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Abstract 36 

DNA methylation acts at the interface of genetic and environmental factors relevant for 37 

autism spectrum disorder (ASD). Placenta, normally discarded at birth, is a potentially 38 

rich source of DNA methylation patterns predictive of ASD in the child. Here, we 39 

performed whole methylome analyses of placentas from a prospective study of high-risk 40 

pregnancies. 400 differentially methylated regions (DMRs) discriminated placentas 41 

stored from children later diagnosed with ASD compared to typical controls. These ASD 42 

DMRs were significantly enriched at promoters, mapped to 596 genes functionally 43 

enriched in neuronal development, and overlapped genetic ASD risk. ASD DMRs at 44 

CYP2E1 and IRS2 reached genome-wide significance, replicated by pyrosequencing, 45 

and correlated with expression. Methylation at CYP2E1 associated with both ASD 46 

diagnosis and cis genotype, while methylation at IRS2 was unaffected by cis genotype 47 

but modified by preconceptional maternal prenatal vitamin use. This study therefore 48 

identified two potentially useful early epigenetic markers for ASD in placenta.   49 
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Introduction 50 

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder 51 

diagnosed by a combination of behavioral features including restricted interests, 52 

repetitive behaviors, language deficits, and impairments in social communication (Baio 53 

et al., 2018). 1 in 59 children in the United States are diagnosed with ASD, at a mean 54 

age of 4.2 years (Baio et al., 2018). ASD is currently diagnosed by clinicians trained on 55 

the Autism Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic 56 

Interview - Revised (ADI-R) according to the Statistical Manual of Mental Disorders 57 

(DSM-5) which is most accurate at or after 36 months (Baio et al., 2018). However, an 58 

early assessment of ASD risk could identify infants and toddlers who would benefit from 59 

behavioral interventions that improve cognitive, social, and language skills. 60 

 61 

Monozygotic versus dizygotic twin and sibling studies suggest a strong genetic basis for 62 

ASD (Hannon et al., 2018; M. B. Jones & Szatmari, 1988; Ritvo et al., 1989; Tsai & Bell, 63 

2015; Wessels & Pompe van Meerdervoort, 1979). However, mutations in any individual 64 

gene account for less than 1% of ASD cases (Bourgeron, 2015; Tsai & Bell, 2015). 65 

Genetic sequencing analyses can only identify a potentially causative genetic 66 

abnormality in ~25% of clinical ASD diagnoses (Bourgeron, 2015; Tsai & Bell, 2015; 67 

Turner et al., 2016). While genome-wide association studies (GWAS) also support 68 

common genetic variants in ASD, the complexity and heterogeneity of ASD has been a 69 

major challenge (Abrahams et al., 2013; Grove et al., 2017; Iossifov et al., 2014; 70 

Sanders et al., 2015). Evidence for environmental risk factors in ASD point to in utero 71 

maternal exposures such as air pollution, fever, or asthma and nutrients specifically the 72 
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absence of pre-conceptional prenatal vitamin intake (Raz et al., 2015; Schmidt et al., 73 

2011, 2012; Zerbo et al., 2013). Maternal prenatal vitamins, which contain high levels of 74 

folate and other additional B vitamins, protect offspring by up to 70% for neural tube 75 

defects (Caramaschi et al., 2017; Howsmon, Kruger, Melnyk, James, & Hahn, 2017; 76 

Kalkbrenner, Schmidt, & Penlesky, 2014; Relton et al., 2004; Rush, Katre, & Yajnik, 77 

2014; Zeisel, 2009), and correlate with an overall 40% reduction in ASD risk if taken 78 

during the first month of pregnancy (P1) (Schmidt et al., 2011, 2012; Suren et al., 2013). 79 

This finding was replicated with a large prospective study in Norway including over 80 

80,000 pregnancies (Suren et al., 2013). 81 

 82 

DNA methylation shows dynamic changes during fetal development (Vogel Ciernia & 83 

LaSalle, 2016; Crawley, Heyer, & LaSalle, 2016; Smallwood & Kelsey, 2012b) and 84 

contains the molecular memory of in utero experiences such as maternal nutrition 85 

(Howsmon et al., 2017; Teh et al., 2014). Term placenta is an accessible fetal tissue 86 

that maintains the distinctive embryonic bimodal DNA methylation pattern, in which 87 

expressed genes are marked by higher methylation levels (Schmidt et al., 2016; 88 

Schroeder et al., 2013, 2015, 2016). Placenta therefore offers a unique window to study 89 

DNA methylation patterns that may reflect altered fetal development relevant to ASD 90 

genetic risk (Schroeder et al., 2015; Smallwood & Kelsey, 2012b, 2012a; Watson & 91 

Cross, 2005). Specifically, a recent study of polygenic risk scores for schizophrenia 92 

demonstrated a significant interaction of genetic risk with maternal perinatal 93 

environmental factors that affected placental gene expression (Ursini et al., 2018). 94 

Previous analyses of DNA methylation patterns in placenta samples from a high-risk 95 
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ASD cohort also identified an association between self-reported use of lawn and garden 96 

pesticides and large-scale changes in DNA methylation patterns, and identified a 97 

putative enhancer of the DLL1 gene as differentially methylated in ASD (Schmidt et al., 98 

2016; Schroeder et al., 2016).  99 

 100 

Here, we continue the epigenetic investigation of ASD risk through the novel approach 101 

of identifying differentially methylated regions (DMRs) in whole methylomes from 102 

placenta samples from male children later diagnosed with ASD compared to children 103 

with typical development (TD) controls. Two genome-wide significant ASD-associated 104 

DMRs at CYP2E1 and IRS2 were further validated and investigated for effects of 105 

genotype, RNA expression, and protein levels as well as interactions with preconception 106 

prenatal vitamin use. Understanding the epigenetic patterns of ASD associated with 107 

maternal prenatal vitamin use in placenta could lead to the development of preventative 108 

and therapeutic early interventions for high-risk children with ASD.   109 
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 7 

Results 110 

Placenta ASD DMRs discriminate ASD from TD samples.   111 

To identify novel differentially methylated gene loci between ASD and TD, a 112 

differentially methylated region (DMR) bioinformatic analysis was performed on placenta 113 

whole genome bisulfite sequencing (WGBS) data (Schmidt et al., 2016; Schroeder et 114 

al., 2016). 400 DMRs were identified with a threshold of > 10% methylation difference 115 

between ASD and TD groups, and these were associated with 596 genes (Fig. 1A, 116 

Supplementary Table 1). There was no bias for gene length in the ASD DMR 117 

associated genes compared to all human genes (Supplementary Fig. 1). 296 DMRs 118 

were hypermethylated, while 104 DMRs were hypomethylated in ASD compared to TD 119 

placenta (Fig. 1A). Principal component analysis (PCA) using methylation levels for 120 

each sample over the 400 DMRs demonstrated a clear separation of placental samples 121 

by child outcome of ASD versus TD (Fig. 1B). In addition, most ASD DMRs showed a 122 

highly significant association with Mullen Scales of Early Learning (MSEL) scores and 123 

autism severity score from Autism Diagnostic Observation Schedule (ADOS), but not 124 

with potential confounding variables (Supplementary Table 2, Supplementary Fig. 2).  125 

 126 
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 127 

Figure 1. Differentially methylated regions (DMRs) in placenta distinguished ASD from 128 

typical development (TD) child outcomes.   129 

A. Heatmap and hierarchical clustering of 20 ASD versus 21 TD placental samples 130 

using methylation levels in the 400 identified ASD DMRs. Percent methylation for each 131 

sample relative to the mean methylation at each ASD DMR was plotted as a heatmap, 132 

with black representing no difference, hyper-methylation (red) and hypo-methylation 133 

(blue). Columns were clustered by child outcome, ASD (red) or TD (blue), while rows 134 

were clustered by methylation direction. B. Principal component analysis (PCA) of TD 135 

vs ASD placental samples on the basis of methylation at 400 ASD DMRs. Ellipses 136 
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 9 

represent the 95% confidence interval for each group. The non-overlapping ellipses 137 

showed a significant difference between ASD and TD for these DMRs’ methylation level 138 

