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2	

Abstract 16	

 17	

Cells respond to changes in the environment by modifying the concentration of specific 18	

proteins. Paradoxically, the cellular response is usually examined by measuring variations 19	

in transcript abundance by high throughput RNA sequencing (RNA-Seq), instead of 20	

directly measuring protein concentrations. This happens because RNA-Seq-based 21	

methods provide better quantitative estimates, and more extensive gene coverage, than 22	

proteomics-based ones. However, variations in transcript abundance do not necessarily 23	

reflect changes in the corresponding protein abundance. How can we close this gap? Here 24	

we explore the use of ribosome profiling (Ribo-Seq) to perform differentially gene 25	

expression analysis in a relatively well-characterized system, oxidative stress in baker’s 26	

yeast. Ribo-Seq is an RNA sequencing method that specifically targets ribosome-27	

protected RNA fragments, and thus is expected to provide a more accurate view of 28	

changes at the protein level than classical RNA-Seq. We show that gene quantification 29	

by Ribo-Seq is indeed more highly correlated with protein abundance, as measured from 30	

mass spectrometry data, than quantification by RNA-Seq. The analysis indicates that, 31	

whereas a subset of genes involved in oxidation-reduction processes is detected by both 32	

types of data, the majority of the genes that happen to be significant in the RNA-Seq-33	

based analysis are not significant in the Ribo-Seq analysis, suggesting that they do not 34	

result in protein level changes. The results illustrate the advantages of Ribo-Seq to make 35	

inferences about changes in protein abundance in comparison with RNA-Seq.	36	

	  37	
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Introduction  38	

 39	

In recent years high throughput RNA sequencing (RNA-Seq) has become the method of 40	

choice for comparing gene expression changes of cells grown under different conditions 41	

(Rapaport et al., 2013). The relatively low cost of RNA-Seq, together with the availability 42	

of efficient computational methods to process information from millions of sequencing 43	

reads, has undoubtedly accelerated our understanding of gene regulation. However, a 44	

change in mRNA relative abundance does not always imply a change in the amount of 45	

the encoded protein (Schwanhäusser et al., 2011). Filling this gap in understanding is 46	

essential to discern the functional changes in the cell upon a given stimulus.	47	

 48	

Many studies have shown that mRNA levels only partially explain protein levels in the 49	

cell (de Sousa Abreu et al., 2009; Schwanhäusser et al., 2011; Payne, 2015; Ponnala et 50	

al., 2014). In yeast, the correlation between mRNA and protein abundance is typically in 51	

the range 0.6-0.7 (de Sousa Abreu et al., 2009). In addition, the ratio between protein and 52	

mRNA levels may vary across different conditions. For instance, substantial differences 53	

in this ratio have been observed during osmotic stress in yeast (Lee et al. 2011) or after 54	

the treatment of human cells with epidermal growth factor (Tebaldi et al., 2012). This 55	

strongly suggests that measuring changes in mRNA levels may often be insufficient to 56	

identify the functional shifts taking place in the cell upon a given stimulus.	57	

 58	

Protein quantification is often performed using whole proteome mass spectrometry-based 59	

methods (Gerber et al., 2003; Edfors et al., 2016). These methods provide a direct 60	

measurement of protein abundance but they also have limitations, especially for the 61	

detection of lowly expressed and/or small proteins (Slavoff et al., 2013). An alternative 62	
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way to estimate protein levels is the sequencing of ribosome-protected mRNA fragments, 63	

or ribosome profiling (Ribo-Seq) (Ingolia et al., 2009, 2011; Aspden et al., 2014; Ruiz-64	

Orera et al., 2014). In contrast to RNA-Seq, which measures the total amount of mRNA 65	

in the cell, Ribo-Seq only captures those mRNAs that are being actively translated. 66	

Although Ribo-Seq measures translation, which is an indirect estimate of protein 67	

abundance, it has the advantage over proteomics that virtually any mRNA can be 68	

interrogated. In addition, Ribo-Seq reads can be quantified in the same manner as RNA-69	

Seq reads. This implies that we can use the same pipelines as for RNA-Seq to identify 70	

differentially expressed genes.  	71	

 72	

It has been proposed that alterations in the ratio between the relative number of Ribo-Seq 73	

and RNA-Seq reads mapping to a given locus, known as the translation efficiency (TE), 74	

can be used to identify putative translation activation or repression events (Ingolia, 2016). 75	

