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Abstract 
Alzheimer’s disease (AD), the most prevalent form of dementia, is a progressive and 

devastating neurodegenerative condition for which there are no effective treatments. 

Understanding the molecular pathology of AD during disease progression may identify new 

ways to reduce neuronal damage. Here, we present a longitudinal study tracking dynamic 25 

proteomic alterations in the brains of an inducible Drosophila melanogaster model of AD 

containing the Arctic mutant Aβ42 gene. We identified 3093 proteins from diseased flies and 

age-matched healthy controls using label-free quantitative ion-mobility data independent 

analysis mass spectrometry. Of these, 228 proteins were significantly altered by Aβ42 

accumulation independently of age, are enriched for AD-associated processes and have 30 

distinct hub and bottleneck properties in the brain protein interaction network. We also 

demonstrate widespread ageing-independent brain proteome dysregulation in response to 

Aβ42, which affects the expression of proteins that are important for brain function and jmay 

explain the neuronal damage observed in AD. 

 35 
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Introduction 
Alzheimer’s disease (AD) is a progressive and devastating neurodegenerative disease that 

is the most prevalent form of dementia [1]. Symptoms initially present as episodic memory 40 

loss and subsequently develop into widespread cognitive impairment. Two brain lesions are 

pathological hallmarks of the disease: plaques and neurofibrillary tangles. Plaques are 

extracellular aggregates of amyloid beta (Aβ) [2], whereas, neurofibrillary tangles are 

intraneuronal aggregates of hyperphosphorylated tau [3,4]. In addition to these hallmarks, 

the AD brain experiences many other changes, including metabolic and oxidative 45 

dysregulation [5,6], DNA damage [7], cell cycle re-entry [8], axon loss [9] and, eventually, 

neuronal death [6,10]. 

Despite a substantial research effort, no cure for AD has been found. Effective treatments 

are desperately needed to cope with the projected increase in the number of new cases as a 

result of longer life expectancy and an ageing population. Sporadic onset is the most 50 

common form of AD (SAD), for which age is the major risk factor, whereas, familial AD 

(FAD)—a less common (<1%), but more aggressive, form of the disease—has an early 

onset of pathology before the age of 65 [11]. Familial AD is caused by fully penetrant 

mutations in the Aβ precursor protein (APP) and two subunits—presenilin 1 and presenilin 

2—of the Ɣ-secretase complex that processes APP in the amyloidogenic pathway to 55 

produce Aβ. Whilst the exact disease mechanisms of AD are not yet fully understood, this 

has provided support for Aβ accumulation as a key player in its cause and progression [1]. 
Aβ42—a 42 amino acid variant of the peptide—is neurotoxic [12], necessary for plaque 

deposition [13] and sufficient for tangle formation [14]. The Arctic mutation in Aβ42 

(Glu22Gly) [15] causes a particularly aggressive form of familial AD that is associated with 60 

an increased rate and volume of plaque deposition [16]. Genetic analyses of SAD, however, 

suggest a complex molecular pathology, in which alterations in neuro-inflammation, 

cholesterol metabolism and synaptic recycling pathways may also be required for Aβ42 to 

initiate the toxic cascade of events leading to tau pathology and neuronal damage in 

dementia. 65 

Comparison of proteomic analyses of post-mortem human brains have further revealed an 

increase in metabolic processes and reduction in synaptic function in AD [17]. Oxidised 

proteins also accumulate at early stages in AD brain, probably as a result of mitochondrial 

ROS production [18], and redox proteomic approaches suggest that enzymes involved in 

glucose metabolism are oxidised in mild cognitive impairment and AD [19,20]. Moreover, 70 

phospho-proteomic approaches have revealed alterations in phosphorylation of glycolytic 

and metabolic enzymes, as well as in kinases that regulate phosphorylation of chaperones 
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such as HSP27 and crystallin alpha B [21]. Of note, however, there is little proteomic overlap 

between studies using post-mortem human brain tissue, which may reflect the low sample 

numbers available for such studies, differences in comorbidities between patients and 75 

confounding post-mortem procedures [17]. Although valuable, post-mortem studies also 

reflect the end-stage of disease and, therefore, do not facilitate measurement of dynamic 

alterations in proteins as AD progresses. 

Animal models of AD, generated through transgenic over-expression of human APP or tau, 

provide an opportunity to track proteomic alterations at pre- and post-pathological stages, 80 

thus facilitating insight into the molecular mechanisms underlying disease development and 

revealing new targets for drugs to reduce AD progression. Analyses of transgenic mice 

models of AD have revealed some overlapping alterations in metabolic enzymes, kinases 

and chaperones with human AD brain [17]. Only one study, however, has tracked alterations 

in protein carbonylation over time, showing increases in oxidation of metabolic enzymes 85 

(alpha-enolase, ATP synthase α-chain and pyruvate dehydrogenase E1) and regulatory 

molecules (14-3-3 and Pin1) in correlation with disease progression [22]. 

