New Results
A simple new approach to variable selection in regression, with application to genetic fine-mapping
View ORCID ProfileGao Wang, View ORCID ProfileAbhishek Sarkar, View ORCID ProfilePeter Carbonetto, View ORCID ProfileMatthew Stephens
doi: https://doi.org/10.1101/501114
Gao Wang
1Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
Abhishek Sarkar
1Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
Peter Carbonetto
1Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
2Research Computing Center, The University of Chicago, Chicago, IL, 60637, USA
Matthew Stephens
1Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
3Department of Statistics, The University of Chicago, Chicago, IL, 60637, USA
Article usage
Posted June 27, 2020.
A simple new approach to variable selection in regression, with application to genetic fine-mapping
Gao Wang, Abhishek Sarkar, Peter Carbonetto, Matthew Stephens
bioRxiv 501114; doi: https://doi.org/10.1101/501114
Subject Area
Subject Areas
- Biochemistry (12751)
- Bioengineering (9629)
- Bioinformatics (31153)
- Biophysics (16052)
- Cancer Biology (13128)
- Cell Biology (18774)
- Clinical Trials (138)
- Developmental Biology (10163)
- Ecology (15143)
- Epidemiology (2067)
- Evolutionary Biology (19353)
- Genetics (12843)
- Genomics (17729)
- Immunology (12855)
- Microbiology (30097)
- Molecular Biology (12561)
- Neuroscience (65579)
- Paleontology (485)
- Pathology (2031)
- Pharmacology and Toxicology (3503)
- Physiology (5428)
- Plant Biology (11246)
- Synthetic Biology (3106)
- Systems Biology (7748)
- Zoology (1751)