Numerous recent studies have used ribosome profiling data has been used to study 76	

translation regulatory mechanisms (Jungfleisch et al., 2017; Yordanova et al., 2018) or 77	

to discover new translated RNA sequences (Michel et al. 2012; Aspden et al. 2014; 78	

Ingolia et al. 2014; Ruiz-Orera et al. 2014).	79	

 80	

Here we perform differential gene expression analysis using RNA-Seq and Ribo-Seq data 81	

during oxidative stress in Saccharomyces cerevisiae, a condition that is known to trigger 82	

important regulatory changes both at the transcriptional and translational levels (Shenton 83	

et al., 2006; Gerashchenko et al., 2012). We compare the results to proteomics data 84	

obtained from the same samples. The results show that the dynamics of total mRNA and 85	

translated mRNAs are very distinct, and that most changes in the relative amount of 86	

mRNA do not appear to have any consequences at the protein level. The study opens a 87	
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door for a more generalized use of Ribo-Seq data to measure changes in protein 88	

expression across conditions.	89	

 90	

Results and Discussion	91	

 92	

Quantification of gene expression by Ribo-Seq and RNA-Seq  93	

 94	

We extracted ribosome-protected RNA fragments, as well as total polyadenylated RNAs, 95	

from Saccharomyces cerevisiae grown in rich medium (normal) and in H2O2-induced 96	

oxidative stress conditions (stress). We then sequenced ribosome-protected RNAs (Ribo-97	

Seq) as well as complete polyA+ mRNAs (RNA-Seq) using a strand-specific protocol. 98	

The Ribo-Seq data corresponded to the translated mRNA fraction (translatome), whereas 99	

the RNA-Seq data corresponded to total mRNAs (transcriptome). For comparison we also 100	

estimated protein concentrations (proteome) in the two conditions by mass spectrometry 101	

(Figure 1). 	102	

 103	

After quality control of the sequencing reads we obtained 31-36 million reads for Ribo-104	

Seq and 12-15 million reads for RNA-Seq (Supplementary Table S1). We mapped the 105	

reads to the genome and generated a table of gene counts for each of the samples. After 106	

filtering out non-expressed genes (see Methods), the table contained data for 5,419 S. 107	

cerevisiae genes. Using mass spectrometry (mass spec) we could quantify the protein 108	

products of 2,200 genes (see Methods), representing about 40% of the genes quantified 109	

by RNA-Seq. 	110	

 111	
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We normalized the RNA-Seq and Ribo-Seq-based table of counts by calculating counts 112	

per million (CPM) in logarithmic scale, or log2CPM (Supplementary Figure S1). The 113	

gene normalized expression values showed a very high correlation between biological 114	

replicates, with a correlation coefficient large than 0.99 between all pairs of Ribo-Seq or 115	

RNA-Seq replicas (Supplementary Table S2). In contrast, normalized protein abundances 116	

between pairs of proteomics replicates showed correlation coefficients between 0.83 and 117	

0.93 (Supplementary Table S3), indicating that quantification by proteomics is less 118	

reproducible than quantification by RNA-Seq and Ribo-Seq.  119	

 120	

Importantly, the Ribo-Seq data correlated better with the proteomics data than RNA-Seq; 121	

in the first case the correlation was 0.67-0.71 and in the second one 0.46-0.62 (Figure 3). 122	

This supports that notion that Ribo-Seq provides a more accurate view of protein 123	

expression than RNA-Seq (Ingolia et al., 2009).	124	

 125	

We next clustered the RNA-Seq and Ribo-Seq gene expression values using 126	

multidimensional scaling (MDS)(Borg and Groenen, 1997)(Supplementary Figure S2). 127	

Remarkably, the Ribo-Seq measurements for the two conditions (normal and stress) were 128	

more similar to each other than any of them was to the condition-matched RNA-Seq 129	

measurements, and the same thing happened with the RNA-Seq-based measurements. 130	

Thus, the sequencing approach employed is expected to have a strong impact in the results. 	131	