(p < 0.05). C. Location relative to genes for hypermethylated (red) or hypomethylated 139 

(blue) ASD DMRs compared to background (grey). Distributions of locations relative to 140 

transcription start sites (TSS) are shown on the x-axis. The ratio plotted on the y-axis is 141 

calculated by the number of genes at each binned location divided by the total number 142 

of genes (Supplementary Table 2). *p < 0.05, **p < 0.01, ***p < 0.001 by Fisher’s exact 143 

test.  D. Bar graph represents the significant results from gene ontology and pathway 144 

enrichment analysis of ASD DMRs associated genes compared to background by 145 

Fisher’s exact test (FDR adjusted -log p-value, x-axis).  146 

 147 

Placenta ASD DMRs were enriched for transcription start sites and genes that 148 

function in transcriptional regulation and neuronal fate.  149 

To further study the location and function of ASD DMRs in placenta, we calculated the 150 

location of each ASD DMR relative to the assigned gene’s transcription start site (TSS) 151 

(Supplementary Table 3). Both hyper- and hypomethylated ASD DMRs were enriched 152 

within 5kb on either side of TSS compared with background regions (Fig. 1C). Gene 153 

ontology (GO) analysis of ASD DMRs genes revealed significant enrichment for 154 

functions in transcription, protein modification, embryonic organ development, and 155 

neuron fate commitment by Fisher’s exact test after false discovery rate (FDR) multiple 156 

test correction (Fig. 1D, Supplementary Table 4).  157 

 158 

Placenta DMR genes were enriched in ASD but not ID risk genes  159 
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To test a hypothesized overlap between epigenetic and genetic ASD risk loci observed 160 

previously in ASD and neurodevelopmental disorder brain tissues (Vogel Ciernia et al., 161 

2018), we investigated the possible overlap of placenta ASD DMR genes with identified 162 

genetic risk factors for ASD and other types of intellectual disability (ID). First, the 163 

curated Simons Foundation Autism Research Initiative (SFARI) gene list was separated 164 

into six categories based on SFARI ASD gene scores (Abrahams et al., 2013). The 165 

entire list of SFARI genes as well as the high confidence gene list both showed 166 

significant overlap with placenta ASD DMR genes (Fig. 2A, Supplementary Table 5). 167 

The 39 genes in common between the SFARI gene list and placenta ASD DMRs were 168 

significantly enriched for functions in positive regulation of histone H3K4 methylation, 169 

multicellular organ development, and system development. Second, high risk ASD 170 

genes from Sanders et al. (Sanders et al., 2015) and likely gene-disrupting (LGD) 171 

recurrent mutations and missense mutation on de novo mutations to ASD gene lists 172 

from whole genome exome sequencing (Iossifov et al., 2014) were also significantly 173 

enriched for placental ASD DMRs. In contrast, no significant enrichment was observed 174 

for placental ASD DMRs with ID, Alzheimer’s disease, or lung cancer genetic risk 175 

(Gilissen et al., 2014) or a random set of 400 genomic regions mapped to 600 genes 176 

(Fig. 2A, Supplementary Table 5).  When placental ASD DMRs were separated by 177 

direction of change, hypomethylated ASD DMRs exhibited more categories of 178 

significant enrichment with ASD genetic risk compared with hypermethylated ASD 179 

DMRs (Supplementary Fig. 3) 180 

 181 
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 182 

Figure 2. Placenta ASD DMR genes overlapped with ASD DMR associated genes from 183 

postmortem brain and known genetic risk for ASD, but not for other disorders.  184 

A. Placenta ASD DMR associated genes were compared for significant overlap with 185 

ASD DMR genes identified from ASD postmortem brain (Vogel Ciernia et al, 2018, 186 

based on 10% or 5% methylation difference cutoffs), as well as multiple curated gene 187 

lists of ASD, intellectual disability, or unrelated disorder genetic risks, or a randomly 188 

generated gene list (*p < 0.05 FDR corrected two-tailed Fisher’s exact test, ranked by 189 

odds ratio). SFARI: Simons Foundation Autism Research Initiative (Abrahams et al., 190 

2013), LGD: likely gene disrupting mutation, ASD: autism spectrum disorder, Alzheimer: 191 

Alzheimer’s Disease, ID: intellectual disability. B. Venn diagram represents the overlap 192 
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of 36 genes associated with placenta ASD DMRs and brain ASD DMRs based on 10% 193 

methylation differences between ASD versus TD (Supplementary Table 5). 194 

Methylation data from human postmortem brain was obtained from previous published 195 

datasets, GSE8154 (ASD and TD) (Vogel Ciernia et al., 2018). C. Gene ontology and 196 

pathway analysis on the 36 genes in common between placenta ASD DMRs and brain 197 

ASD DMRs associated genes. Enrichment tests were done on Fisher’s exact test with 198 

FDR 0.05 correction. Genes in each gene ontology term are shown within each bar. 199 

 200 

Placenta ASD DMR genes significantly overlapped with brain ASD DMRs that 201 

were enriched for Wnt and cadherin signaling pathways.  202 

From a prior methylation analysis in brain frontal cortex, 210 ASD discriminating DMRs 203 

from brain (10% methylation difference between ASD and TD) were identified, which 204 

mapped to 371 genes (Vogel Ciernia et al., 2018). A significant overlap of ASD DMR 205 

genes was observed between placenta and brain (Fisher’s exact test, p-value < 0.001), 206 

with 36 genes in commons (Fig. 2B, Supplementary Table 5). Those 36 genes were 207 

significantly enriched for functions in the Wnt signaling and cadherin signaling pathways 208 

(Fig. 2C). Of these shared genes four overlapped with SFARI genetic risk: GADD45B, 209 

MC4R, PCDH9, and TBL1XR1.  210 

 211 

Placenta ASD DMRs were enriched for placental and brain active promoter 212 

H3K4me3 peaks, promoter flanking regions, and CpG shores.  213 

To functionally annotate the ASD DMRs identified by placenta WGBS, multiple histone 214 

modification ChIP-seq peaks and chromatin state predictions from multiple tissue types 215 
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in the Roadmap Epigenomics Projects were compared to ASD DMR chromosomal 216 

locations for enrichment compared to background regions (Kundaje et al., 2015). 217 

Placental ASD DMRs were significantly enriched for H3K4me3 and H3K4me1 marks of 218 

promoters and enhancers across multiple tissues, although placental H3K4me3 marks 219 

showed the strongest (odds ratio = 17.08, FDR q < 1.8E-42) and brain H3K4me3 marks 220 

showed the second strongest enrichment (odds ratio = 13.75, FDR q < 3.55E-31) (Fig. 221 

3A). Next, we overlapped ASD DMRs with published chromatin state predictions that 222 

use histone modification ChIP-seq data to annotate the genome into 15 functional 223 

states (chromHMM) (Ernst & Kellis, 2012). Placental ASD DMRs showed significant 224 

enrichment in regions flanking transcription start site (TssAFlnk) and transcription start 225 

site (TssA) compared to background over multiple tissues (Fig. 3B). When separated by 226 

directional change in ASD, both hyper- and hypomethylated ASD DMRs were 227 

significantly enriched for H3K4me3 peaks, transcription start sites and their flanking 228 

regions, as well as enhancers (Supplementary Fig. 4).  229 

 230 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/501007doi: bioRxiv preprint 

https://doi.org/10.1101/501007
http://creativecommons.org/licenses/by-nd/4.0/


 14 

 231 

Figure 3. Placenta ASD DMRs were enriched at H3K4me3 regions, flanking promoter 232 

regions, and CpG shores.  233 

A. Placenta ASD DMRs were examined for enrichment with histone modification ChIP-234 

seq peaks from the Epigenome Roadmap using the LOLA package. Enrichments are 235 

plotted as the odds ratio) in a heat map for each of 8 different tissue types and 6 types 236 

of modified histone marks (Sheffield & Bock, 2016). B. Enrichment tests on chromatin 237 

states from chromHMM categories in the Epigenome Roadmap and placental ASD 238 

DMRs from this study were performed using LOLA, with each row representing a 239 

different ChromHMM predicted state and each column a single tissue type. C. Placenta 240 

