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Abstract 13 
It is common that one medication is prescribed for several indications, and conversely that 14 
several medications are prescribed for the same indication, suggesting a complex biological 15 
network for disease risk and its relationship with pharmacological function. Genome-wide 16 
association studies (GWASs) of medication-use may contribute to understanding of 17 
disease etiology, generation of new leads relevant for drug discovery and quantify prospects 18 
for precision medicine. We conducted GWAS to profile self-reported medication-use from 23 19 
categories in approximately 320,000 individuals from the UK Biobank. A total of 505 20 
independent genetic loci that met stringent criteria for statistical significance were identified. 21 
We investigated the implications of these GWAS findings in relation to biological 22 
mechanism, drug target identification and genetic risk stratification of disease. Amongst the 23 
medication-associated genes were 16 known therapeutic-effect target genes for medications 24 
from 9 categories. 25 
 26 
Introduction 27 
Susceptibility to most common human diseases is complex and multifactorial, involving both 28 
genetic, environmental and stochastic factors1. During the last decade, large-scale genome-29 
wide association studies (GWASs) have identified thousands of single nucleotide 30 
polymorphisms (SNPs) associated with diseases and related traits, consistent with a 31 
polygenic genetic architecture of common disease. These results add useful human-relevant 32 
information to drug development, drug repurposing and clinical trial pipelines2. Here, we 33 
have turned the tables, aiming to identify genetic loci associated with medication-taking. In 34 
the context of electronic health record data, medication-use may be an easy route to identify 35 
disease-case subjects. However, in clinical practice, it is common that one medication is 36 
prescribed for several indications, but conversely, several medications can be prescribed for 37 
the same indication. It is likely that medication-use reflects not only similarity between 38 
different clinical manifestations3 and/or comorbidity4 of diseases but also heterogeneity of 39 
clinical manifestation (symptoms and signs) and of intervention response (for example, from 40 
lifestyle change to the combination of treatments). 41 
  42 
We hypothesise that genetic variants associated with taking medications categorised based on 43 
anatomical and therapeutic classifications may add additional relevant information to 44 
understanding the underlying biological mechanism of diseases and drug development 45 
approaches. Here, we study genetic variation in current medication-use. We report 505 loci 46 
independently associated with medication categories. We explore these GWAS findings for 47 
biological mechanisms and as drug targets. We estimate the genetic correlation between the 48 
23 medication traits, and with other diseases and traits using published GWAS results. We 49 
use Mendelian Randomization to investigate putative causal relationships among diseases 50 
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and traits. We show that genetic predisposition to common disease predicts likelihood of 51 
taking relevant medications, a significant finding in relation to future practice of precision 52 
medicine for common disease. 53 
 54 
Results 55 
Case-control GWAS of medication-use 56 
Medications taken by UKB participants were classified using the Anatomical Therapeutic 57 
Chemical Classification System5 and provided in Figure 1 and S1, Table S1. Figure S2 58 
shows the demographics of participants with medication records. The full phenotype 59 
extraction pipeline for UKB participants is summarised in Figure S3. An overview of 60 
analyses is provided in Figure S4. The medication-use case-control GWASs identify 910 61 
within-trait independent SNPs significantly associated (P < 5x10-8) across 23 medication 62 
traits (Figure 2 and S5). After applying a more stringent multiple testing threshold (P < 1e-63 
8/23) 6, a total of 505 SNPs remain (Table S2 and S3), with per-trait associations ranging 64 
from 0 (C02: hypertensives, N02A:opioids, N06A: antidepressants) to 103 (C09: agents 65 
acting on renin-angiotensin system) SNPs. Many of the associated SNPs may simply be a 66 
reflection of the primary indication for which the medication is prescribed (Table S4). For 67 
example, C09 medications have therapeutic effect on hypertension; of the 103 independent 68 
SNPs associated with C09 medications (P < 10-8/23), we identified SNPs previously linked to 69 
hypertension (7 SNPs)7, systolic blood pressure (32 SNPs)8, diastolic blood pressure (5 70 