Drosophila models of AD have been generated and shown to develop progressive 

neurodegenerative phenotypes, such as reduced climbing ability, and shortened lifespan 

when human Aβ42 peptide is expressed exclusively in adult fly neurons [23]. Using this 90 

inducible system, and taking advantage of the short lifespan of the fly, we have performed a 

longitudinal study of the brain proteome to capture the effects of Aβ42-toxicity in the brain 

from the point of amyloid induction and across life. We identified 3093 proteins using label-

free quantitative ion-mobility data independent analysis mass spectrometry (IM-DIA-MS) 

[24], 1854 of which were common to healthy and AD flies. In this set, we identified 228 95 

proteins that are significantly altered in AD; although the proteome of AD flies was clearly 

segregated from healthy controls at all ages, suggesting that biochemical alterations induced 

by Aβ42 do not simply reflect accelerated ageing. Proteins altered in response to Aβ42 were 

enriched for AD processes and have statistically significant network properties in the brain 

protein interaction network. We also show that these proteins are likely to be bottlenecks for 100 

signalling in the network, suggesting that they comprise important proteins for normal brain 

function. Our data indicates that ageing-independent brain proteome dysregulation in AD 

alters essential brain processes resulting in the premature death of AD flies. Our data will be 

an invaluable resource to understand the dynamic properties of Aβ42 proteo-toxicity during 

AD progression, with future functional studies identifying potential therapeutic candidates to 105 

treat AD at pre- and post-symptomatic stages.  
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Results 

Proteome analysis of healthy and AD brains 
Using an inducible transgenic fly line expressing human Arctic mutant Aβ42 (TgAD) [23] (Fig 

1A), we confirmed a previously observed [23] reduction in lifespan following Aβ42 induction 110 

prior to proteomic analyses (Fig 1B). 

To understand how the brain is affected as Aβ42 toxicity progresses, fly brains were 

dissected from healthy and AD flies at 5, 19, 31 and 46 days, and 54 and 80 days for healthy 

controls, and the proteome was analysed by label-free quantitative IM-DIA-MS (Fig 1C, 

Supplementary Data 1). 1854 proteins were identified in both healthy and AD flies from a 115 

total of 3093 proteins (Fig 1D), which is comparable with recent fly proteomics studies 

[25,26]. 
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Figure 1. Proteome analysis of healthy and AD brains. (A) Drosophila melanogaster 
transgenic model of AD (TgAD) that expresses Arctic mutant Aβ42 in a mifepristone-120 
inducible GAL4/UAS expression system under the pan-neuronal elav promoter. (B) Survival 
curves for healthy and AD flies. AD flies were induced to express Aβ42 at 2 days. Markers 
indicate days that MS samples were collected. (C) Experimental design of the brain 
proteome analysis. AD flies were induced to express Aβ42 at 2 days. For each of the three 
biological repeats, 10 healthy and 10 AD flies were collected at 5, 19, 31 and 46 days, as 125 
well as 54 and 80 days for healthy flies. Proteins were extracted from dissected brains and 
digested with trypsin. The resulting peptides were separated by nanoscale ultra performance 
liquid chromatography and analysed by label-free quantitative IM-DIA-MS. (D) Proteins 
identified by IM-DIA-MS. (E) Principal component analysis of the IM-DIA-MS data. Axes are 
annotated with the percentage of variance explained by each principal component. (F) 130 
Hierarchical biclustering using relative protein abundances normalised to their abundance in 
healthy flies at 5 days. 
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For the 1854 proteins identified in both healthy and AD flies, we assessed the reliability of 135 

our data. Proteins were highly correlated between technical and biological repeats (Fig S1). 

We used principal component analysis of the protein abundances to identify sources of 

variance (Fig 1E). Healthy and AD samples are clearly separated in the first principal 

component, due to the effects of Aβ42 in AD flies. In the second principal component, 

samples are separated by increasing age, due to age-dependent changes in the proteome. 140 

These results show that whilst ageing does contribute to changes in the brain proteome 

(8.7% of the total variance), much larger changes are seen in AD (70.6%). Furthermore this 

suggests that Aβ42 toxicity does not simply reflect ‘accelerated ageing’, but instead operates 

via distinct pathways to the ageing process. We confirmed this result using hierarchical 

biclustering of protein abundances in Aβ42 versus healthy flies at 5 days (Fig 1F). The heat 145 

map reveals that, in healthy flies, most proteins do not vary significantly in abundance. 

Conversely, many proteins are differentially abundant in AD flies, compared with healthy 

flies. 

Brain proteome dysregulation in AD 
With the knowledge that Aβ42 expression affects the abundances of proteins in the brain, 150 

we then further identified proteins that were significantly altered in AD. To do this, we used 

five methods commonly used to analyse time course RNA-Seq data [27] and classified 

proteins as significantly altered if at least two methods detected them [28]. We identified 228 

significantly altered proteins from 740 proteins that were detected by one or more methods 

(Fig 2A). A comparison of popular RNA-Seq analysis tools [29] showed that edgeR [30] has 155 

a high false positive rate and variable performance on different data sets, whereas, DESeq2 

[31] and limma [32] have low false positive rates and perform more consistently. We saw a 

similar trend in our data set. limma and DESeq2 detected the lowest number of proteins, 

with 21 proteins in common (Fig S2A). edgeR detected more proteins, of which 38 were also 

detected by DESeq2 and 16 by limma. EDGE [33] and maSigPro [34] detected vastly more 160 

proteins, 464 of which were only detected by one method. Principal component analysis 

shows that edgeR, DESeq2 and limma detect similar proteins, whereas, EDGE and 

maSigPro detect very different proteins (Fig S2B).  
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Figure 2. Brain proteome dysregulation in AD. (A) Proteins significantly altered in AD 165 
were identified using five methods (EDGE, edgeR, DESeq2, limma and maSigPro) and 
classified as significantly altered if at least two methods detected them. (B) Significantly 
altered proteins in AD (from A) and ageing. (C) Significantly altered protein abundances 
were z score-transformed and clustered using a Gaussian mixture model. 