ASD DMRs (categorized as all, hypermethylated, or hypomethylated in ASD) were 241 

tested for enrichment based on CpG island location. The human genome was 242 

separated into CpG islands, CpG shores, CpG shelves and open sea.  243 

 244 
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We also separated the genome into four parts relative to CpG island location (Aryee et 245 

al., 2014; Sandoval et al., 2011; Timp et al., 2014). CpG shores were defined as the 246 

region within 2 kb on both sides of CpG islands, while another 2 kb extension from the 247 

shores were defined as CpG shelves. The remaining regions were defined as “open 248 

sea”. Placental ASD DMRs showed significant enrichment at CpG shores, and 249 

hypermethylated ASD DMRs more significantly overlapped CpG islands compared with 250 

hypomethylated DMRs (Fig. 3C).  251 

 252 

Two genome-wide significant placental ASD DMRs at CYP2E1 and IRS2 validate 253 

by pyrosequencing and correlated with gene expression. 254 

Two of the 400 ASD DMRs identified in ASD placenta reached genome-wide 255 

significance by family-wide error rate (FWER), including chr10: 133527713-133529507, 256 

located inside CYP2E1 (cytochrome P450 2E1), and chr13: 109781111-109782389 257 

located inside IRS2 (insulin receptor substrate 2) (Fig. 4). The CYP2E1 DMR was 258 

located after the first exon, included the first intron and part of the second exon, and 259 

was hypomethylated in ASD versus TD (Fig. 4A). The IRS2 DMR, spanning the end of 260 

the first exon and the beginning of first intron and was hypermethylated in ASD versus 261 

TD (Fig. 4B). Both CYP2E1 and IRS2 were also present in the gene lists overlapping 262 

with brain ASD DMR related genes and high risk ASD genes (Fig. 2A, Supplementary 263 

Table 5) (Sanders et al., 2015).  264 

 265 
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 266 

Figure 4. Two genome-wide significant placental DMRs located at CYP2E1 and IRS2 267 

were validated by pyrosequencing.  268 

A and B show the location relative to genes, and CpG islands of the two genome-wide 269 

significant DMRs (highlighted in pink and blue) in the UCSC Genome Browser. In the 270 

upper tracks, each line represents percent methylation (y-axis) of a single individual by 271 

WGBS analysis. Blue lines represent TD and red lines represent ASD samples. A. 272 

Hypomethylated DMR at CYP2E1 with 10 kb upstream and 10 kb downstream. B. 273 

Hypermethylated DMR at IRS2 with 10 kb upstream and 10 kb downstream. C. The 274 

CYP2E1 DMR percent methylation was significantly associated with child outcome and 275 

verified by pyrosequencing (two-tailed t-test, p-value = 0.014). The y-axis represents the 276 

average percent DNA methylation across the DMR regions from pyrosequencing. Each 277 
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dot represented one sample. D. Pyrosequencing validation on IRS2 DMR’s methylation 278 

with child outcome (two-tailed t-test, p-value = 0.0035). *p < 0.05, **p < 0.01 279 

 280 

Pyrosequencing was performed as an independent method to verify methylation 281 

differences between ASD and TD placental samples at CYP2E1 and IRS2 DMRs 282 

(Supplementary Table 6). For the CYP2E1 DMR, there was a significant difference in 283 

average percent methylation detected by pyrosequencing between ASD and TD 284 

samples (Fig. 4C). 13 CpG sites were included in the CYP2E1 DMR pyrosequencing 285 

test, and all but two also showed individually significant differences between ASD and 286 

TD after false discovery rate (FDR) correction (Supplementary Table 6, 287 

Supplementary Fig. 5A). Pyrosequencing also confirmed a significant difference 288 

between ASD and TD average percent methylation at the IRS2 DMR (Fig. 4D) and all 289 

of the 11 CpG sites individually assayed at IRS2 (Supplementary Table 6, 290 

Supplementary Fig. 5B).  291 

 292 

While MARBLES placenta samples were not collected in a manner conducive to RNA 293 

stability for gene expression analyses, we were able to examine expression level of 294 

both CYP2E1 and IRS2 in MARBLES umbilical cord blood from an Affymetrix Human 295 

Gene 2.0 array analysis in a related study (Mordaunt, Park, et al., 2018). A trend for 296 

lower CYP2E1 transcript levels was observed in ASD compared with TD cord blood 297 

samples (Fig. 5A) consistent with the direction of the placental methylation for this locus 298 

(Fig. 4C). Similarly, a trend for higher IRS2 expression in ASD versus TD cord blood 299 

was observed along with higher ASD methylation in placenta (Fig. 4D, Fig. 5B). To 300 
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investigate the direction of expression changes for these genes in ASD brain, we 301 

utilized the dbMDEGA database (Zhang et al., n.d.). CYP2E1 showed a significantly 302 

downregulated in ASD compared with TD in human male cortex, while IRS2 trended for 303 

higher levels in ASD compared with TD. These were both in the same direction as ASD 304 

cord blood expression and ASD placental methylation compared to controls. 305 

Furthermore, a trend for higher IRS2 protein in ASD placenta samples compared with 306 

TD placenta samples was observed by Western blot (Fig. 5C, Supplementary Fig. 6), 307 

as expected based on transcript and methylation levels. Because of the distinctive 308 

methylation landscape in placenta, positive correlations between methylation and 309 

expression were expected for gene body locations outside of CpG islands (Schroeder et 310 

al., 2013). 311 

 312 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/501007doi: bioRxiv preprint 

https://doi.org/10.1101/501007
http://creativecommons.org/licenses/by-nd/4.0/


 19 

 313 

Figure 5. For both placental ASD DMRs at CYP2E1 and IRS2, expression trended 314 

towards positive correlation with methylation.  315 

A. 30 ASD and 40 TD umbilical cord blood sample in MARBLES were included in this 316 

analysis. Affymetric array matrix data on the probe 16711001 was used to represent the 317 

expression of CYP2E1 on the y-axis. Each dot was used to represent one individual 318 

(two-tailed t-test, p-value = 0.125). B. The same umbilical cord blood samples were 319 

used for measuring IRS2 expression at the probe 16780917 (two-tailed t-test, p-value = 320 

0.144). C. Representative Westerns blots are shown for the ratio of IRS2 to GAPDH 321 

(normalization control) in all 41 placenta samples of ASD and TD comparison with each 322 

dot representing one sample (two-tailed t-test, p-value = 0.08). A Western blot with 6 323 
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samples in ASD and 7 samples TD were showed at the left panel. IRS2 protein was 324 

labeled with green fluorescence at 185 kDa and GAPDH was marked with red 325 

fluorescence at 37 kDa.  326 

 327 

CYP2E1 but not IRS2 DMR methylation levels were associated with cis 328 

genotypes.  329 

We performed Sanger sequencing within the CYP2E1 and IRS2 ASD DMRs to identify 330 

single nucleotide polymorphisms (SNPs) that could explain some of the methylation 331 

differences. Two SNPs (rs943975, rs1536828) were identified within the boundaries of 332 

the CYP2E1 DMR in the 41 placenta samples (Supplementary Table 7). A significant 333 

association between rs1536828 (but not rs943975) genotype and CYP2E1 DMR 334 

percent methylation was observed, with samples homozygous for the minor allele (G/G) 335 

showing the lowest methylation (Fig. 6A). A single informative SNP (rs9301411) was 336 

also identified within the IRS2 DMR (Supplementary Table 7) but was not significantly 337 

associated with methylation level (Fig. 6B).    338 

 339 
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 340 

Figure 6. Cis genotype was significantly associated with CYP2E1 but not IRS2 DMR 341 

methylation levels.  342 

A. CYP2E1 genotype at rs1536828 within the ASD DMR was significantly associated 343 

with CYP2E1 DMR average percent methylation tested by ANOVA (p-value = 0.03). B. 344 