SNPs)9 and pulse pressure (2 SNPs)9. Of the 55 independent SNPs associated with C10AA 71 
(HMG CoA reductase inhibitors)-associated SNPs (P < 10-8/23), 19 SNPs have been reported 72 
to be significantly associated with low-density lipoprotein cholesterol (LDLC)10, supporting 73 
the known biological mechanism that statins are effective in lowering LDLC. However, for 3 74 
medication-taking traits either small or no GWAS have been conducted for the medication-75 
relevant indications, including A02B (drugs for peptic ulcer and gastro-oesophageal reflux 76 
disease), H03A (thyroid preparations) and N02BE (anilides).  77 
 78 
Genetic predisposition to common disease predicts medication-taking  79 
We undertook polygenic risk prediction analyses using GWAS summary statistics from 8 80 
published disease/traits (Table S5) as discovery data to predict disease risk in 9 medication-81 
taking phenotypes as target data. Participants in the UK Biobank with a high GRS for 82 
different diseases/traits have a higher odds of taking corresponding medications than those 83 
with a low GRS (Figure 3; Table S6). The top decile of individuals ranked on risk prediction 84 
for depression had an odds ratio (OR) of 1.7 in taking anti-depressants compared to the 85 
bottom decile. Similarly comparing top and bottom deciles, we find an OR of 3.1 for taking 86 
anti-diabetic medication (A10) for individuals ranked on genetic risk for type 2 diabetes and 87 
of 3.3 for taking immunosuppressants (L04) for individuals ranked on their genetic risk for 88 
rheumatoid arthritis (RA). The OR increased to 5.2 for taking L04 medications specific to 89 
RA (Table S1).  90 
 91 
GWAS results and biological mechanisms 92 
First, we estimated SNP-heritability of the 23 traits using linkage disequilibrium (LD) score 93 
regression11 (Figure S6; Table S7), all traits showed SNP-heritability (proportion of variance 94 
attributed to genome-wide SNPs) significantly different from zero to a maximum of 0.15 (s.e. 95 
0.008) for N02A (opioid medications) on the estimated scale. Second, to identify medication-96 
relevant tissue/cell types, we partitioned the SNP-heritability12 based on annotations of SNPs 97 
to genes, and genes to differential gene expression between tissues. Among the 23 98 
medication-taking traits, 8 traits showed significantly enriched association with genes 99 
expressed in at least one tissue at a false discovery rate (FDR) < 5% (Figure S7). GWAS 100 
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associations for thyroid preparations (H03A), immunosuppressants (L04), adrenergics 101 
inhalants (R03A), glucocorticoid (R06BA) and antihistamines for systemic use (R06A) were 102 
enriched in immune cell types. Those of opioid analgesics (N02A) were enriched in central 103 
nervous system tissues, such as limbic system, those of antimigraine preparations (N02C) 104 
were enriched in cardiovascular tissue, and those of drugs affecting bone structure and 105 
mineralization (M05B) were enriched in digestive cell type (Table S8).  106 
 107 
Third, we investigated whether associations between SNPs and medication-taking traits were 108 
consistent with mediation through gene expression, based on associations between SNPs and 109 
gene expression (eQTLs). We identified 177 unique genes for which expression is 110 
significantly associated with 19 medication-taking categories (Table S9) using summary 111 
data-based Mendelian Randomization (SMR) analysis13. Gene-based association tests were 112 
conducted using MAGMA14 from the GWAS SNP results for each of the 23 medication-113 
taking traits and a total of 1,841 significantly associated unique genes were identified (Table 114 
S10). To provide biological insights from the GWAS associated loci, we used the gene-based 115 
association test summary statistics to test for enrichment in 10,891 gene sets from MSigDB 116 
(v5.2)15,16. All 23 medication-taking traits were enriched in at least one gene set at FDR < 5% 117 
(Table S11). Several of the results showed plausible relevant biological mechanisms. For 118 
example, the genetic associations for taking A10 (drugs used in diabetes) were enriched for 119 
the glucose homeostasis gene set, those for taking C10AA (statins) were enriched in the 120 
cholesterol homeostasis gene set, C09 (agents acting on renin-angiotensin system) for 121 
cardiovascular-related gene sets, M05B (drugs affecting bone structure and mineralization) 122 
for skeletal system development, chondrocyte differentiation gene sets, N02A for gene sets of 123 
behavioural response to cocaine and neurogenesis and lastly H03A, L04, R03A, R03BA 124 
medications for immune-related gene sets. Interestingly, genes associated with taking A02B 125 