 132	

Next, we calculated the fold change (FC) gene expression difference between conditions, 133	

taking the average expression values between replicates of the same experimental 134	

condition. In agreement with the results obtained with MDS, the log2FC distribution 135	

based on the Ribo-Seq data had a lower variance than the log2FC distribution using RNA-136	
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Seq data (Figure 4).  We considered the possibility that this pattern was due to the number 137	

of Ribo-Seq reads being 2-3 times larger than the number of RNA-Seq reads 138	

(Supplementary Table S1). To test for this, we subsampled the mapped reads so as to 139	

have a similar number of reads in all the RNA-Seq and Ribo-Seq samples (Supplementary 140	

Tables S4 and S5). We again observed a lower log2FC variance for Ribo-Seq than for 141	

RNA-Seq (Supplementary Figure S3), indicating that the observed variance difference 142	

has a biological origin. 	143	

 144	

Differential gene expression analysis 145	

 146	

We performed differential gene expression analysis, separately for Ribo-Seq and RNA-147	

Seq data, using multivariable linear regression with the Limma package (Law et al., 2014). 148	

Limma provides a list of differentially expressed genes with the corresponding adjusted 149	

p-values. We selected genes with an adjusted p-value < 0.05 and a log2FC larger than one 150	

standard deviation; the latter corresponded to a minimum FC of 1.49 for RNA-Seq data 151	

and 1.36 for Ribo-Seq data. We used the standard deviation instead of a fixed value to 152	

accommodate for the differences in the width of the log2FC distributions (Figure 4).	153	

 154	

We obtained 817 up-regulated genes during oxidative stress using RNA-Seq data, 155	

compared to only 92 with Ribo-Seq data. Thus, the vast majority of the genes identified 156	

as up-regulated in stress with RNA-Seq data were not significantly up-regulated when 157	

using the Ribo-Seq data to do the same analysis. The number of down-regulated genes 158	

was 846 and 519 for RNA-Seq and Ribo-Seq, respectively. Overall, only a small fraction 159	

of the differentially expressed genes was common to both approaches (5-10%, see below). 	160	

 161	
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The induction of oxidative stress by hydrogen peroxide (H2O2) results in an excess of 162	

reactive oxygen species (ROS) in the cell. This is known to activate the expression of 163	

several protein families including thioredoxins, hexoquinases, and heat shock proteins 164	

(Morano et al., 2012). The set of up-regulated genes identified by both RNA-Seq and 165	

Ribo-Seq included several members of these families (e.g. HXK2, TDH1, CYC1, HSP10), 166	

consistent with transcriptional activation of genes directly involved in stress response.	167	

 168	

Attempts to use the same pipeline to identify differentially expressed genes using the 169	

proteomics data did not yield significant results. The reproducibility of protein abundance 170	

estimates using mass spec data is not as high as the reproducibility of gene expression 171	

levels in the case of RNA sequencing data, which decreases the power of differential gene 172	

expression analysis using this kind of data (Supplementary Table S3). 173	

 174	

Uncoupling between changes at the transcriptome and translatome levels 175	

 176	

The correlation between RNA-Seq and Ribo-Seq gene log2FC values was quite low (0.18), 177	

supporting an important disconnect between the two kinds of data (Figure 5). We 178	

quantified the number of genes that showed a significant change in the same direction i.e.  179	

homodirectional changes. There were 38 genes that were up-regulated during stress using 180	

both RNA-Seq and Ribo-Seq data, this is a small number but still more than double the 181	

number expected by chance (15 genes). The number of homodirectional down-regulated 182	

genes was 89, compared to 55 be expected by chance. In summary, while there was a 183	

modest overlap between the stories told by RNA-Seq and Ribo-Seq data (test of 184	

proportions p-value < 1.32x105), the majority of the differentially expressed genes were 185	

not concordant. 186	
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 187	

Dissecting differential regulation by functional class 188	

 189	

To better understand the biological relevance of the above results, we investigated if 190	

certain functional classes were significantly enriched among the sets of differentially 191	

expressed genes. We used DAVID (Huang et al., 2009) to identify significantly over-192	

represented functional clusters (Figure 4). Only one class, ‘oxidation-reduction process’, 193	

was enriched among genes up-regulated during stress both using RNA-Seq and Ribo-Seq 194	

data. This is consistent with transcriptional activation of this set of genes upon stress, 195	

increasing the signal for both total mRNA and the translated fraction. Three other classes 196	