IRS2 genotype at rs9301411 within the ASD DMR was not significantly associated with 345 

IRS2 DMR methylation by two-tailed t-test (p-value = 0.86).   346 

 347 

Preconception prenatal vitamin use corresponded to protective placental DNA 348 

methylation patterns at CYP2E1, IRS2, and genome-wide. 349 

Placental samples from mothers who took prenatal vitamins during the first month of 350 

pregnancy showed a trend for higher CYP2E1 DMR methylation that was not 351 

significant, but in the same direction expected for protection from ASD (Fig. 7A). At the 352 

IRS2 DMR, however, there was a significant association with maternal prenatal vitamin 353 

use and lower methylation, also in ASD-protective direction (Fig. 7B).  354 
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 355 

To further explore the relationship between placental methylation patterns influenced by 356 

prenatal vitamin use in the first month of pregnancy, placental methylomes were 357 

analyzed for DMRs by prenatal vitamin use in the first month of pregnancy (PreVitM1) 358 

with more than 10% methylation difference, and 376 DMRs were identified over 587 359 

genes (Supplementary Table 8). 60 genes overlapped between PreVitM1 DMRs and 360 

ASD DMRs in placenta (Supplementary Table 8, Fig. 7C). Gene ontology analysis 361 

showed that genes common to PreVitM1 and ASD DMRs were significantly enriched for 362 

functions in neuron fate commitment, transcription regulation, central nervous system 363 

development, and regulation of phosphatidylinositol 3-kinase activity (Fig. 7D). We also 364 

separated placental samples based on when mothers started taking prenatal vitamins 365 

during pregnancy into three periods (Supplementary Table 9). For the CYP2E1 DMR, 366 

we found that during all three periods, ASD placental samples showed lower percent 367 

methylation on the CYP2E1 DMR compared to TD (Supplementary Fig. 7A). The 368 

expected opposite finding of higher methylation levels in ASD compared with TD 369 

placental samples was observed at the IRS2 DMR (Supplementary Fig. 7B).  370 

 371 
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 372 

Figure 7. Preconception prenatal vitamin use was a significant modifier of IRS2 373 

methylation and associated DMRs overlapped ASD DMRs in placenta. 374 

For A and B, the x-axis represents maternal prenatal vitamins use during the first month 375 

pf pregnancy, while the y-axis shows the percent methylation. A. CYP2E1 DMR 376 

methylation was not significantly altered by P1 prenatal vitamin use, although a trend 377 

was observed in the protective direction for ASD (two-tailed t-test, p-value = 0.118). B. 378 

Higher percent methylation at IRS2 DMR was significantly associated with not taking 379 

prenatal vitamins at P1 (two-tailed t-test, p-value = 0.039), which is in the same direction 380 

as ASD risk. C. DMRs identified based on P1 prenatal vitamins use were associated 381 

with 587 genes, which showed a significant overlap with ASD DMR associated genes 382 
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(Fisher’s exact test, p-value < 2.528e-16). D. Gene ontology and pathway analysis was 383 

performed on the overlapped gene list (60 genes) (Supplementary Table 8) between 384 

placenta ASD DMR and P1 prenatal vitamin DMR associated genes for enrichment by 385 

Fisher’s exact test with -log (p-value) represented on the x-axis. Genes in each gene 386 

ontology (GO) term are shown within each bar.  387 

 388 

To further investigate the potential inter-relatedness of diagnosis, prenatal vitamin use, 389 

and cis genotype on methylation at CYP2E1 and IRS2 DMRs, we calculated 390 

associations between each factor and methylation separately by two-tailed t-test or 391 

ANOVA, as well as two-way diagnosis and PreVitM1; diagnosis and genotype; 392 

genotype and PreVitM1 by Pearson's chi-squared test.  These analyses illustrate that 393 

CYP2E1 genotype and diagnosis significantly contributed to CYP2E1 DMR methylation, 394 

while PreVitM1 and diagnosis were significantly associated with IRS2 DMR methylation 395 

(Fig. 8A, Fig. 8B). No significant association was found between two-way interactions 396 

among each of the three factors and each DMR methylation level by ANOVA 397 

(Supplementary Table 10). When combining CYP2E1 genotype, PreVitM1, and 398 

diagnosis to predict methylation at the CYP2E1 DMR, a significant association was 399 

observed on CYP2E1 DMR methylation with diagnosis and rs1536828 genotype (Fig. 400 

8C, Supplementary Fig. 8A). At the IRS2 DMR, PreVitM1 and diagnosis significantly 401 

contributed to IRS2 DMR methylation (Fig. 8D, Supplementary Fig. 8B).  402 

 403 
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 404 

Figure 8. CYP2E1 and IRS2 DMR associations and interactions between diagnosis, 405 

genotype, and preconception prenatal vitamin use.  406 

For A and B, diagnosis, genotype and PreVitM1 variables were tested for association 407 

with methylation separately by two-tailed t-test (or ANOVA for CYP2E1 genotype) with 408 

p-value listed at each line. Between each factor, Pearson’s Chi-Squared tests were 409 

performed with the p-value listed at each line. Significant associations were shown with 410 

a bold red line. For C and D, two-way interactions and three-way interaction were 411 

considered by using an ANOVA model to test association among three factors, 412 

diagnosis, genotype, and PreVitM1 to methylation at two genome-wide significant DMR. 413 

 A. CYP2E1 DMR methylation was significantly associated with CYP2E1 genotype 414 

(rs1536828) and diagnosis. B. IRS2 DMR methylation was significantly associated with 415 
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diagnosis and PreVitM1. C. There was a significant association on CYP2E1 genotype 416 

(rs1536828), and diagnosis with CYP2E1 DMR methylation after considering interaction 417 

terms. D. Both diagnosis and PreVitM1 were significantly associated with IRS2 DMR 418 

methylation with interaction terms considered.  419 

  420 
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Discussion  421 

This study utilized whole methylome analysis of prospectively stored placenta samples 422 

in a high risk ASD cohort to bioinformatically identify novel gene loci that were able to 423 

discriminate child outcome at age three. This unbiased analysis of ASD differentially 424 

methylated regions in placenta tissue resulted in several novel findings. First, the 596 425 

genes identified from 400 placental ASD DMRs significantly overlapped with genetic risk 426 

for ASD from curated databases and gene functions in neurons. Second, two genome-427 

wide significant placental ASD DMRs at CYP2E1 and IRS2 were discovered that were 428 

validated by pyrosequencing and also overlapped with ASD- associated genetic 429 

variation and gene expression changes. Lastly, we investigated genotype and nutrient 430 

factors correlating with methylation at CYP2E1 and IRS2, demonstrating specific effects 431 

for cis genotype and diagnosis at CYP2E1 and prenatal vitamin use at IRS2. These 432 

results therefore suggest that DNA methylation patterns in placenta provide a direct link 433 

between genetics, environment, and fetal epigenetic programming, which can reflect 434 

early development relevant to the complex etiology of ASD. The epigenomic signature 435 

of ASD in placenta also provides important insights into gene functions, pathways, 436 

gene-environment interactions, and potential biomarkers that may be useful in 437 

improving early detection of ASD.  438 

 439 

This study is the first to identify 400 potential ASD DMRs that distinguish between ASD 440 

and TD placenta samples and highlights specific locations and gene functions of 441 

differentially methylation in placental samples from children with ASD. First, these 442 

placental ASD DMRs were highly enriched around transcription start sites and 443 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/501007doi: bioRxiv preprint 

https://doi.org/10.1101/501007
http://creativecommons.org/licenses/by-nd/4.0/


 28 

H3K4me3 marks that are clear marks of gene regulatory functions (Carninci et al., 2006; 444 

Koudritsky & Domany, 2008; Portales-Casamar et al., 2007; Yang, Bolotin, Jiang, 445 