  170 
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Although these methods should be able to differentiate between proteins that are altered in 

TgAD flies from those that change during normal ageing, we confirmed this by analysing 

healthy flies separately. In total, 61 proteins were identified as significantly altered (Fig S3), 

of which 30 were identified as significantly altered in normal ageing and AD (Fig 2B), while 

31 proteins were only significantly altered in normal ageing. These proteins are not enriched 175 

for any pathways or functions. Based on our data, we see that the vast majority of proteins 

that are significantly altered in AD are not altered in normal ageing and that AD causes 

significant dysregulation of the brain proteome. This further suggests that AD and ageing 

affect the brain via distinct pathways. 

Reduced insulin/IGF signalling is known to promote longevity in many organisms. A recent 180 

mass spectrometry proteomics study of fly brains that have lower insulin/IFG signalling 

identified a large number of significantly altered proteins [26], although very few of these 

overlap with the proteins that we found to be significantly altered in AD. At the 0.05 

significance level, 29 proteins were in common, representing 15% of our 228 significantly 

altered proteins, but just 7% of their total number of significantly altered proteins. Within 185 

these 29 proteins were three subunits of the cytochrome c oxidase complex, myosin and 

acyl CoA synthetase—involved in fatty acid metabolism. The small overlap of significantly 

altered proteins between these two studies is not surprising, however, and highlights the 

diverse molecular, cellular and physiological effects that ageing, AD and other age-

associated diseases can have.  190 

To understand how the abundances of the significantly altered proteins change in AD, we 

clustered their profiles using a Gaussian mixture model (Fig 2C). The proteins clustered best 

into four sets (Fig S4). In comparison to healthy flies, cluster 1 contains proteins that have 

consistently higher abundance in AD. Conversely, cluster 2 contains proteins that have 

lower abundance in AD. The abundances of proteins from clusters 1 and 2 are affected from 195 

the onset of disease at day 5, and remain at similar levels as the disease progresses. 

Dysregulation of these proteins may initiate AD pathogenesis, or be involved in early stage 

progression. Proteins in cluster 3 follow a similar trend in healthy and AD flies and increase 

in abundance with age. However, cluster 4 proteins decrease in abundance as the disease 

progresses, whilst remaining steady in healthy flies. These proteins may be interesting 200 

therapeutic targets because there is a greater opportunity to intervene between disease 

onset and amyloid accumulation, and their abundance beginning to decrease.  

We performed a statistical GO enrichment analysis on each cluster, but found no enrichment 

of terms. Furthermore, we also saw no enrichment when we analysed all 228 proteins 

together. 205 
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Proteins significantly altered in AD have distinct network 
properties 
Next, we analysed the 228 significantly altered proteins in the context of the brain protein 

interaction network to determine whether their network properties are significantly different to 

the other brain proteins. Using a subgraph of the STRING [35] network induced on the 3093 210 

proteins identified by IM-DIA-MS, we calculated four graph theoretic network properties (Fig 

3A) of the 183 significantly altered proteins contained in this network: degree, the number of 

edges that a node has; shortest path, the smallest node set that connect any two nodes; 

largest connected component, the largest node set for which all nodes have at least one 

edge to any of the other nodes; and betweenness centrality, the proportion of all the shortest 215 

paths in the network that a particular node lies on.  
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Figure 3: Significantly altered proteins have statistically significant network 
properties in the brain protein interaction network. (A) Network properties that were 
calculated: degree, the number of edges that a node has; shortest path, the smallest node 220 
set that connect any two nodes; largest connected component, the largest node set for 
which all nodes have at least one edge to any of the other nodes; and betweenness 
centrality, the proportion of all the shortest paths in the network that a particular node lies on. 
Using a subgraph of the STRING network induced on the 3093 proteins identified by IM-DIA-
MS in healthy and AD flies, the significance of four network characteristics were calculated 225 
for the 183 significantly altered proteins contained in this subgraph. (B) mean degree; (C) 
mean shortest path length between a node and the remaining 182 nodes; (D) the size of the 
largest connected component in the subgraph induced on these nodes; and (E) mean 
betweenness centrality. Non-parametric p-values were calculated using null distributions of 
the test statistics, simulated by randomly sampling 183 nodes from the network 10,000 230 
times.  
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We performed hypothesis tests and found that these proteins have statistically significant 

network properties. Firstly, the significantly altered proteins make more interactions than 

expected (mean degree p < 0.05; Fig 3B). Therefore, these proteins may further imbalance 

the proteome by disrupting the expression or activity of proteins they interact with. Secondly, 235 

not only are these proteins close to each other (mean shortest path p < 0.05; Fig 3C), but 

also 129 of them form a connected component (size of largest connected component p < 

0.01; Fig 3D). These two pieces of evidence suggest that AD disrupts proteins at the core of 

the proteome. Lastly, these proteins lie along shortest paths between many pairs of nodes 