(drugs for peptic ulcer and gastro-oesophageal reflux disease) are enriched in gene sets of 126 
central nervous system neuron differentiation and of neurogenesis, highlighting the 127 
connection between gut and brain17.  128 
 129 
Linking genes associated with medication-taking to drug targets 130 
Secondary analyses of GWAS results not only provide insights into the biological complexity 131 
of common diseases, but also offer opportunities relevant to drug development and 132 
repurposing2,18,19. To determine whether genes associated with medication-taking could 133 
provide clues relevant to drug target identification, we performed analyses using drug-target 134 
lists from Santos et al.5 , ChEMBL20 and ClinicalTrial.gov (https://www.clinicaltrials.gov/) 135 
database as reference. First, for each UKB medication category, we investigated whether 136 
there are therapeutic-effect target genes for medications classified in that medication 137 
category; a total of 9 genes were identified (Table S12). For example, we find HMGCR 138 
(Entrez ID: 3156) is, as expected21, associated with taking C10AA medications (statins) and 139 
encodes the HMGCR protein which is targeted by medications from C10AA category. 140 
Second, we tested whether there are therapeutic-effect target genes for treating indications 141 
relevant to taking medications of each category; a total of 7 genes were identified (Table 142 
S12). PCSK9 (Entrez ID: 255738) in our analyses is also associated with taking C10AA 143 
medications, and encodes the protein mediating lowering-cholesterol effect of evolocumab 144 
(ATC code : C10AX13) and alirocumab (ATC code: C10AX14). Third, we looked at 145 
whether there are therapeutic-effect target genes (ever or currently in clinical trial and not 146 
approved by FDA yet) for treating indications relevant to medications of each category; a 147 
total of 8 genes were identified (Table S13). For example, TSLP (Entrez ID: 85480) is 148 
associated with R03A (adrenergics), R03BA (glucocorticoids) and R06A (antihistamines) 149 
and also mediates the effect of tezepelumab for the treatment of uncontrolled asthma22. 150 
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Hence, among our associated genes are 24 genes with some known evidence of therapeutic 151 
effect. Therefore, we anticipate that novel genes that are associated with medication may help 152 
to prioritise other putative therapies23. In Table S14 we provide additional analyses for two 153 
genes, IDE and AGT that we believe merit further study for type 2 diabetes and C07/C09 154 
related disorders, respectively. 155 
 156 
Shared genetic architecture between medication-taking traits and relevant complex 157 
traits 158 
The genetic correlation (rg) between the 23 medication-taking traits and 21 traits/diseases 159 
(Table S5) related to them were calculated using bivariate LD score regression24. Many rg 160 
estimated were significantly different from zero. For example,  body mass index, educational 161 
attainment (EA), former/current smoker and coronary artery disease were significantly 162 
correlated with most of the medication categories in expected directions. Major depression 163 
and neuroticism showed positive rg with A02B (gastro-oesophageal reflux drugs), suggesting 164 
a link between the brain and the digestive system. Type 2 diabetes showed correlations with 165 
taking medications C02, C03, C07~C09 and C10AA, implying a shared genetic architecture 166 
of type 2 diabetes, hypertension and hypercholesterolemia. The rg between B01A and 167 
N02BA show similar patterns of rg with other diseases/traits are similar to those for N02BA 168 
medications with other diseases/traits because the original medication aspirin (code number: 169 
1140868226, 59150 individuals in our analysis) has multiple ATC codes (A01AD05, 170 
B01AC06 and N02BA01). Full results are presented in Figure 4 and Table S15. 171 
 172 
Putative causal relationship of diseases for using medication 173 
It is reasonable to assume that having a disease is causal for taking the associated medication 174 
(rather than reverse causation). Therefore, we used Mendelian Randomisation (MR) in a 175 
proof-of-principle analysis to quantify causality. Independent SNPs (P-value < 5E-8) 176 
associated with 15 selected diseases/traits (Table S5) were used as instruments to evaluate 177 
putative causal relationships25 among these 15 diseases/traits and the 23 medication-taking 178 
traits (Table S16 and Figure 5). Increasing BMI increases the likelihood of taking A10, 179 
B01A, C01D, C02, C03, C07, C08, C09, C10AA, R03A medications, consistent with the role 180 
of BMI across diseases related to these medications25. The effect of obesity on bone health is 181 