Sladek, & Martinez, 2007). Furthermore, gene ontology analysis of the 596 genes 446 

mapped to placental ASD DMRs pointed to enriched gene functions in transcription, 447 

neuron fate, and embryonic development, which were expected based on previous 448 

studies (Dapretto et al., 2006; Geschwind & Levitt, 2007; Schroeder et al., 2016).  449 

Genes with ASD DMRs in both placenta and brain were enriched for Wnt and cadherin 450 

signaling pathways. Wnt signaling is important in embryogenesis, tissue regeneration, 451 

and neurodevelopment (Katoh & Katoh, 2006; Logan & Nusse, 2004; Nusse & Clevers, 452 

2017), while cadherin signaling plays a vital role in connecting major intracellular 453 

signaling pathways with adhesion protein complexes (Klezovitch & Vasioukhin, 2015; 454 

Yap & Kovacs, 2003). Our results therefore complement previous studies that have 455 

shown the importance of Wnt and cadherin pathways in the etiology of ASD (Betancur, 456 

Sakurai, & Buxbaum, 2009; Kalkman, 2012; Krey & Dolmetsch, 2007). We also 457 

replicated our previous finding of differential methylation at DLL1 in ASD placentas 458 

(Schroeder et al., 2016) (Supplementary Table 2). DLL1 encodes a ligand of Notch, 459 

activated by Wnt signaling (Hofmann et al., 2004). 460 

 461 

When overlapped with datasets of genetic risk for neurodevelopmental disorders 462 

including ASD and intellectual disability (Abrahams et al., 2013; Iossifov et al., 2014; 463 

Sanders et al., 2015), placenta ASD DMRs were significantly enriched for ASD but not 464 

for intellectual disability genetic risk, illustrating the specificity of the ASD DMRs 465 

identified in our study. The highest overlap of ASD DMR associated genes was with the 466 
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SFARI high confidence genes, including KMT2A, MYT1L, and TBR1 (Abrahams et al., 467 

2013). KMT2A is expressed in brain and placenta and encodes for a transcriptional 468 

coactivator (lysine methyltransferase 2A) that modulates H3K4 methyltransferase 469 

activity, specifically the transfer of methyl groups from S-adenosylmethionine to lysine 470 

residues on histones (Allis et al., 2007; Shilatifard, 2008) and has been previously 471 

implicated in brain development (E. Shen, Shulha, Weng, & Akbarian, 2014; Vallianatos 472 

& Iwase, 2015). MYT1L encodes for zinc finger transcription factor that functions in the 473 

developing mammalian central nervous system and is associated with 474 

neurodevelopmental disorders (Blanchet et al., 2017; Wang et al., 2010). TBR1 (T-box, 475 

brain, 1) is a transcription factor which is vital for vertebrate embryo development, 476 

neuron migration and differentiation (Bedogni et al., 2010; Englund et al., 2005). In 477 

addition, our two genome-wide significant ASD DMR associated genes, CYP2E1 and 478 

IRS2, were both on the list of “high confidence” genetic risk for ASD (Sanders et al., 479 

2015). 480 

 481 

Four genes were found to be in common between placenta ASD DMRs, brain ASD 482 

DMRs and SFARI genetic risk, specifically GADD45B, MC4R, PCDH9 and TBL1XR1 483 

(Betancur et al., 2009; Garbett et al., 2008; Orlik & Halawa, 2016; Tabet et al., 2014). 484 

GADD45B (growth arrest and DNA-damage-inducible, beta) responds to environmental 485 

stress through JNK pathway induced DNA demethylation of neurogenesis and synaptic 486 

plasticity at gene promoters (Garbett et al., 2008; Ma et al., 2009; Sultan, Wang, Tront, 487 

Liebermann, & Sweatt, 2012). MC4R encodes the membrane-bound melanocortin 4 488 

receptor, implicated in hormone and cell growth pathways in obesity and insulin 489 
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resistance (Chambers et al., 2008; Orlik & Halawa, 2016; Yeo et al., 1998). PCDH9 490 

(protocadherin 9) is a cadherin signaling pathway gene with specific signaling function  491 

at neuronal synaptic junctions (Betancur et al., 2009; Bruining et al., 2015). TBL1XR1 492 

encodes the nuclear receptor corepressor transducing beta like 1 X-linked receptor 1 493 

that binds to histone deacetylase 3 (HDAC 3) complexes in neuron development 494 

(Gonzalez-Aguilar et al., 2012; Pons et al., 2015; Tabet et al., 2014). A GWAS noise 495 

reduction (GWAS-NR) method to correct for false-positive association with ASD 496 

identified cadherin and signaling transduction pathways that included PCDH9 and IRS2 497 

as high confidence ASD genes (Hussman et al., 2011).  498 

 499 

Our study identified novel methylation differences at CYP2E1 and IRS2, which exhibited 500 

genome-wide significant differences between ASD and TD. Both CYP2E1 and IRS2 are 501 

identified as ASD genetic risk genes in multiple databases related to ASD genetic risk 502 

across different tissues and populations (Vogel Ciernia et al., 2018; Sanders et al., 503 

2015). Both CYP2E1 and IRS2 DMRs are located close to the TSS site at CpG shore 504 

intragenic regions, which is also consistent with the enrichment for TSS flanking regions 505 

and H3K4me3 promoter marks in the 400 ASD DMRs. These results are consistent with 506 

the developmental dynamics of H3K4me3 marks in human prefrontal cortex, which have 507 

been observed to be altered in ASD (Cheung et al., 2010; Shulha et al., 2012). 508 

Structural variants and SNPs in cis-regulatory elements also showed significant 509 

contribution to ASD (Brandler et al., 2018; W. Sun et al., 2016). 510 

 511 
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CYP2E1 encodes a member of the cytochrome P450 superfamily that is involved in the 512 

metabolism of drugs, including analgesics like acetaminophen, fatty acids such as 513 

arachidonic acid, and a range of chemical toxins, including halogenated hydrocarbons, 514 

benzene, and its activity is inducible by drugs, alcohol, and xenobiotics. It thus has an 515 

important role in drug bioavailablity (Gonzalez, 1988; Koop, 1992; Rasheed, Hines, & 516 

McCarver-May, 1996; Traglia et al., 2017). Previous studies showed those proteins 517 

essential for embryonic development in human, rat and zebrafish (Jukka Hakkola et al., 518 

1996; S. M. Jones, Boobis, Moore, & Stanier, 1992; Kishida & Callard, 2001; Ko, Choi, 519 

Green, Simmen, & Simmen, 1994; Majdic, Sharpe, O’Shaughnessy, & Saunders, 1996). 520 

We observed a significant association between methylation and cis genotype at the 521 

CYP2E1 DMR, a finding which is consistent with the identification of this locus in a 522 

screen for human metastable epialleles variability between individuals (Silver et al., 523 

2015). In addition, in immune models of ASD, maternal interleukin-6 (IL6) crosses the 524 

placenta, disrupting development of hippocampal spatial learning (Boksa, 2010; 525 

Jonakait, 2007; Krakowiak et al., 2012). Previous studies showed that IL6 inhibits 526 

CYP1A1, CYP1A2 and CYP2E1 expression (Abdel-Razzak et al., 1993; J. Hakkola, Hu, 527 

& Ingelman-Sundberg, 2002; Jover, Bort, Gómez-Lechón, & Castell, 2002; Patel et al., 528 

2014), consistent with the lower methylation and expression levels in ASD versus TD 529 

observed in our study. In addition, CYP2E1 expression is transcriptionally regulated by 530 

the JAK2/STAT3 pathway, providing a potential convergent pathway with IRS2 (Fig. 9) 531 

(Patel et al., 2014).  532 

 533 
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 534 

Figure 9. Potential pathway convergence of proteins encoded by both ASD DMRs.  535 