(mean betweenness centrality p < 0.01; Fig 3E) and may control how signals are transmitted 240 

in cells. Proteins with high betweenness centrality are also more likely to be essential genes 

for viability [36]. Taken together, these findings results strongly suggest that the proteins 

significantly altered in AD are important in the protein interaction network, and that 

dysregulation of these proteins may have significant consequences for the brain proteome 

and therefore function. 245 

Predicting the severity of AD-associated protein alterations 
using network properties 
We predicted how severely particular AD-associated protein alterations may affect the brain 

using two network properties—the tendency of a node to be a hub or a bottleneck. In 

networks, nodes with high degree are hubs for communication, whereas, nodes with high 250 

betweenness centrality are bottlenecks that regulate how signals propagate through the 

network. Protein expression tends to be highly correlated to that of its neighbours in the 

protein interaction network. One exception to this rule, however, are bottleneck proteins, 

whose expression tends to be poorly correlated with that of its neighbours [36]. This 

suggests that the proteome is finely balanced and that the expression of bottleneck proteins 255 

is tightly regulated to maintain homeostasis. We analysed the hub and bottleneck properties 

of the significantly altered proteins and identified four hub-bottlenecks and five nonhub-

bottlenecks that are involved in AD (Fig 4A) and analysed how their abundances change 

during normal ageing and over the course of the disease (Fig 4B).  
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 260 

Figure 4. Analysis of hubs and bottlenecks in the brain protein interaction network. In 
networks, nodes with high degree are hubs and nodes with high betweenness centrality are 
bottlenecks. (A) Degree (hub-ness) is plotted against betweenness centrality (bottleneck-
ness) in the brain protein interaction network for all proteins identified by IM-DIA-MS (grey 
circles). Of the significantly altered proteins (red circles), hub-bottleneck (> 90th percentile 265 
(PC) for degree and betweenness centrality) and nonhub-bottleneck proteins (> 90th PC for 
betweenness centrality) are highlighted (filled red circles). (B) Profiles of significantly altered 
bottleneck proteins implicated in AD. Maximum abundances are scaled to 1.  
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Nonhub-bottlenecks: Acs1, CG6543, Got2, CoII and Acp65Aa 
Three of the nonhub-bottlenecks are metabolic enzymes. Acs1 and CG6543 are involved in 270 

the production of acetyl-CoA from fatty acids. Acyl-CoA synthetase long chain (Acs1) 

catalyses the ligation of CoA to acyl chains and CG6543 hydrates double bonds in 

unsaturated fatty acids. AD is known to affect many enzymes involved in acetyl-CoA 

metabolism, causing an acetyl-CoA deficit in the brain and loss of cholinergic neurons [6]. 

Whilst CG6543 abundance increases in healthy flies during normal ageing—suggesting that 275 

aged flies require higher activity—its level was decreased in AD, which may have severe 

consequences. On the other hand, Acs1 is increased in AD. During development, Acs1 

participates in neuronal development by directing the growth of axons.  

Aspartate aminotransferase (Got2) produces the neurotransmitter L-glutamate from 

aspartate and is involved in assembly of synapses. After brain injury, aspartate 280 

aminotransferase levels become elevated [37], which may explain why Got2 is upregulated 

in AD.  

In the mitochondrial electron transport chain, cytochrome c oxidase (COX)—also known as 

complex IV—uses the energy from reducing molecular oxygen to water to generate a proton 

gradient across the inner mitochondrial membrane. CoII—a COX subunit—is downregulated 285 

in AD flies. The link between COX and AD is unclear, although Aβ is known to inhibit COX 

activity [38]. For example, in AD patients, COX activity—but not abundance—is reduced, 

resulting in increased levels of ROS [39]. However, in COX-deficient mouse models of AD, 

plaque deposition and oxidative damage are reduced [40]. Taken together, these results 

suggest that whilst COX is clearly involved in AD, more work is required to decipher its role 290 

and how our results fit into this emerging picture. 

The cuticle protein Acp65Aa was also upregulated in AD, but levels fell sharply between 5 

and 19 days. However, it is surprising that we identified Acp65Aa in our samples, as it is not 

expected to be expressed in the brain. One explanation may involve chitin, which has been 

detected in AD brains and has been suggested to facilitate Aβ nucleation [41]. Amyloid 295 

aggregation has previously been shown to plateau around 15 days post-induction [42], 

which is around the same time that Acp65Aa drops in AD flies. Our results suggest that 

Aβ42 causes an increase in Acp65Aa expression early in the disease, but further 

experiments are needed to confirm this and whether AD flies have defective wings [43]. 

Hub-bottlenecks: Hsp70A, Gp93, Top2 and Act75B 300 

Meanwhile, the four hub-bottlenecks indicate that the AD brain is stressed. Hsp70A, a heat 

shock protein that responds to hypoxia, is massively upregulated in AD—even after 5 days. 
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Hypoxia has been shown to promote Aβ accumulation and tau hyperphosphorylation in the 

brain [44]. Additionally, we found Gp93—a stress response protein that binds unfolded 

proteins—to be twice as high in AD. DNA topoisomerase 2 (Top2), an essential enzyme for 305 

DNA double-strand break repair, is decreased in AD. Double-strand breaks occur naturally 

in the brain as a consequence of neuronal activity—an effect that is aggravated by Aβ [7]. As 

a consequence of deficient DNA repair machinery, deleterious genetic legions will 

accumulate in the brain and exacerbate neuronal loss. 

