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Abstract 13 

Background 14 

Removing duplicates might be considered as a well-resolved problem in 15 

next-generation sequencing (NGS) data processing domain. However, as NGS 16 

technology gains more recognition in clinical applications (i.e. cancer testing), 17 

researchers start to pay more attention to its sequencing errors, and prefer to remove 18 

these errors while performing deduplication operations. Recently, a new technology 19 

called unique molecular identifier (UMI) has been developed to better identify 20 

sequencing reads derived from different DNA fragments. Most existing duplicate 21 

removing tools cannot handle the UMI-integrated data. Some modern tools can work 22 

with UMIs, but are usually slow and use too much memory, making them not suitable 23 

for cloud-based deployment. Furthermore, existing tools rarely report rich statistical 24 

results, which are very important for quality control and downstream analysis. These 25 

unmet requirements drove us to develop an ultra-fast, simple, little-weighted but 26 

powerful tool for duplicate removing and sequence error suppressing, with features of 27 

handling UMIs and reporting informative results. 28 

Results 29 

This paper presents an efficient tool gencore for duplicate removing and sequence 30 

error suppressing of NGS data. This tool clusters the mapped sequencing reads and 31 

merges reads in each cluster to generate one single consensus read. While the 32 

consensus read is generated, the random errors introduced by library construction and 33 

sequencing can be removed. This error-suppressing feature makes gencore very 34 

suitable for the application of detecting ultra-low frequency mutations from deep 35 

sequencing data. When unique molecular identifier (UMI) technology is applied, 36 

gencore can use them to identify the reads derived from same original DNA fragment. 37 

gencore reports statistical results in both HTML and JSON formats. The HTML 38 

format report contains many interactive figures plotting statistical coverage and 39 

duplication information. The JSON format report contains all the statistical results, 40 

and is interpretable for downstream programs.  41 
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Conclusions 42 

Comparing to the conventional tools like Picard and SAMtools, gencore greatly 43 

reduces the output data’s mapping mismatches, which are mostly caused by errors. 44 

Comparing to some new tools like UMI-Reducer and UMI-tools, gencore runs much 45 

faster, uses less memory, generates better consensus reads and provides simpler 46 

interfaces. To our best knowledge, gencore is the only duplicate removing tool that 47 

generates both informative HTML and JSON reports. This tool is available at: 48 

https://github.com/OpenGene/gencore 49 

 50 
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Introduction 55 

High-depth next-generation sequencing (NGS) has been widely used for precision 56 

cancer diagnosis and treatment [1]. From such deep sequencing data, somatic 57 

mutations can be detected to guide personalized targeted therapy or immunotherapy. 58 

Recently, circulating tumor DNA (ctDNA) sequencing has been recognized as a 59 

promising biomarker for cancer treatment and monitoring. Since the tumor-derived 60 

DNA is usually a small part of the total blood cell-free DNA, the mutant allele 61 

frequency (MAF) of a variant detected from ctDNA sequencing data can be very low 62 

(as low as 0.1%). To detect such low-frequency variants, we usually increase the 63 

sequencing depth (can be higher than 10,000x). However, the processes of making 64 

NGS library and sequencing are not error-free. Particularly, the library amplification 65 

using PCR technology can lead to particular sequences becoming overrepresented [2], 66 

and consequently cause some false positive mutations in the result of NGS data 67 

analysis.  68 

As a result of library amplification, NGS data can have many duplicates. Especially 69 

for the high-depth data generated by sequencing low-input DNA, the duplication level 70 

can be much higher. Traditionally, we just mark the duplicated reads and remove 71 

them before downstream analysis. For low-depth paired-end NGS data, the read pairs 72 

of same start and end mapping positions can be treated as duplicated reads derived 73 

from a same original DNA fragment [3]. Then, the reads clustered together can be 74 

merged to be a single read. Due to the nature that errors usually happen randomly, the 75 

inconsistent mismatches in the clustered read group can be removed to generate a 76 

consensus read.  77 

However, for ultra-deep sequencing, it’s possible that two read pairs with same 78 

positions are derived from different original DNA fragments. This possibility can be 79 

higher when the DNA fragments are shorter. For example, cell-free DNA usually has 80 

a peak length of ~167 bp, which is much shorter than the peak length of normally 81 

fragmented genomic DNA. To better identify sequencing reads derived from different 82 

DNA fragments, a technology called unique molecular identifier (UMI) has been 83 
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developed. It has been adopted by various sequencing methods such as Duplex-Seq [4] 84 

and iDES [5]. With UMI technology, each DNA fragment is ligated with unique 85 

random barcodes before any DNA amplification process. The UMIs can be then used 86 

for accurate clustering of sequencing reads. UMIs may be applied to almost any 87 

sequencing method where confident identification of PCR duplicates by alignment 88 

coordinates alone is not possible and/or an accurate quantification is required, 89 

including DNA-seq karyotyping [6] and antibody repertoire sequencing [7]. 90 

Some tools, like SAMtools [8] and Sambamba [9], are commonly used to remove 91 

duplicates, but cannot process data with UMIs. Samtools is not efficient since it has to 92 

sort the data twice for marking duplicate alignments. Sambamba runs faster, but opens 93 

a lot of files (much more than 1024), and may introduce problems when multiple 94 

instances are run concurrently. The conventional tool Picard markDuplicates 95 

(http://broadinstitute.github.io/picard) is able to handle UMIs, but cannot process bam 96 

data with unmapped reads. UMI-Reducer [10] and UMI-tools [11] are two new tools 97 

designed for processing UMI-integrated NGS data. However, UMI-Reducer is only 98 

suitable for RNA data, and UMI-tools cannot deal with data without UMI-integrated. 99 