– ‘translation’, ‘ATPase’ and ‘proteasome’ – showed increased mRNA levels during 197	

stress, but this was not reflected in an increase in the translated fraction. Thus, it is likely 198	

that an important part of these transcripts are stored in a translation inactive form during 199	

stress, for example as P-bodies or stress granules (Zid and O’Shea, 2014; Khong et al., 200	

2017; Luo et al., 2018). In this case, an accumulation of transcripts would be detected by 201	

RNA-Seq but not by Ribo-Seq, as translation of the transcripts is impaired.	202	

 203	

Interestingly, there were functions that only appeared when we performed differential 204	

gene expression analysis with the Ribo-Seq data: ‘cell wall’, ‘mitochondrial 205	

intermembrane space’ and ‘catalytic activity’ were enriched among up-regulated genes, 206	

whereas ‘cell cycle’ was enriched among down-regulated genes (Figure 6). As these 207	

classes are not detected by RNA-Seq, they are candidates to be regulated at the 208	

translational level only. An alternative possibility is that the storage of some transcripts 209	

in stress granules distorts the RNA-Seq patterns to such a degree that some truly up-210	
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regulated genes become undetectable with RNA-Seq; they would only be detected when 211	

examining actively translated mRNAs with Ribo-Seq.	212	

 213	

Translation inhibition of cell cycle genes	214	

 215	

In order to further identify possible translational regulatory events we compared the 216	

translational efficiency (TE; Ribo-Seq reads divided by RNA-Seq reads) of the different 217	

genes in the two conditions using the program Ribodiff (Zhong et al., 2017). This 218	

approach is based on the assumption that the number of Ribo-Seq reads is proportional to 219	

the amount of translated protein. We detected 470 genes that showed increased TE, and 220	

714 genes that showed decreased TE, in oxidative stress versus normal growth conditions 221	

(adjusted p-value < 0.05; see Methods). 	222	

 223	

We reasoned that genes whose translation becomes more active during stress should have 224	

increased TE values but also be classified as upregulated when using Ribo-Seq for 225	

differential gene expression analysis. We only found 17 genes fulfilling both conditions 226	

(3.6% of the genes with increased TE), indicating that activation of translation probably 227	

has a relatively small impact in the response to oxidative stress. In the vast majority of 228	

cases the increase in TE could be explained by a decrease in RNA-Seq signal during stress 229	

(Supplementary Table S6).	230	

 231	

By the same token, genes whose translation is repressed during stress are expected to 232	

have decreased TE values but also be classified as down-regulated by Ribo-Seq. We 233	

found 246 such genes (34.4% of the genes with decreased TE), suggesting that this 234	

mechanism may be more prevalent. Among them there were 12 genes from the cell cycle 235	
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functional category (Supplementary Table S7). The putative translational repression of 236	

these genes did not appear to be mediated by increased translation of upstream ORFs 237	

(Gerashchenko et al., 2012), as we did not detect any increase in the number of Ribo-Seq 238	

reads mapping to 5'UTR regions when compared to coding sequences in stress conditions. 	239	

 240	

Concluding remarks  241	

 242	

The adaptation of organisms to variations in the environmental conditions is associated 243	

with the activation or repression of the expression of particular genes. These changes are 244	

usually studied at the level of complete mRNA molecules using microarrays or next 245	

generation sequencing. However, changes in mRNA concentration do not necessarily 246	

reflect changes in their encoded protein products; rather, uncoupling between total and 247	

polysomal mRNA levels has been observed in many different conditions (Tebaldi et al., 248	

2012; Shenton et al., 2006).	249	

 250	

Ribo-Seq specifically targets ribosome-protected mRNAs, providing a closer view to 251	

protein expression than RNA-Seq, which is for total mRNA sequences. Although Ribo-252	

Seq data is more labour-intensive than RNA-Seq, the protocols are being simplified and 253	

its use is rapidly growing (Reid et al. 2015; Xie et al. 2016; Liu et al. 2018; Michel et al. 254	

2018). Here we have used Ribo-Seq data to perform differential gene expression analysis 255	

during oxidative stress, and compared the results to RNA-Seq and to proteomics data. 	256	

