distances between emitters increase, ghost emitters’ intensities are further 

attenuated (Fig. S5[47]). We compared the performance of the 6th order moments 

reconstruction to the value of the 3rd power of 2nd order cumulant, and have shown that moments 

reconstructions have more assessable artifacts. Consequently, the artifacts introduced by 

‘ghost’ emitters in moments is a manageable imperfection (Fig. S6[47]). Even-order moments 

reconstruction is free of cusp artifact (virtual and real brightnesses are positive), and the ghost 

emitters’ artifact is limited due to brightness attenuation.  

Considering the existence of ghost emitters, the lower limit of the resolution enhancement of 

nth order moments reconstruction (where n is an even number) is the resolution enhancement 

acquired in the 2nd order moment (equivalent to the 2nd order cumulant in our case): 2 . 

However, because of its immunity to cusp-artifacts, deconvolution algorithms could be readily 

applied to further enhance the resolution by up to an addition of n1/2 fold[32], resulting in a 

factor of 2n  resolution enhancement. This resolution enhancement factor is higher than that 

for pure cumulants without deconvolution (n1/2), but lower than for cumulants with 

deconvolution (n). However, cusp-artifacts greatly corrupt high-order cumulants, rendering 

deconvolution impractical. A similar argument holds for bSOFI reconstruction which assumes 

perfect deconvolution. 

We further increased the complexity of the simulations for various sample conditions and 

assessed the performance of the 6th order moments reconstructions in comparison to the 

performance of bSOFI and SRRF reconstructions for the same data sets. The moment 

reconstruction was combined with a cusp-independent dynamic range compression method ldrc 

that we designed (see Appendix 4[47]). All reconstructions were compared to the ground truth 

image. As shown in Fig. 4, bSOFI reconstruction exhibits discontinuities in the simulated 

filaments while SRRF artificially narrows them down. moments reconstructions yield a more 

faithful representation of the simulated data. 
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Fig. 4. Comparison of high-order moments reconstruction with high-order bSOFI and SRRF 

reconstructions on simulated filaments. A simulated dataset consisting of filaments in a 3D space 
was generated with: 50 emitters per 1 um labeling density along the line, 10 nm cross-section 

thickness with a Gaussian profile, 520 nm emission wavelength, 1.4NA and 90x magnification 

and a grid of 125×125 pixels with a pixel size of 1.6 x 1.6 um2. The Gibson Lanni’s PSF model 
was used in the simulations. Small field of views are cropped with different feature densities for 

comparison. (a) Sparse filaments. All methods yield satisfactory results. While M6-ldrc exhibits 

some grids artifacts, SRRF emphasizes thin features with oscillatory intensities and bSOFI 

exhibits granular and discontinuous features. (b) Dense filaments. Compared to the ground truth 

image, M6-ldrc exhibits the most faithful representation, while SRRF-TRA omits filaments 

(circled area for example). bSOFI exhibits discontinues filaments and features at locations that 
have no ground-truth signal (boxed area for example). (c) and (d) shows the ground truth for (a) 

and (b) as labeled in the image respectively. Scale bars: 640 nm. 

 

Further results for a variety of simulated challenging image conditions are summarized in the 

Appendix[47], including for different labeling density (Fig. S8[47]), increased filaments 

thickness (or equivalently labeling uncertainty) (Fig. S9[47]), increased nonspecific binding 

emitter density (Fig. S10[47]), and various signal levels (Fig. S11[47]).  

Details of the simulations are given in Appendix 5[47]. We further tested the 3D sectioning 

capability on an additional set of simulations where acquisitions of the same simulated sample 

at 100 different focal planes were generated[37] and processed independently and subsequently 

combined for 3D reconstruction. ldrc together with moments reconstruction have yielded better 

sectioning performance than SRRF when compared to the ground truth of the simulation (Fig. 

5, Visualization 1, and Visualization 2).  

 

Fig. 5. Comparison of high-order moments reconstruction with high-order SRRF reconstruction 

for 3D sectioning performance. 3D sectioning results of ldrc-M6 and SRRF on simulated data 
are shown for a small field-of-view (2.15 μm × 2.15 μm). The full field-of-view results during a 

continuous scan of of the focal plane is provided in SI Movie 1. (a) shows the ground truth image 

of the simulated filaments projected onto x-y plane. Emitters are represented by 3D delta 
functions convolved with a 3D Gaussian with FWHM = 86.27 nm for the purpose of display. 