Finally, we found that actin is increased in AD, in agreement with two recent studies on mice 310 

brains [45,46]. Recently, Kommaddi and colleagues found that Aβ causes depolymerisation 

of F-actin filaments in a mouse AD model before onset of AD pathology [46]. The authors 

showed that although the concentration of monomeric G-actin increases, the total 

concentration of actin remains unchanged. It has long been known that G-, but not F-, actin 

is susceptible to cleavage by trypsin [47], permitting its detection and quantification by IM-315 

DIA-MS. Hence, the apparent increase of actin in AD flies may be due to F-actin 

depolymerisation, which increases the pool of trypsin-digestible G-actin, and is consistent 

with the findings of Kommaddi et al. To confirm whether total actin levels remain the same in 

the brains of AD flies, additional experiments would have to be carried out in the future: 

tryptic digestion in the presence of MgADP—which makes F-actin susceptible to cleavage 320 

[48]—and transcriptomic analysis of actin mRNA. Furthermore, actin polymerisation is ATP-

dependent, so increased levels of G-actin may indicate reduced intracellular ATP. In 

addition, ATP is important for correct protein folding and therefore reduced levels may lead 

to increased protein aggregation in AD. 

Due to the importance of these hub and bottleneck proteins in the protein interaction 325 

network, we predict that AD-associated alterations in their abundance will likely have a 

significant effect on the cellular dynamics of the brain. We predict that rescuing these 

perturbations with drugs, or other therapeutics, would return these proteins to their normal 

abundance and therefore alleviate the effects and symptoms of AD. For example, the 

abundances of Acsl1, Got2 and Gp93 increase as the disease progresses, so reducing their 330 

abundance should be neuroprotective. Conversely, increasing the expression of CG6543, 

ColI, or Top2, whose abundances are reduced in AD, should also be neuroprotective. 

Increasing or decreasing ACP64Aa, Act57B or Hsp70A could be neuroprotective, depending 

on the time of intervention, as toxicity may either be due to their elevated abundance in AD, 

or that their abundance falls as the disease progresses. 335 
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Dysregulated genes are associated with known AD and ageing 
network modules 
Finally, we clustered the protein interaction network into modules and performed a GO 

enrichment analysis on modules that contained any of the 228 significantly altered proteins. 

We saw no GO term enrichment when we tested these proteins clustered according to their 340 

abundance profiles (Fig 2C), presumably because the proteins affected in AD are diverse 

and involved in many different biological processes. However, by testing network modules 

for functional enrichment, we exploited the principle that interacting proteins are functionally 

associated. Using a subgraph of the STRING network containing the significantly altered 

proteins and their directly-interacting neighbours, we used MCODE [49] to find modules of 345 

densely interconnected nodes. We chose to include neighbouring proteins to compensate 

for proteins that may not have been detected in the MS experiments due to the stochastic 

nature of observing peptides and the wide dynamic range of biological samples [50]. The 

resulting subgraph contained 4842 proteins, including 183 of the 228 significantly altered 

proteins, as well as 477 proteins that were only identified in healthy or AD flies and 3125 350 

proteins that were not identified in our IM-DIA-MS experiments. 12 modules were present in 

the network (Fig 5A, Supplementary Data 2). The proportion of these modules that were 

composed of significantly altered proteins ranged from 0–8%. All but one of the modules 

were enriched for processes implicated in AD and ageing (Fig 5, Supplementary Data 3), 

including respiration and oxidative phosphorylation; transcription and translation; proteolysis; 355 

DNA replication and repair; and cell cycle regulation. These modules contained two proteins 

that were recently found to be significantly altered in the brain of AD mice [45] and are both 

upregulated four-fold in AD: adenylate kinase, an adenine nucleotide phosphotransferase, 

and Arm, involved in creating long-term memories. 

  360 
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Figure 5. Analysis of network modules enriched for AD or ageing processes. MCODE 
was used to identify network modules in a subgraph of the STRING network containing the 
significantly altered proteins and their directly-interacting neighbours. The size of the 
resulting 12 modules is plotted against the fraction of proteins in these modules that are 365 
significantly altered in AD. Module 2 is annotated as containing ApoB. Marker sizes denote 
the MCODE score for the module. 
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In humans, the greatest genetic risk factor for AD is the Ɛ4 allele of ApoE—an apolipoprotein 

involved in cholesterol transport and repairing brain injuries [51]. A recent study showed that 370 

ApoE is only upregulated in regions of the mouse brain that have increased levels of Aβ [45], 

indicating a direct link between the two proteins. Although flies lack a homolog of ApoE, they 

do possess a homolog of the related apolipoprotein ApoB (Apolpp) [52], which contributes to 

AD in mice [53,54] and is correlated with AD in humans [55,56]. Interestingly, whilst it was 

not identified by IM-DIA-MS, ApoB interacts with 12 significantly altered proteins in the 375 

STRING network, so is included in the subgraph induced on the significantly altered proteins 

and their neighbours. ApoB was found in the second highest scoring module that contains 

proteins involved in translation and glucose transport (Fig 5). 