 257	

We have shown that gene expression levels inferred from Ribo-Seq data correlate better 258	

with protein abundance than those inferred from RNA-Seq data. Remarkably, many of 259	

the genes that are classified as differentially regulated using RNA-Seq do not show a 260	
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similar effect when the Ribo-Seq data is analyzed, strongly suggesting that, for these 261	

genes, no significant changes at the protein level take place. The methodological 262	

framework we have developed here can be applied to other conditions and help advance 263	

our understanding of gene regulation.  264	

 265	

Methods 266	

 267	

Biological material 268	

 269	

We grew S. cerevisiae (S288C) in 500 ml of rich medium (Tsankov et al., 2010). In order 270	

to induce oxidative stress, 30 minutes before harvesting we added diluted H2O2 to the 271	

medium for a final concentration of 1.5 mM.  The cells were harvested in log growth 272	

phase (OD600 of ~0.25) via vacuum filtration and frozen with liquid nitrogen. 	273	

 274	

Ribosome profiling 275	

 276	

In order to capture ribosome protected mRNAs, cyclohexamide was added one minute 277	

before the cells were harvested. Cyclohexamide is commonly used as a protein synthesis 278	

inhibitor in order to prevent ribosome run-off and the subsequent loss of ribosome-279	

transcript complexes. One third of each culture was used for ribosome profiling (Ribo-280	

Seq); the rest was reserved for RNA-Seq.	281	

 282	

Cells were lysed using the freezer/mill method (SPEX SamplePrep); after preliminary 283	

preparations, lysates were treated with RNaseI (Ambion), and subsequently with 284	

SUPERaseIn (Ambion). Monosomal fractions were collected; SDS was added to stop any 285	
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possible RNAse activity, then samples were flash-frozen with N2(l). Digested extracts 286	

were loaded in 7%-47% sucrose gradients. RNA was isolated from monosomal fractions 287	

using the hot acid phenol method. Ribosome-Protected Fragments (RPFs) were selected 288	

by isolating RNA fragments of 28-32 nucleotides (nt) using gel electrophoresis. The 289	

preparation of sequencing libraries for Ribo-Seq and RNA-Seq was based on a previously 290	

described protocol (Ingolia et al., 2012). Pair-end sequencing reads of size 35 nucleotides 291	

(2x35bp) were produced for Ribo-Seq and RNA-Seq on MiSeq and NextSeq platforms, 292	

respectively. The data has been deposited at NCBI Bioproject PRJNA435567 293	

(https://www.ncbi.nlm.nih.gov/bioproject/435567).	294	

 295	

Processing of the sequencing data 296	

 297	

The RNA-Seq data was filtered using Trimmomatic with default parameters (version 298	

0.36)(Bolger et al., 2014). In the Ribo-Seq data we discarded the second read pair as it 299	

was redundant and of poorer quality than the first read, and then used Cutadapt (Martin, 300	

2011) to eliminate the adapters and to trim five and four nucleotides at 5’ and 3’ edges, 301	

respectively. Ribosomal RNA was depleted from the Ribo-Seq data in silico by removing 302	

all reads which mapped to annotated rRNAs. Ribo-Seq reads shorter than 25 nucleotides 303	

were not used.	304	

 305	

After quality check and read trimming, the reads were aligned against the S. cerevisiae 306	

genome (S288C R64-2-1) using Bowtie 2 (Langmead et al., 2009). For annotation we 307	

used a previously generated S. cerevisiae transcriptome containing 6,184 annotated 308	

coding sequences plus 1,009 non-annotated assembled transcripts (see Supplementary 309	

data).  SAMtools (Li et al., 2009) was used to filter out unmapped reads. 	310	
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 311	