The color scale represents the z coordinate of the emitters. (b) x-z scan corresponding to the 

dashed line in (a), where 4 filaments are penetrating through the plane (a fifth filament (yellow) 
is missing at this plane because the sparse, stochastic labeling algorithm did not place an emitter 

at the corresponding (x, y, z) coordinate. (c) A z-direction cross section of the first (green) 

filament for ground-truth and ldrc-M6 and SRRF reconstructions. 

 

5. High-order moments reconstruction of experimental data 
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High-order moments reconstruction (6th order) in combination with ldrc and deconvolution 

were applied to experimental data of quantum dots-labeled α-tubulin filaments in fixed Hela 

cells. The results are compared to bSOFI and SRRF results (Fig. 6).  As shown already in the 

previous section, SRRF exhibit the highest visual resolution enhancement, but at the expense 

of introduction of distortions, while ldrc-M6 exhibits more faithful results (as compared to the 

average image).  

 

Fig. 6. High-order moments reconstruction of experimental data (fixed cells). α-tubulin filaments 

in fixed Hela cells were labeled with QD800. 1000 frames were acquired with 30 ms integration 

per frame and processed. (a) shows the average image (b) shows the ldrc-M6 results from the 
full field-of-view. Three zoom-in panels in (a) are shown in panel (c) as FOV1, FOV2 and FOV3 

respectively, for single frame, average image, and results from ldrc-M6, SRRF and bSOFI 

respectively. bSOFI exhibit discontinuities, SRRF provides higher resolution details but with 
distortions (blue arrows). The ldrc-M6 image is similar to the average image but with less 

background and improved resolution. Scale bars: 800 nm. 

 

ldrc-M6 results for live cell imaging[38] are shown in Fig. 7. Fluorescence labeling was 

performed by fusing β-Actin protein sequence to either Skylan-S[21] or Dronpa-C12 

(Appendix 6[47], R. A. et al., manuscript in preparation) with a (GGGGS)×3 linker.  The bSOFI 

algorithm does not perform particularly well for this frame rate (33 Hz). SRRF, on the other 

hand, exhibits excellent performance regarding resolution enhancement and highlighting and 

preserving small features (green arrows), but at the cost of introducing extra features that could 

be artifacts (blue arrows). Besides, M6 results afford deconvolution post processing 

(DeconvSK[46]), while deconvolution performed on SRRF results highlights the artifacts. The 

reproducibility of the reconstruction algorithms and their comparisons could be assessed from 

reconstructions of additional experimental data sets (Fig. S12, S12, S13, S14[47] and 

Visualizations 3 - 8). Details of the experiments can be found in Appendix 6[47], and details of 

data processing can be found in Appendix 7[47]. Both SRRF and Moments reconstruction 

(M6+ldrc+deconvolution) outperform bSOFI and SOFI cumulants, especially when applied to 

fast live cell imaging data. 
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Fig. 7. High-order moments reconstruction of experimental data (live cells). Hela cells were 
transfected with plasmid encoding (a) Skylan-S fused to β-Actin and (b) Dronpa-C12 fused to 

β-Actin. Live cells were imaged with 30 ms frame integration. 200 frames of the movie were 

processed per block. For each panel, top row shows the full field-of-view and the bottom row 
shows a zoom-in region (green box in the Average image). Each column shows results for the 

reconstruction method labeled at the top. Scale bars: 8 μm. We can see that while SRRF exhibit 

excellent performance on highlighting small features (green arrows), but at the cost of 
introducing extra feature that could be artifacts (blue arrows). 

 

6. Conclusions 

As explained in our accompanying work[33], cusp artifacts significantly affect the quality of 

high-order SOFI (cumulant) reconstruction. In this paper, we reexamined the moments 

reconstruction and compared its results with cumulants, SRRF and bSOFI reconstructions. 

Although being mathematically non-rigorous, moments reconstructions (combined with ldrc 

and deconvolution) of simulated and experimental data sets exhibited satisfactory results with 

resolution enhancement and minimal distortions. Although they inherently introduce 

additional, spurious signals from virtual emitters, in practice, the reconstructions are faithful to 

the ground-truth of simulated data and average image of experimental data. Moments 

reconstruction and SRRF both outperform bSOFI due to the latter’s heavy reliance on 

deconvolution. In contrast to bSOFI, Moments reconstruction allows for subsequently 

deconvolution algorithm to be applied to the reconstruction, independent of the dynamic range 

compression process. Lastly, we have demonstrated a super-resolved M6-reconstructed live 

cell movie with a temporal resolution of 6 seconds per frame (requiring only 200 frames of the 

original movie for each frame of the reconstructed movie) using a conventional wide-field 

fluorescence microscope. 
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