controversial26. However, results from our analysis clearly show that increasing BMI 182 
decreases the likelihood of taking M05B (bone-associated) medications (OR 0.68 per SD of 183 
BMI). Major depression (MD) increases the likelihood of taking A02B medication (drugs for 184 
peptic ulcer and gastro-oesophageal reflux disease; 1.23-fold increase per SD in liability to 185 
MD), capturing a link between the brain and the digestive system. In addition to this, MD 186 
increases the likelihood of taking N02BE (1.23-fold increase per SD in liability to MD) 187 
medication, which is consistent with comorbidity of pain in some MD patients27.  188 
 189 
Discussion 190 
To our knowledge, this is the first paper profiling genetic contributions to medication-use. 191 
Traditional GWAS identify DNA variants associated with disease, with a goal that these 192 
discoveries ultimately may open the door to new drug treatments. Here, we have taken the 193 
reverse approach, aiming to identify DNA variants associated with medication-taking, in 194 
recognition that underlying biology may contribute to the same medication being prescribed 195 
for several indications, and conversely that only some of those with a given diagnosis may 196 
take a particular medication. As expected, some of our results for medication-taking 197 
recapitulate GWAS results of the disease traits for which the medication is prescribed. 198 
However, we have also identified some novel associations that may be worthy of follow-up. 199 
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We identified 505 linkage disequilibrium independent SNPs associated (P<1e-8/23) with 200 
different medication-taking traits. For some of our traits, large GWAS for the medication 201 
relevant indications have not been conducted, such as A02B (drugs for peptic ulcer and 202 
gastro-oesophageal reflux disease, 2 SNPs) and N02BE (anilides, 4 SNPs). Notably, 76 SNPs 203 
were associated with H03A (thyroid preparations – the main indication is hypothyroidism), 204 
only 11 of these loci have been previously reported to be associated with hypothyroidism. 205 
Conditional (mtCOJO) analysis suggested that these 76 SNPs associated with taking H03A 206 
medication are indeed associated with hypothyroidism. We showed that individuals with 207 
higher genetic risk of disease have higher likelihood to take relevant medications, for 208 
example, individuals with higher GRS for RA have an OR of 3.3 to take immunosuppressants 209 
compared with lower GRS individuals (Figure 3),  thereby providing a proof-of-principle 210 
validation of precision medicine based upon risk prediction of common diseases, since 211 
individuals with high genetic risk of disease can be identified well before the onset of 212 
symptoms and the time of medication prescription. 213 
 214 
To provide biological insight to the SNP associations for medication-taking28, we linked 215 
GWAS findings to relevant biological gene sets and drug target efficacy. These analyses 216 
generated a series of expected or plausible results, such as genes associated with taking A10 217 
(drugs used in diabetes) enriched in gene sets for glucose homeostasis. Our analyses also 218 
generate new hypotheses; genes associated with taking N06A (antidepressants) showed 219 
enrichment in the gene set for the synthesis and secretion and diacylation of ghrelin, a gut-220 
derived hormone29. Previous studies have described an antidepressant-like role of ghrelin30,31. 221 
This line of evidence suggests that testing a pharmacological effect of ghrelin on depression 222 
may be worthwhile. Although medication-associated genes overlapped with only a small 223 
proportion of current drug target genes, the framework of genetic association studies provides 224 
a potentially valuable resource for new drug target identification and prediction of 225 
unfavourable side effects18.  226 
 227 
Comorbidity is commonly observed in clinical practice, which means the presence of 228 
additional diseases in relation to an index disease32. Results from genetic correlation and 229 
disease-medication (exposure-outcome) MR highlight potential shared aetiology, and may 230 
help explain medication use in clinical practice. Our analysis showed that major depression 231 
increased the likelihood of taking A02B (drugs for peptic ulcer and gastro-oesophageal reflux 232 
disease) and N02BE (anilides), the latter consistent with reports that antidepressant 233 
prescriptions are not only indicated for depression, but also for pain33. 234 
 235 
There are a number of limitations in our study. First, although the medication-use data were 236 
obtained by trained nurses during interviews, the self-reported nature may limit the accuracy 237 