We counted the number of reads that mapped to each gene with HTSeq-count (Anders et 312	

al., 2015). We used the mode ‘intersection strict’ to generate a table of counts from the 313	

data; the procedure removed about 5% of the reads in the case of RNA-Seq, and 8% in 314	

the case of Ribo-Seq. Only genes in which the average read count of the two replicates 315	

was larger than 10 in all conditions (normal and stress, for RNA-Seq and for Ribo-Seq) 316	

were kept. The filtered table of counts contained data for 5,419 genes. 	317	

 318	

For subsampling the number of mapped reads we used SAMtools (Li et al., 2009). We 319	

used the function ‘samtools view’ with option ‘-s 0.X’, where X is the percentage of reads 320	

that we wish to keep.  	321	

 322	

Differential gene expression analysis 323	

 324	

The table of counts was normalized to log2 Counts per Million (log2CPM), in order to 325	

account for the different number of total reads in each sample. Before performing 326	

differential gene expression analysis, we normalized the data using Trimmed Mean of M-327	

values (TMM) as implemented is the package edgeR (Robinson et al., 2010). Finally, we 328	

applied the Limma voom method (Law et al., 2014) to identify differentially expressed 329	

genes, separately for RNA-Seq and Ribo-Seq data (adjusted p-value < 0.05 and |log2FC| > 330	

1 SD(log2FC)) . 	331	

 332	

We also performed the same kind of analysis for the proteomics data. We used genes 333	

which had at least 3 unique peptides and could be quantified in all 6 replicates (1,580 334	
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genes); the procedure did not identify any significantly up or down regulated genes, using 335	

an adjusted p-value < 0.05.	336	

 337	

Quantification of protein abundance by mass spectrometry	338	

 339	

For our proteomics experiment, we analysed 3 replicates per condition by LCMSMS 340	

using a 90-min gradient in the Orbitrap Fusion Lumos. These samples were not treated 341	

with cyclohexamide. As a quality control measure, BSA controls were digested in parallel 342	

and ran between each sample to avoid carry-over and assess the instrument performance. 343	

The peptides were searched against SwissProt Yeast database, using the Mascot v2.5.1 344	

search algorithm. The search was performed with the following parameters: peptide mass 345	

tolerance MS1 7 ppm and peptide mass tolerance MS2 0.5 Da; three maximum missed 346	

cleavages; trypsin digestion after K or R except KP or KR; dynamic modifications 347	

oxidation (M) and acetyl (N-term), static modification carbamidomethyl (C). Protein 348	

areas were obtained from the average area of the three most intense unique peptides per 349	

protein group. Considering the data from all 6 samples, we detected proteins from 3,336 350	

genes. We limited our quantitative analysis to a subset of 2,200 proteins which had 351	

proteomics hits for at least 3 unique peptides; this filter eliminates noise arising from 352	

technical challenges of quantifying lowly abundant proteins with LCMSMS.  353	

 354	

Analysis of functional clusters 355	

 356	

We identified significantly enriched functional clusters in differentially expressed genes 357	

using DAVID (Huang et al., 2009). The analysis was done separately for over- and under-358	

expressed genes and for RNA-Seq and Ribo-Seq derived data. Only clusters with 359	
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enrichment score ≥ 1.5 and adjusted p-val < 0.05 were retained. In each cluster we chose 360	

a representative Gene Ontology (GO) term (Ashburner et al., 2000), with the highest 361	

number of genes inside the cluster. Figure 4 integrates the results obtained with the Ribo-362	

Seq and the RNA-Seq data, the log10 fold enrichment of the significant GO terms is 363	

plotted.	364	

 365	

Analysis of translational efficiency 366	

 367	

We searched for genes with significantly increased or decreased translational efficiency 368	

(TE)(Ingolia et al., 2009) using the RiboDiff program (Zhong et al., 2017). We selected 369	

genes significant at an adjusted p-value < 0.05 and showing log2(TEstress/TEnormal) higher 370	

than 0.67 or lower than -0.67 (plus or minus the standard deviation of the distribution).  	371	

 372	

We downloaded S.cerevisiae 5'UTR sequences from the Yeast Genome Database  373	

(https://downloads.yeastgenome.org/sequence/S288C_reference/SGD_all_ORFs_5prim374	

e_UTRs.fsa). We selected 5’UTR sequences longer than 30 nucleotides, removed 375	

identical sequences and took the longest 5’UTR per gene when several existed. The 376	

resulting annotation file contained the genomic coordinates of the 5'UTRs of 2,424 genes.	377	

We recovered 5'UTR sequences for 5 of the 12 cell cycle-related genes that were 378	

potentially repressed at the translational level (HTL1, SPC19, CDC26, BNS1, DIB1). In 379	

none of these cases the number of Ribo-Seq reads in the 5'UTR divided by the number of 380	