IRS2 interacts with transmembrane protein insulin-like growth factor receptor (IGF1R) at 536 

the intracellular membrane, resulting in activation of the PI3K/AKT/mTOR and MAPK 537 

signaling pathways (Machado-Neto et al., 2018) involved in protein synthesis, cell 538 

proliferation and gene expression (Archuleta et al., 2009; Machado-Neto et al., 2018; 539 

Patti et al., 1995; Tamburini et al., 2008; Velloso et al., 1996). An AKT-mediated 540 

ubiquitin pathway leads to de novo DNA methylation changes by DNMT (FANG et al., 541 

2015; Lin & Wang, 2014). IRS2 also interacts with cytokine and hormone receptors and 542 

induces JAK2/STAT3 signaling (Carvalheira et al., 2003; Machado-Neto et al., 2018; 543 

Saad et al., 1996, 1995). STAT activation leads to CYP2E1 localization at the 544 

endoplasmic reticulum, changing cellular metabolism (Patel et al., 2014).  545 
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 546 

IRS2 encodes for insulin receptor substrate 2, a cytoplasmic signaling molecule that 547 

mediates the effects of insulin and insulin-like growth factor 1 (IGF1) (Park et al., 2016; 548 

Withers et al., 1998) and cytokine receptors (Ihle, 1995; Rui, Yuan, Frantz, Shoelson, & 549 

White, 2002; X. J. Sun et al., 1995). IRS2 has a phosphotyrosine-binding domain which 550 

contributes to the intracellular affinity to cell membrane receptors (Fig. 9) (Eck, Dhe-551 

Paganon, Trüb, Nolte, & Shoelson, 1996; Machado-Neto, de Melo Campos, & Traina, 552 

2018; Schlessinger & Lemmon, 2003; White, 1998). PI3K/AKT/mTOR and MAPK 553 

signaling pathways are linked with IRS2 in the regulation of protein synthesis and cell 554 

proliferation (Archuleta et al., 2009; Machado-Neto et al., 2018; Patti et al., 1995; 555 

Tamburini et al., 2008; Velloso et al., 1996). When activated by cytokine and hormone 556 

receptors, IRS2 stimulates JAK2, leading to STAT and MAPK signaling activation 557 

(Carvalheira, Ribeiro, Folli, Velloso, & Saad, 2003; Machado-Neto et al., 2018; Saad, 558 

Carvalho, Thirone, & Velloso, 1996; Saad, Velloso, & Carvalho, 1995; Velloso et al., 559 

1996). The insulin-like growth factors (IGF1) pathway, which includes IRS2, also 560 

mediates de novo DNA methylation by DNA methyltransferase (DNMT) through AKT 561 

(Fang et al., 2015; Lin & Wang, 2014). This pathway may explain why methylation at the 562 

IRS2 DMR was sensitive to maternal prenatal vitamin intake, since IRS2 stimulates the 563 

mTOR (mechanistic target of rapamycin) pathway, which responds to nutrients and 564 

growth factors signaling to regulate protein synthesis (Gulati & Thomas, 2007; M. 565 

Laplante & Sabatini, 2013; Mathieu Laplante & Sabatini, 2012; Shimobayashi & Hall, 566 

2014). Previous studies have shown that maternal folate alters amino acid transport 567 

activity in the placenta, resulting in affecting fetal growth by the mTOR signaling 568 
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pathway (Huang & Fingar, 2014; Shimobayashi & Hall, 2014). Our analysis shown that 569 

placental differentially methylated gene loci associated with prenatal vitamin intake were 570 

also highly enriched for functions in fetal growth and development. We showed that high 571 

IRS2 methylation is significantly associated with ASD and mothers who did not take 572 

prenatal vitamins before conception, suggesting that sufficient folate levels around 573 

placental implantation may be protective for ASD through IRS2-mTOR signal 574 

transduction. The link between epigenetic alterations in IRS2 and risk for ASD is 575 

particularly intriguing given a growing body of epidemiologic evidence demonstrating 576 

higher ASD risk in offspring born to mothers who experienced diabetes during 577 

pregnancy, including some very large and methodologically sound studies with clinical 578 

diagnoses of both maternal diabetes and child ASD (Li et al., 2016; Xiang et al., 2018; 579 

G. Xu, Jing, Bowers, Liu, & Bao, 2014). 580 

 581 

We did not observe any significant associations between other potential cofounders 582 

such as maternal age, pregnancy BMI, or gestational age at birth and ASD diagnosis in 583 

the MARBLES study (Schmidt et al., 2016). Cell type heterogeneity in the placenta may 584 

complicate the interpretation of our results, however, our previous study did not detect 585 

differences in methylation levels by placental region at specific gene loci (Schroeder et 586 

al., 2016). Other potential limitations of our study include the relatively small sample 587 

size and sequencing depth. This study serves as a proof-of-principle that placenta 588 

methylation patterns detected by WGBS may be informative in ASD. Replication with 589 

additional samples, other similar prospective cohorts, and improved sequencing and 590 

bioinformatic strategies will be important in future studies. 591 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/501007doi: bioRxiv preprint 

https://doi.org/10.1101/501007
http://creativecommons.org/licenses/by-nd/4.0/


 35 

 592 

In conclusion, we identified two high confidence genes differentially methylated in ASD 593 

from an unbiased analysis of DNA methylation in placenta from high-risk pregnancies 594 

and investigated possible genetic and environmental modifiers of methylation at both 595 

loci. Methylation levels at the CYP2E1 DMR were associated with genotype, while the 596 

methylation levels at the IRS2 DMR were associated with prenatal vitamin use. Our 597 

results are consistent with a previous study using the Illumina 450K array, which 598 

showed that both genetic and environmental effects influence DNA methylation levels 599 

(Hannon et al., 2018). Placenta reflects the essential interface between the fetus and 600 

mother, mediating the impacts of endocrine and growth factors in the maternal 601 

environment on fetal development (Koukoura, Sifakis, & Spandidos, 2012; Zeltser & 602 

Leibel, 2011). Both CYP2E1 and IRS2 are related to protein synthesis, cell proliferation, 603 

and cell metabolism, consistent with previous studies of convergent gene pathways in 604 

ASD (Vogel Ciernia et al., 2018; Sanders et al., 2015; Voineagu et al., 2011; Xu et al., 605 

2012; Zhang et al., n.d.). These results therefore provide evidence that placental 606 

methylation levels reflect the intersection of genetic and environmental risk and 607 

protective factors that are expected to be useful for early intervention and prevention of 608 

ASD. 609 

  610 
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Materials and Methods 611 

MARBLES study design, sample selection, and DNA isolation 612 

The Markers of Autism Risk in Babies: Learning Early Signs (MARBLES) study design 613 

was described in a previous publication (Hertz-Picciotto et al., 2018). In MARBLES, 614 

mothers of at least one child with confirmed ASD who were pregnant or planning a 615 

pregnancy were recruited in the Northern California area. Inclusion criteria for the study 616 

were: 1) mother or father has one or more biological child(ren) with ASD; 2) mother is 617 

18 years or older; 3) mother is pregnant; 4) mother speaks, reads, and understands 618 

English sufficiently to complete the protocol and the younger sibling will be taught to 619 

speak English; 5) mother lives within 2.5 hours of the Davis/Sacramento, California 620 

region at time of enrollment. With shared genetics, the next child has a 15-fold higher 621 

risk for developing ASD compared to the general population (Hertz-Picciotto et al., 622 

2018). Demographic, diet, lifestyle, environmental, and medical information were 623 

prospectively collected through telephone-assisted interviews and mailed 624 

questionnaires throughout pregnancy and the postnatal period. Infants received 625 

standardized neurodevelopmental assessments beginning at 6 months and concluding 626 

at 3 years of age (Hertz-Picciotto et al., 2018). Diagnostic assessments at 3 years 627 

included the gold standard Autism Diagnostic Observation Schedule (ADOS) (Lord, 628 

Risi, Lambrecht, Cook Jr, et al., 2000; Lord, Risi, Lambrecht, Cook, et al., 2000), the 629 