of information. Second, the ambiguous names of medications may limit the accurate 238 
classification of medications. The reasons (e.g. disease diagnosis) for taking medication were 239 
not recorded and hence not available for further analysis, nor were duration and dosage of 240 
medications. Third, our findings are specific to the UK biobank participants, which are 241 
recognized to be a non-random sample of the UK population. Fourth, the medication-taking 242 
in UK biobank participants may be more representative of medication-taking in the UK and 243 
may not translate to other populations and different health systems. 244 
 245 
In summary, we identified 505 independent loci associated with different medication-use in 246 
318,177 individuals from UKB, with implications for biological mechanisms, drug target 247 
identification and precision medicine for common disease. 248 
 249 
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Methods  250 
Medication data 251 
We used self-report data of regular medication (prescription and over-the-counter) and health 252 
supplements taken weekly, monthly or three-monthly from participants in the United 253 
Kingdom Biobank (UKB) study (http://www.ukbiobank.ac.uk)34, mainly aged 37-73 years 254 
when recruited between 2006 and 2010. Medication and health supplements data were coded 255 
and manually mapped to their corresponding active ingredients and then to their Anatomical 256 
Therapeutic Chemical (ATC) Classification System5 codes (Table S1). In total, medications 257 
were classified into 1,752 categories, collapsing to 184 subgroups according to the first three 258 
ATC levels (Figure 1, S1). 23 of these medication subgroups (based on participant numbers) 259 
were selected for analysis. Detailed methods are provided in the Supplementary Appendix.  260 
 261 
Genome-wide association study design and statistical analysis 262 
Analyses used genome-wide genotypes for 318,177 participants of white European descent 263 
(Figure S2). 23 medication-taking case groups and their corresponding control groups were 264 
generated. Case groups were defined as those taking medications classified at the same ATC 265 
level. Control groups comprised participants taking neither the case medication nor similar 266 
medications. Similar medications were defined at those sharing the first two ATC levels as 267 
the case medication or medications containing the case medication active ingredients. 268 
Following standard quality control and genotype imputation methods (see Supplementary 269 
Appendix), 7,288,503 SNPs with minor allele frequency (MAF) > 0.01 were used in 270 
analyses. Case-control genome-wide association analyses were conducted using BOLT-271 
LMM35 with age, sex, assessment centre and 20 genetic principal components fitted as 272 
covariates. Conditional analyses tested if SNPs associated with taking medications have been 273 
previously linked to their corresponding medication-specific related indications/traits36,37. 274 
Multi-trait-based conditional and joint (mtCOJO) analyses tested if medication-taking 275 
associated SNPs are also associated with their relevant main indications in UKB25. 276 
  Genetic risk score (GRS) for UKB individuals were generated for 8 diseases using SNP 277 
effect size estimates from published GWAS summary statistics (discovery sample data) 278 
(Table S2).  These GRS were used to predict the medication use traits related to these 279 
diseases (asthma mapped to two medication use traits). Selection of the discovery samples 280 
data was based on relationship to the medication-taking traits, availability of GWAS 281 
summary statistics, cohort ancestry and no sample overlap with UKB. GRS were generated 282 
for a range of discovery data association P value thresholds (5×10-8, 1×10-5, 1×10-4, 0.001, 283 
0.01, 0.05, 0.1, 0.5). The GRS were evaluated as medication-taking odds ratio for each GRS 284 
decile (relative to the 1st decile).  285 
  LD score regression11,24 was used to estimate the proportion of variance attributable to 286 
genome-wide SNPs (ℎ"#$% ) and to quantify genetic sharing at common variants across the 23 287 
medication-taking traits and other traits. LD score regression for cell type specific analysis12 288 
was applied to test the ℎ"#$% 	enrichment in different tissues for each of the 23 medication-289 
taking traits. Gene expression data of 205 tissues (53 from GTEx38 and 152 from other 290 
sources39,40) were used for analyses. Summary-data-based Mendelian Randomization 291 
(SMR)13 was used to integrate our trait association with blood expression quantitative trait 292 
loci (eQTL, i.e., SNP-gene expression association) data41. Gene-based association analyses 293 