Ribo-Seq reads in the coding sequence increased in oxidative stress with respect to normal 381	

growth conditions.	382	

 383	

Supplementary data 384	
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 385	

Supplementary data files have been uploaded to Figshare and can be accessed at 386	

http://dx.doi.org/10.6084/m9.figshare.5809812. This includes the transcriptome genomic 387	

coordinates, the filtered table of counts and the list of differentially expressed genes 388	

obtained using RNA-Seq and Ribo-Seq. The RNA-Seq and Ribo-Seq original sequencing 389	

data is available from https://www.ncbi.nlm.nih.gov/bioproject/435567 (NCBI 390	

Bioproject PRJNA435567). Processed data, including annotation files and differentially 391	

regulated genes can be found at http://dx.doi.org/10.6084/m9.figshare.5809812.	392	

 393	
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Figure 1. Experimental design. Baker’s yeast (S. cerevisiae) was grown in rich medium 410	

or oxidative stress conditions. The cultures were used to extract total RNA, ribosome-411	

protected RNA fragments and proteins. 412	

 413	

Figure 2. Representative gene expression correlations between RNA sequencing 414	

samples. A. RNA-Seq normal replicate 1 versus Ribo-Seq normal replicate 1. B. RNA-415	

Seq stress replicate 1 versus Ribo-Seq stress replicate 1. C. RNA-Seq normal replicate 1 416	

versus RNA-Seq normal replicate 2. D. Ribo-Seq normal replicate 1 versus Ribo-Seq 417	

normal replicate 2. Expression units are CPM in logarithm scale; R: Spearman correlation 418	

value. N: normal growth conditions (two replicates N1 and N2); S: stress conditions (two 419	

replicates S1 and S2).  420	

 421	

Figure 3. Proteomics shows a stronger correlation with Ribo-Seq than with RNA-422	

Seq data. A. RNA-Seq versus proteomics, normal growth conditions. B. RNA-Seq versus 423	

proteomics, oxidative stress. C. Ribo-Seq versus proteomics, normal growth conditions. 424	

D. Ribo-Seq versus proteomics, oxidative stress. CPM: counts per million for RNA-Seq 425	

and RNA-Seq data (represented in logarithmic scale, average between replicates). log2 426	

normalized area: relative abundance for proteomics data (average between replicates). R: 427	

Spearman correlation value. Plot and correlations represent  2200 genes for which >3 428	

unique peptides were detected by LCMSMS.	429	

 430	

Figure 4. Distribution of gene expression fold change (FC) differences in logarithmic 431	

scale. FC was calculated as the ratio between the number of reads in oxidative stress and 432	

normal conditions. We took the average number of reads per gene among the replicates. 433	

The standard deviation of log2FC was 0.44 for Ribo-Seq (RP) and 0.57 for RNA-Seq 434	

(RNA). 	435	

	436	

Figure 5. Correlation between gene expression fold changes with RNA-Seq and 437	

Ribo-Seq data. Fold change (FC) gene expression values are shown in logarithmic scale. 438	

The X axis corresponds to the RNA-Seq data, or transcriptome, the Y axis to the Ribo-439	

Seq data, or translatome. The number of down-regulated and up-regulated genes is 440	

indicated. Coloured dots correspond to differentially expressed genes. In the legend 441	
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homodirectional means up-regulated, or down-regulated, at the transcriptome and 442	

translatome levels; opposite_change is up-regulated at one level and down-regulated at 443	

the other one.	444	

	445	

Figure 6. Significant gene functional classes among differentially expressed genes. 446	

Shown is a 2-D plot of the enrichment score values, in logarithmic scale, provided by the 447	

software DAVID for differentially expressed genes using RNA-Seq (transcriptome) or 448	

Ribo-Seq (translatome) data. Significant enrichment scores are associated with a p-val < 449	

0.05. Functional classes associated with positive values are significantly enriched among 450	

up-regulated genes, and functional classes with negative values are significantly enriched 451	

among down-regulated genes. Non-significant enrichment scores are given a value of 0 452	

in the plot. 	453	

	454	
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Figures 544	
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Figure 2 549	
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Figure 3 553	
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Figure 4 556	
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Figure 5	559	
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Figure 6	562	
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