Autism Diagnostic Interview-Revised (ADI-R) (Lord, Rutter, & Le Couteur, 1994), and 630 

the Mullen Scales of Early Learning (MSEL) (Mullen, 1995). Participants were classified 631 

into outcome groups including ASD and Typical Development (TD), based on a 632 

previously published algorithm that uses ADOS and MSEL scores (Chawarska et al., 633 
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2014; Ozonoff et al., 2014). Children with ASD outcomes have scores over the ADOS 634 

cutoff and meet DSM-5 criteria for ASD. Children with TD outcomes have all MSEL 635 

scores within 2.0 SD and no more than one MSEL subscale that is 1.5 SD below the 636 

normative mean and scores on the ADOS at least three more points below the ASD 637 

cutoff. This study utilized 41 male MARBLES placenta samples, including 20 samples 638 

from children later diagnosed with ASD and 21 children determined to have TD, 639 

matched for enrollment time frame and date of birth. DNA was isolated from 50-100 mg 640 

frozen placental tissues (20 ASD and 21 TD) using the Gentra Puregene tissue kit 641 

(Qiagen).   642 

 643 

Whole Genome Bisulfite Sequencing (WGBS) 644 

Raw sequencing data (fastq files) were published previously (Schroeder et al., 2016). 645 

Briefly, WGBS libraries were made with the sonicated genomic DNA (around 300 bp) 646 

and ligated with methylated Illumina adapters using NEB’s NEBNext DNA library prep 647 

kit (Schroeder et al., 2013, 2016). The library was bisulfite converted using EZ DNA 648 

Methylation lighting kit (Zymo), amplified for 12 cycles using PfuTurbo Cx Hotstart DNA 649 

Polymerase (Agilent) and purified with Agencourt AMPure XP Beads (Beckman 650 

Coulter). The quality and quantity of libraries were measured on a Bioanalyzer (Agilent) 651 

and sequenced on Illumina HiSeq 2000 with each sample per single lane. Reads after 652 

trimming were uniquely mapped to human reference genome (hg38) as described 653 

previously using BS-Seeker2 on average 1.6X genome converge with 99.3% bisulfite 654 

conversion efficiency (measured through the percentage of non-CpG cytosines that 655 

were unconverted) (Dunaway et al., 2016; Guo et al., 2013; Schroeder et al., 2013).  656 
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 657 

ASD Differentially Methylated Regions (DMRs) and genome-wide significant 658 

DMRs 659 

DMRs were called as described in previous publications (Coulson et al., 2018; Dunaway 660 

et al., 2016; Mordaunt, Shibata, et al., 2018) using the default settings. In this case, 661 

each ASD DMR contained greater than 10% methylation difference between ASD and 662 

TD samples at least three CpGs within 300 base pairs (bp) and a p-value < 0.05. 663 

Background regions were defined using the same conditions as DMRs but without any 664 

percent methylation filters to identify all possible DMR locations based on CpG density 665 

and sample sequencing coverage. Hypermethylated ASD DMRs were defined as higher 666 

percent methylation in ASD versus TD, while hypomethylated ASD DMRs was were 667 

defined as lower percent methylation in ASD versus TD samples. Genome-wide, 668 

significant DMRs were identified based on a family-wide error rate (FWER) < 0.05, 669 

determined by permuting the samples 1000 times by chromosome, and counting the 670 

number of null permutations with equal or better DMRs ranked by number of CpGs and 671 

areaStat (Box, 1980).  672 

 673 

Hierarchical clustering and principal component analysis (PCA) 674 

Methylation was extracted at each ASD DMR for every sample. Percent methylation of 675 

each sample was normalized to the mean methylation of each ASD DMR. ASD DMRs 676 

were grouped by Ward’s Method of hierarchical clustering (Wilks, 2011). Principal 677 

component analysis was performed on methylation at all ASD DMRs across all samples 678 

using the prcomp function and ggbiplot package in R. The ellipses for each group were 679 
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illustrated as the 95% confidence interval. The lack of overlapping ellipses for ASD and 680 

TD samples indicated significant methylation difference in ASD DMRs between groups 681 

(p < 0.05).  682 

 683 

Assignment of DMRs to genes and relative location to TSS  684 

Genes were assigned to DMRs using the Genomics Regions Enrichment of Annotations 685 

Tool (GREAT) on the default association settings (5.0 kilo-base (kb) upstream and 1.0 686 

kb downstream, up to 1000.0 kb max extension) (McLean et al., 2010). The distance 687 

(kb) was calculated from the ASD DMRs, hypermethylated ASD DMRs, hypomethylated 688 

ASD DMRs and background regions to transcription start site (TSS) of the GREAT 689 

assigned gene. The gene length was calculated for both placental ASD DMR genes and 690 

all genes in human genome and tested for potential distribution differences by 691 

Pearson’s chi-squared test.  692 

 693 

Gene Ontology Term and Pathway Enrichment Analysis 694 

Gene ontology (GO) analysis was done using PANTHER (Protein Analysis Through 695 

Evolutionary Relationships) overrepresentation test, with the GO Ontology database 696 

(Ashburner et al., 2000; The Gene Ontology Consortium, 2017) and Fisher’s exact test 697 

with false discovery rate (FDR) multiple test correction. GO term enrichments were 698 

presented by the hierarchical terms rather than specific subclass functional classes, as 699 

described previously (Mi, Muruganujan, & Thomas, 2012; Thomas et al., 2003).  700 

 701 

Tests for ASD DMR Enrichments 702 
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All tests of enrichment for ASD DMRs were compared to a set of all possible 703 

background regions that are calculated in the DMR analysis pipeline. Enrichment tests 704 

for placenta ASD DMRs associated genes and published gene lists were done using the 705 

GeneOverlap R package which implements Fisher’s exact test and adjusted for FDR 706 

correction (L. Shen et al., 2013). *p < 0.05, **p < 0.01, ***p < 0.001 by Fisher’s exact 707 

test with FDR corrected. Brain cortex (BA9) ASD DMRs were defined as either a 5% or 708 

10% methylation difference between ASD and TD and were described previously using 709 

the same method as placenta ASD DMRs (Vogel Ciernia et al., 2018). The SFARI 710 

(Simons Foundation Autism Research Initiative) database was used for the five 711 

categories of ASD risk genes (https://gene.sfari.org/database/gene-scoring/) (Abrahams 712 

et al., 2013). High effect ASD risk gene lists were also identified from Sanders et al. 713 

(Sanders et al., 2015). Likely gene-disrupting (LGD) recurrent ASD mutations and 714 

missense mutation on de novo mutations were obtained from Iossifov et al. (Iossifov et 715 

al., 2014). Gene lists on intellectual disability (ID) were obtained from Gilissen et al. 716 

(Gilissen et al., 2014). Alzheimer’s disease GWAS gene lists were extracted from SNPs 717 

showing association with Alzheimer’s disease (P ≤ 1x10-3) (Harold et al., 2009). Lung 718 

cancer GWAS gene lists were acquired from Landi et al. (Landi et al., 2009). The 719 

random genes category contains the same number of regions as the placenta ASD 720 

DMRs to serve as a specificity control. ASD DMRs were examined for enrichment with 721 

known chromatin marks compared to the background using LOLA R package with two-722 

tailed Fisher’s exact test after FDR correction (Sheffield & Bock, 2016). Placenta 723 

histone marks H3K4me1, H3K4me3, H4K9me3, H3K36me3, H3K27me3 and H3K27ac 724 

were extracted from ENCODE (Encyclopedia of DNA Elements) placenta ChIP-seq 725 
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dataset (ENCODE Project Consortium, 2012; Sloan et al., 2016). ASD DMRs were also 726 

analyzed for overlap with chromatin states predicted by chromHMM, which use histone 727 

modification ChIP-seq data to separate the genome into 15 functional states in the 728 

Roadmap Epigenomics Project using a Hidden Markov Model (Ernst & Kellis, 2017; 729 