were conducted using MAGMA (v1.06)14 to identify genes associated with different 294 
medication-taking traits.  Gene sets association analyses were conducted using MAGMA 295 
(v1.06)14 with curated gene sets (c2.all) and gene ontology sets (c5.bp, c5.cc, c5.mf) from 296 
MSigDB (v5.2)15,16. 297 
  Mendelian Randomization (MR) was used to investigate a putative causal relationship 298 
between the 23 medication-taking traits and 15 significantly correlated traits (selected from 299 
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Table S2), using Generalized Summary-data-based MR (GSMR)25. We required that all 300 
analyses had at least 7 genome-wide significant loci to use as MR instruments; the median 301 
number of SNP instruments was 65. 302 
 303 
Analyses linking GWAS results to drugs and disease  304 
  To check whether associated genes from MAGMA and SMR encode effect-mediating 305 
targets for FDA-approved medications or corresponding indications, we used information 306 
from Santos et al.5, based on medication approved by the FDA before June 2015. For those 307 
approved later, we used the ChEMBL database20. To check whether associated genes encode 308 
trait-relevant effect-mediating targets for drugs in clinical trial, we used ClinicalTrial.gov 309 
(https://www.clinicaltrials.gov/). The CLUE Touchstone tool (https://clue.io/)42 was used to 310 
check the correlation between signatures of drugs and knocking down a gene. 311 
 312 
URLs 313 
UK Biobank: http://www.ukbiobank.ac.uk; ClinicalTrial.gov: https://www.clinicaltrials.gov/; 314 
CLUE Touchstone tool: https://clue.io/. 315 
 316 
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Figure 1. Distribution of 1,752 UKB medications at the first three ATC level.  489 
The inner ring corresponds to the 1st level of the ATC code. The outer ring represents the first 490 
3 level of the ATC code (184 subgroups). The length of the bar represents the number of 491 
classified UKB medications assigned to that subgroup (numbers of participants are shown in 492 
Figure 2). Red bars are the 23 medication-taking traits used in analyses (selected based on 493 
participant numbers). The 23 medication-taking traits are grouped into 9 diseases and organ 494 
system categories according to the main indications, which is highlighted using different 495 
colours (legend bottom left). The legend at the bottom right shows how ATC codes are 496 
assigned to each UKB medication. 497 
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Figure 2. Summary of UKB medication-taking GWAS analyses. 504 
Text on the right side of each bar represents the meaning of each medication-taking ATC coded trait. 505 
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Figure 3. Odds ratio (OR) by genetic risk score (GRS) profile decile (1 = lowest, 10 = 508 
highest GRS), with OR reported relative to decile 1 as the reference.  509 
OR and 95% confidence intervals (blue bars) were estimated using logistic regression. The P 510 
value in the bottom right hand corner of each plot refers to the P-value threshold in the 511 
discovery sample used to generate the GRS. Note: An increased GRS of femoral neck bone 512 
mineral density implies a lower density. 513 
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Figure 4. Genetic correlation of the 23 medication-taking traits and 21 diseases/traits related 523 
to them. 524 
Abbreviations: Body mass index (BMI), Education attainment (EA), Type 2 diabetes (T2D), 525 
High-density lipoprotein cholesterol (HDLC), Low-density lipoprotein cholesterol (LDLC), 526 
Total cholesterol (TC), Triglyceride (TG), Coronary artery disease (CAD), Systolic blood 527 
pressure (SBP), Diastolic blood pressure (DBP), Pulse pressure (PP), Rheumatoid arthritis 528 
(RA), Bone mineral density (BMD), Major depression (MD), Intraocular pressure (IOP). 529 
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Figure 5. Mendelian Randomisation results using published SNPs associated with 15 diseases/traits as instrument. Rows are the exposure traits 564 
and columns are the outcome medication traits. 565 
Rows represent exposure and columns represent outcome. The significant effects after correcting for 345 tests (P value ≤ 1.4 × 10−4) are labelled 566 
with OR (P value). The OR is per SD in liability when the exposure is disease. Abbreviation: Body mass index (BMI), Coronary artery disease 567 
(CAD), Diastolic blood pressure (DBP), Bone mineral density (BMD), High-density lipoprotein cholesterol (HDLC), Low-density lipoprotein 568 
cholesterol (LDLC), Major depression (MD), Pulse pressure (PP), Rheumatoid arthritis (RA), Systolic blood pressure (SBP), Type 2 diabetes 569 
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