We analysed the 31 proteins significantly altered in normal ageing, but not AD. Of the 29 

proteins that were contained in the STRING network, 24 interact directly with at least one of 380 

the AD significantly altered proteins, suggesting an interplay between ageing and AD at the 

pathway level. Using a subgraph of the STRING network induced on these proteins and their 

1603 neighbours, we identified eight network modules that were enriched for ageing 

processes [57], including respiration; unfolded protein and oxidative damage stress 

responses; cell cycle regulation; DNA damage repair; and apoptosis.  385 
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Discussion 
Despite the substantial research effort spent on finding drugs against AD, so far, effective 

treatments—let alone a cure—remain elusive. Recently, however, there is renewed 

optimism following the discovery that plaque deposition can be prevented by a therapeutic 

antibody [58]. This work establishes ion-mobility-enabled, label-free quantitative proteomics 390 

as an effective method to track dynamic proteomic alterations, such as the widespread 

Aβ42-induced proteome dysregulation we observed in our Drosophila AD model. 

Our analysis identifies many similarities between the processes that are affected by AD in 

both fly and human, demonstrating the relevance of our fly experimental system in future AD 

research, such as drug efficacy assays. Whilst there are slight differences in AD pathology 395 

between worm, fly and mouse model organisms, numerous studies have demonstrated high 

levels of conservations between these models, particularly with regard to age-related 

diseases. We believe that the ease of maintaining animal stocks, obtaining single-tissue 

brain samples and quantifying the proteome without the need for exogenous labels make 

our experimental system an excellent choice with which to study AD. Furthermore, 400 

Drosophila are a powerful and tractable model in which to test drug targets against a wide 

range of genetic backgrounds and mutants. 

In conclusion, we performed a longitudinal study of the Drosophila brain proteome in AD and 

tracked the dynamic molecular Aβ42-induced alterations that occured during progression of 

the disease by label-free quantitative IM-DIA-MS. We identified important proteins that are 405 

significantly altered in AD and enriched for a complex set of processes. By analysing these 

proteins in the context of protein interaction networks, we were able to untangle these 

processes and produce a more coherent picture of the disease. For example, we predicted 

that changes in the abundances of hub and bottleneck proteins will likely cause widespread 

dysregulation of the brain proteome. For correct neuronal function, homeostasis of the brain 410 

proteome must be maintained. As such, drugs that reduce the abundance of Acsl1, Got2 or 

Gp93 may protect the brain against AD, as the abundance of these proteins increases as 

the disease progresses. 

Our work demonstrates that by analysing these proteins, the associated processes can be 

untangled. In the future, our data set will be an invaluable resource to elucidate the 415 

mechanisms of Aβ42-induced pathology and can provide important insights into human AD.  
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Materials and methods 

Fly stocks 
The TgAD fly line used in this study [23] contains the human transgene encoding the Arctic 

mutant Aβ42 peptide [59]. Expression of Aβ42 was controlled by GeneSwitch [60]—a 420 

mifepristone-inducible GAL4/UAS expression system—under the pan-neuronal elav 

promoter. 

Flies were grown in 200 ml bottles on a 12 h/12 h light/dark cycle at constant temperature 

(25 °C) and humidity. Growth media contained 15 g/l agar, 50 g/l sugar, 100 g/l autolysed 

yeast, 100 g/l nipagin and 3 ml/l propionic acid. Flies were grown for two days after eclosion 425 

before females were transferred to vials at a density of 25 flies per vial for the lifespan 

analysis and 10 flies per vial for the IM-DIA-MS analysis. Expression of Aβ42 was induced in 

AD flies by spiking the growth media with mifepristone to a final concentration of 200 µM. 

Flies were transferred to fresh media three times per week, at which point the number of 

surviving flies was recorded. For each of the three biological repeats, 10 healthy and 10 AD 430 

flies were collected at 5, 19, 31 and 46 days, as well as 54 and 80 days for healthy flies. 

Following anesthetisation with CO2, brains were dissected in ice cold 10 mM phosphate 

buffered saline snap frozen and stored at -80°C. 

Extraction of brain proteins 
Brain proteins were extracted by homogenisation on ice into 50 µl of 50 mM ammonium 435 

bicarbonate, 10 mM DTT and 0.25% RapiGest detergent. Proteins were solubilised and 

disulfide bonds were reduced by heating at 80°C for 20 minutes. Free cysteine thiols were 

alkylated by adding 20 mM IAA and incubating at room temperature for 20 minutes in 

darkness. Protein concentration was determined and samples were diluted to a final 

concentration of 0.1% RapiGest using 50 mM ammonium bicarbonate. Proteins were 440 

digested with trypsin overnight at 37°C at a 50:1 protein:trypsin ratio. Additional trypsin was 

added at a 100:1 ratio the following morning and incubated for a further hour. Detergent was 

removed by incubating at 60°C for 1 hour in 0.1% formic acid. Insoluble debris was removed 

by centrifugation at 14,000 x g for 30 minutes. Supernatant was collected, lyophilised and 

stored at -80°C. Prior to lyophilisation peptide concentration was estimated by nanodrop 445 

(Thermo Fisher Scientific, Waltham, MA). 