Kundaje et al., 2015). For promoters, chromHMM separates active transcription start 730 

site (TssA), TSS flank (TssAFlnk), bivalent TSS (TssBiv), and bivalent TSS flank 731 

(BivFlnk) states. For enhancers, genic enhancer (EnhG), enhancer (Enh), and bivalent 732 

enhancer (EnhBiv) are the different states. Human CpG island locations were extracted 733 

from UCSC genome browser (Kent et al., 2002). CpG island shores were defined as 2 734 

kb flanking regions on both sides of CpG island. CpG island shelf was characterized as 735 

2 kb flanking regions on both sides of CpG island shore, not including CpG island or 736 

CpG island shore. CpG island “open sea” includes all genomic regions except CpG 737 

island, CpG island shore and CpG island shelf. A custom R script was used to generate 738 

the locations of CpG islands (https://github.com/Yihui-Zhu/AutismPlacentaEpigenome).  739 

 740 

Pyrosequencing 741 

Genomic DNA (500 ng) was bisulfite converted using the EZ DNA Methylation kit 742 

(Zymo). Amplification and sequencing primers were designed using the PyroMark 743 

Assay Design Software 2.0 (Qiagen). DMRs were amplified using the PyroMark PCR kit 744 

(Qiagen). Pyrosequencing of 13 CpG sites at CYP2E1 gene, and 11 CpG sites in 745 

human IRS2 gene was performed in triplicate. Pyrosequencing was performed on a 746 

Pyromark Q24 Pyrosequencer (Qiagen) with the manufacturers recommended protocol. 747 
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Enzyme, substrate, and dNTPs were from the Pyromark Gold Q24 Reagents (Qiagen) 748 

and the methylation levels were analyzed using Pyromark Q24 software.  749 

 750 

CYP2E1 related DMR pyrosequencing primers:  751 

Forward: GGTGTTTTGTTTTGGGGTTGA 752 

Reverse: ACCCATTCAATATTCACAACAATC (5’ Biotin) 753 

Sequencing: GGTTGATGATGGGGA 754 

Amplification region: chr10: 133527817 – 133527938 (hg38) 755 

 756 

IRS2 related DMR pyrosequencing primers: 757 

Forward: TTAGGAATATAGGGAAAGGTGAAAGT 758 

Reverse: CCACCCATTCACCCATTCTA (5’ Biotin) 759 

Sequencing: GGGAAAGGTGAAAGTT 760 

Amplification region: chr13: 109781623 – 109781794 (hg38) 761 

 762 

Gene Expression in Umbilical Cord Blood 763 

Data for gene expression assessed by Affymetrix Human Gene 2.0 array were 764 

extracted a previous publication on umbilical cord blood from subjects in the MARBLES 765 

study (GEO ID: GSE123302) (Mordaunt, Park, et al., 2018). Placenta and cord blood 766 

were collected at the same time period in the same study. Raw intensity values from 767 

cord blood samples were normalized by RMA and data from 70 male samples were 768 

extracted, including 30 ASD and 40 TD samples. Normalized expression was examined 769 

at the only probe annotated to CYP2E1 (16711001) and the only probe annotated to 770 
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IRS2 (16780917). Analysis was done on those two probes with 70 samples on the 771 

normalized matrix data.  772 

 773 

Western Blot 774 

In Western blot experiments, placental proteins were isolated with RIPA buffer 775 

containing 10mM Tris-Cl (pH 8.0), 1mM EDTA, 1% Triton X-100, 0.1% sodium 776 

deozydholate, 0.1% SDS, 140mM NaCl, 1mM PMSF and complete protease inhibitors 777 

(ThermoFisher), incubated at 37°C for 30 minutes, sonicated and heated at 95°C for 5 778 

min. BCA (Bicinchoninic Acid) protein assay (ThermoFisher) was used to determine 779 

protein concentration. Protein samples (20-30 ug) were resolved on 4-20% tris-gylcine 780 

polyacrylamide gels (Biorad). Proteins were separated and transferred to nitrocellulose 781 

membranes for 60 minutes at a constant voltage of 100. The membranes were blocked 782 

in Odyssey Blocking Buffer (PBS) (Licor, 927-40000) for 40 min. Anti-IRS2 (1:5,000, 783 

Cell Signaling, 3089S) and anti-GAPDH (1:10,000, Advanced Immunochemical, Inc., 2-784 

RGM2) were incubated with the membrane with Odyssey Blocking Buffer containing 785 

0.2% Tween overnight at 4°C. Membranes were washed with 1 X PBS (Phosphate-786 

buffered saline) containing 0.2% Tween and then incubated with secondary antibodies, 787 

IRDye 800CW Donkey anti-Mouse IgG (1:50,000, Licor, 926-32212) and IRDye 680RD 788 

Donkey anti-Rabbit IgG (1:50,000, Licor, 926-68073) for 1 hour. Membranes were 789 

scanned using a Licor Odyssey infrared imaging system based on the manufacturer’s 790 

guidance (with resolution: 84; quality: medium, 600-channel: 6; 800-channel: 5). 791 

Relative protein quantification was done using the ImageJ software program (Rueden et 792 

al., 2017; Schneider, Rasband, & Eliceiri, 2012) in densitometry mode. IRS2 signals 793 
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were normalized to GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) for each 794 

sample.  795 

 796 

Sanger Sequencing 797 

PCR amplification was performed on each sample using PCR 10x buffer, 25 mM MgCl2, 798 

5 M betaine, 10 mM dNTPs, DMSO, and HotStart Taq (Qiagen). Each PCR program 799 

was unique to the region being amplified with specific primers. The PCR product was 800 

then resolved by gel electrophoresis using a 1% Agarose gel in 1 X TE to later be 801 

extracted using the gel extraction kit (Qiagen) based on the default protocol. After DNA 802 

quantitation by NanoDrop, the samples were sent to the UC Davis Sequencing Facility 803 

for sequencing on the 3730 Genetic Analyzer (Applied Biosystems Prism) with DNA 804 

sequencing Analysis software v.5.2 (Applied Biosystems Prism). The sequencing 805 

results were assembled and analyzed using CodonCode Aligner version 7.0 806 

(CodonCode).  807 

 808 

CYP2E1 related SNP (rs943975, rs1536828) primers: 809 

Forward: CTACAAGGCGGTGAAGGAAG 810 

Reverse: CCCATCCCCATAAACTCTCC 811 

 812 

IRS2 related SNP (rs943975) primers: 813 

Forward: TTAGGAATATAGGGAAAGGTGAAAGT 814 

Reverse: CCACCCATTCACCCATTCTA 815 

 816 
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Maternal Prenatal Vitamin Use and Timing 817 

Maternal prenatal vitamin information and timing of maternal intake for 6 months before 818 

and each month during the pregnancy were recorded though telephone interviews 819 

and/or questionnaires as previously describes (Hertz-Picciotto et al., 2018). Mothers 820 

who took prenatal vitamins in the first month pregnancy or not were grouped into 821 

PreVitM1 Yes/No. Mothers who took prenatal vitamins beginning from 6 months to 2 822 

months before pregnancy were grouped as “Before Pregnancy”. Mothers beginning 823 

prenatal vitamins one month before pregnancy through the second month of pregnancy 824 

were grouped as “Near Conception”. Mothers beginning prenatal vitamins from 3 825 

months to 9 months of pregnancy were grouped as “During Pregnancy”.  826 

 827 

Code availability: 828 

Custom scripts for WGBS analysis are available at 829 

https://github.com/kwdunaway/WGBS_Tools with the instructions. Custom Scripts for 830 

DMR finder are available at https://github.com/cemordaunt/DMRfinder with the 831 

instructions. The rest of code and scripts for each figure and tables are available at 832 

https://github.com/Yihui-Zhu/AutismPlacentaEpigenome.  833 

 834 

Data availability: 835 

WGBS data were previously published, Gene Expression Omnibus (GEO) accession 836 

number GSE67615 (Schroeder et al., 2016). The rest of the relevant data and 837 

information are included in supplementary tables.   838 

 839 
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