Label-free quantitative IM-DIA-MS 
Peptides were separated by UPLC by loading 300 ng of protein onto an analytical reversed 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 22, 2018. ; https://doi.org/10.1101/501213doi: bioRxiv preprint 

https://doi.org/10.1101/501213
http://creativecommons.org/licenses/by-nd/4.0/


 

22 

phase column. IM-DIA-MS analysis was performed using a Synapt G2-Si HDMS mass 

spectrometer (Waters Corporation, Manchester, UK). The time-of-flight analyzer of the mass 450 

spectrometer was externally calibrated with a NaCsI mixture from m/z 50 to 1990. Spectra 

were acquired over a range of 50–2000 m/z. Each biological repeat was analysed at least 

twice to account for technical variation. 

Liquid chromatography MS data were peak detected and aligned by Progenesis QI for 

proteomics (Waters Corporation). The principles of the embedded search algorithm for DIA 455 

data has been described previously [61]. Proteins were identified by searching against the 

Drosophila melanogaster proteome in UniProt, appended with common contaminants, and 

revered sequence entries to estimate protein identification false discovery rate (FDR) values, 

using previously specified search criteria [62]. Peptide intensities were normalised to control 

for variation in protein loading and relative quantification. Abundances were estimated by 460 

Hi3-based quantisation [63]. 

Data analysis 
Proteins that were identified in both healthy and AD flies were considered for further 

analysis. Missing data were replaced by the minimum abundance measured for any protein 

in the same repeat [50]. The data were quantile normalised [64], so that different conditions 465 

and time points could be compared reliably. Quantile normalisation transforms the 

abundances so that each repeat has the same distribution. 

For PCA analysis, the data were log10-transformed and each protein was standardised to 

zero-mean and unit variance. Hierarchical biclustering was performed using the Euclidean 

distance metric with the complete linkage method. Prior to clustering, proteins were 470 

normalised to their abundance in healthy flies at 5 days. 

Proteins that were identified by IM-DIA-MS in either healthy or AD flies were assessed for 

overrepresentation of GO terms using GOrilla [65], which uses ranked lists of target and 

background genes. Proteins were ranked in descending order by their mean abundance. 

The type I error rate was controlled by correcting for multiple testing using the Benjamini-475 

Hochberg method at a FDR of 5%. 

Identification of significantly altered proteins 
Significantly altered proteins were identified using five methods that are frequently used to 

identify differentially expressed genes in time course RNA-Seq data. DESeq2 [31], EDGE 

[33], edgeR [30], limma [32] and maSigPro [34] are all available in R through Bioconductor. 480 
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Dispersions were estimated from the biological and technical repeats. Unless otherwise 

stated, default parameters were used for all methods under the null hypothesis that a protein 

does not change in abundance between healthy and AD conditions in normal ageing. The 

type I error rate was controlled by correcting for multiple testing using the Benjamini-

Hochberg method at a FDR of 5%. A protein was classified as significantly altered if two or 485 

more methods identified it. 

DESeq2 models proteins with the negative binomial distribution and performs likelihood ratio 

tests. A time course experiment was selected in EDGE using the likelihood ratio test and a 

normal null distribution. edgeR uses the negative binomial distribution and performs quasi-

likelihood tests. limma fits linear models to the proteins and performed empirical Bayes F-490 

tests. maSigPro fits generalised linear models to the proteins and performs log-likelihood 

ratio tests. 

Significantly altered proteins were clustered using a Gaussian mixture model. Protein 

abundances were log10-transformed and z scores were calculated. Gaussian mixture 

models were implemented for 1–228 clusters. The best model was chosen using the 495 

Bayesian information criterion (BIC), which penalises complex models: 

BIC = -2ln(L) + ln(n)k 

where ln(L) is the log-likelihood of the model, n is the number of significantly altered proteins 

and k is the number of clusters. The model with lowest BIC was chosen. 

Networks 500 

All network analysis was performed using the Drosophila melanogaster STRING network 

(version 10) [35]. Low confidence interactions with a ‘combined score’ < 500 were removed 

in all network analyses. 

Network properties of the significantly altered proteins were analysed in the brain protein 

interaction network. A subgraph of the STRING network was induced on the 3093 proteins 505 

identified by IM-DIA-MS in healthy or AD flies and the largest connected component was 

selected (2428 nodes and 44,561 edges). The subgraph contained 183 of the 228 

significantly altered proteins. For these proteins, four network properties were calculated as 

test statistics: mean node degree; mean unweighted shortest path length between a node 

and the remaining 182 nodes; the size of the largest connected component in the subgraph 510 

induced on these nodes; and mean betweenness centrality. Hypothesis testing was 

performed using the null hypothesis that there is no difference between the nodes in the 
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subgraph. Assuming the null hypothesis is true, null distributions of each test statistic were 

simulated by randomly sampling 183 nodes from the network 10,000 times. Using the null 

distributions, non-parametric one-sided p-values were calculated as the probability of 515 

observing a test statistic as extreme as the test statistic for the significantly altered proteins. 

A subgraph of the STRING network was induced on the proteins significantly altered in AD 

and their neighbours and the largest connected component was selected (4842 nodes and 

182,474 edges). The subgraph contained 198 of the 228 significantly altered proteins and 

was assessed for enrichment of GO terms. Densely connected subgraphs were identified 520 

using MCODE [49]. Modules were selected with an MCODE score > 10. As STRING is a 

functional interaction network, clusters of nodes may correspond to proteins from the same 

complex, pathway or functional family. Clusters were assessed for overrepresentation of 

GO-Slim terms in the Biological Process ontology using Panther (version 13.1) [66] with a 

custom background of the 3093 proteins identified by IM-DIA-MS in healthy or AD flies. 525 

Fisher’s exact tests were performed and the type I error rate was controlled by correcting for 

multiple testing using the Benjamini-Hochberg method at a FDR of 5%. 

Open source software 

Data analysis was performed in Python 3.6 (Python Software Foundation, 

http://www.python.org) using SciPy [67], NumPy [68], Pandas [69], scikit-learn [70], 530 

NetworkX [71], IPython [72] and Jupyter [73]. Figures were plotted using Matplotlib [74] and 

seaborn. 
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Supplementary Information 

Methods 

IM-DIA-MS analysis 

Nanoscale ultra performance liquid chromatography (UPLC) separation of tryptic peptides 550 

was performed using a nanoAcquity UPLC system (Waters Corporation) equipped with a 

UPLC HSS T3 1.7 µm, 75 µm x 250 mm analytical reverse phase column (Waters 

Corporation). Prior to peptide separation, 300 ng of tryptic peptides were loaded onto a 2G, 

V/V 5 µm, 180 µm x 20 mm reverse phase trapping column at 5 µl/min for 3 minutes. IM-

DIA-MS analysis of tryptic digests was performed using a Synapt GS-Si HDMS mass 555 

spectrometer equipped with a T-Wave-IMS device. Mass measurements were made in 

positive-mode ESI with the instrument operated in resolution mode with a typical resolving 

power of 20,000 full width at half maximum. Prior to analysis the time-of-flight analyzer was 

externally calibrated with a NaCsI mixture from m/z 50 to 1990. The data were post-

acquisition lock mass corrected using the double charged monoisotopic ion of [Glu1]-560 

Fibrinopeptide B. To achieve lock mass correction, a 100 fmol/µl solution of [Glu1]-

Fibrinopeptide B was infused at a 90° angle to the analytical sprayer. This reference sprayer 

was sampled every 60 seconds. Accurate IM-DIA-MS data were collected in the DIA mode 

of analysis, HDMSE [24,62] IM spectrometry was performed by applying a constant wave 

height of 40 V whilst a constant wave velocity of 650 m/s was maintained. Wave heights 565 

within the trap and transfer were both set at 4 V whilst the wave velocities were 311 and 175 

m/s respectively. MS data were acquired over 50-2000 m/z for each mode. Spectral 

acquisition time for each mode was 0.5 s with a 0.015 interscan delay, corresponding to a 

cycle of low and elevated energy data being acquired every 1.1 s. During the low energy MS 

mode data was acquired whilst applying a constant collision energy of 4 eV within the 570 

transfer. After IMS, MS/MS data was acquired by ramping the collision energy within the 

transfer region between 15 and 45 eV. To ensure that ions with a m/z less than 350 were 

derived from peptide fragmentation within the transfer region the radio frequency applied to 

the quadrupole mass analyser was adjusted to optimise transmission within the region of 

350 – 2000 Da. Each biological replicate was analysed at least twice. 575 

MS Data Processing 
All MS data were processed in Progenesis QI for proteomics. Data were imported into 

Progenesis to generate a 3D representation of the data (m/z, RT and peak intensity). 

Samples were then time aligned with the software allowed to automatically determine the 
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best reference run from the dataset. Following alignment, peak picking was performed on 580 

MS level data. A peak picking sensitivity of 4 (out of 5) was set. Peptide features were 

tentatively aligned with their respective fragment ions based primarily on the similarity of 

their chromatographic and mobility profiles. Requirements for features to be included in post-

processing database searching were as follows: 300 counts for low energy ions, 50 counts 

for high energy ions and 750 counts for deconvoluted precursor intensities. Subsequent data 585 

were searched against 20,049 sequences from the UniProt canonical Drosophila database 

(appended with common contaminants). Trypsin was specified as the enzyme of choice and 

a maximum of two missed cleavages were permitted. Carbamidomethyl (C) was set as a 

fixed modification whilst oxidation (M) and N-terminal acetylation were set as variable 

modifications. Peptide identifications were grouped and relative quantification was 590 

performed using non-conflicting peptides only. 

Data 

Supplementary Data 1 
supplementary_data_1.xlsx 
Proteomics data 595 

Supplementary Data 2 
supplementary_data_2.txt 
MCODE modules 
 
Supplementary Data 3 600 
supplementary_data_3.xlsx 
GO enrichment 
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Figures 

 605 
Figure S1: Assessment of experimental reproducibility. Scatter plots comparing protein 

abundances in different biological repeats (BR) of healthy flies at days (D) (A) 5, (B) 19, (C) 

31, (D) 46, (E) 54 and (F) 80. Abundances were log2-transformed before plotting. Pearson 

correlation coefficients (r) are shown for each pair of biological repeat at each time point.  
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 610 

Figure S2: Analysis of the five statistical methods used to identify significantly altered 
proteins. 

(A) Heat map of the proteins detected by each method. (B) Principal component analysis of 

these results. Axes are annotated with the percentage of variance explained by each 

principal component.  615 
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Figure S3: Identification of significantly altered proteins during normal ageing. Heat 

map of the proteins detected by each method.  
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Figure S4: Model selection for clustering of the significantly altered proteins using a 620 

Gaussian mixture model. The best model was chosen using the Bayesian information 

criterion (BIC), which penalises complex models. 
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