Furthermore, these tools are usually relative slow and use too much memory, which 100 

make them cost ineffective for cloud-based deployment. These unmet requirements 101 

drove us to develop a new tool called gencore, which is fast and memory efficient, 102 

with functions to eliminate errors and remove duplicates by generating consensus 103 

reads for NGS data with or without UMIs. Table 1 shows a brief comparison of 104 

features of different deduplication or consensus read generating tools. 105 

 106 

Table 1 Features comparison of different deduplication or consensus read 107 

generating tools. 108 

 SAMtools Picard gencore Picard UMI-tools gencore 

Non-UMI mode UMI mode 

No need to sort by read name   + +  + + 

No need to sort clean up flags  + +  + + 

No need to sort add UMI tag + + +  + + 

No need to sort by position again  + +  + + 
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JSON Report + + + +  + 

HTML Report      + 

 109 

In Table 1, the input for these five tools is a sorted bam. SAMtools cannot handle 110 

UMIs, whereas UMI-tools is only applicable for UMI-integrated data. Only 111 

UMI-tools and gencore needn’t any extra BAM preporcessing before performing the 112 

deduplication. gencore reports metrix in JSON and HTML formats whereas 113 

UMI-tools doesn’t. 114 

 115 

Implementation 116 

gencore requires an input of position sorted BAM file and a reference genome 117 

FASTA file. If the FASTQ data has UMIs, it can be preprocessed using fastp [12] to 118 

move the UMIs from read sequences to read identifiers. The main workflow of 119 

gencore is described in Fig.1. 120 

 121 

 122 
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Fig.1 The brief workflow of gencore. Besides the input BAM/SAM file, this tool 123 

accepts a reference genome input to assist consensus reads generation. If the data is 124 

from targeted sequencing, a BED file can also be provided to describe the capturing 125 

regions. In this case, the coverage statistics in BED regions will also be reported in the 126 

HTML/JSON reports. 127 

 128 

Simply put, gencore clusters read pairs by their mapping positions and UMIs (if 129 

applicable), and then generates a consensus read for each cluster. The main algorithm 130 

of gencore can be briefly introduced as following steps: 131 

(1) Position clustering: all mapped read pairs are grouped by mapping position first. 132 

The reads with same mapping chromosome, start position and end position will be 133 

grouped together. A multi-level map [chr]:[left_pos]:[right_pos]:[read_pairs], is used 134 

to store the clusters being processed, while [left_pos] and is [right_pos] the read pair’s 135 

leftmost and rightmost mapping position in the chromosome respectively. [read_pairs] 136 

is a group of read pairs that share the same mapping positions. To reduce the memory 137 

usage, gencore implements a processing-while-reading strategy, which means 138 

processing one group immediately when its all possible reads are collected. For 139 

example, when gencore finds that the mapping position of current inputting read is 140 

greater than [right_pos] of one group, it will perform following step 2 to step 7 for 141 

this group and release the group immediately. 142 

(2) UMI clustering: for each group of same mapping positions, read pairs are then 143 

clustered by their UMIs with one base difference tolerance. If the data has no UMIs, 144 

this step is skipped. Due to the principle of Illumina paired-end sequencing, if the data 145 

has dual UMIs from forward and reverse reads, the read pairs with reciprocal UMIs 146 

will be clustered together. For instance, two read pairs with UMI ATGC_GCAA and 147 

GCAA_ATGC will be considered as derived from different strands of same original 148 

DNA fragment, and will be clustered together. 149 

(3) Cluster filtering: each cluster will be filtered by comparing its supporting reads 150 

number with the threshold (default = 1, which means no threshold). If it passes, 151 

gencore will start to generate a consensus read for this cluster. For ultra-deep 152 
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sequencing (i.e. ctDNA sequencing with 10,000× or higher depth), it’s recommended 153 

to increase the threshold to 2 to discard part of reads that without any PCR duplicates. 154 

(4) Pair scoring: a default score number (default = 6) will be initially assigned to 155 

every base in the read. For each read pair in a cluster, the overlapped region of the 156 

paired reads is computed. For each base in the overlapped region, its score is adjusted 157 

according to its consistence with its paired base, with the consideration of their quality 158 

scores. The default scoring schema is presented in the project repository, and can be 159 

configured through options.  160 

(5) Cluster scoring: in this step, the total scores are computed by summarizing the 161 

scores computed in previous step. For each position in the mapping region, gencore 162 

queries the base presented in the cluster’s different reads, and summarizes them to 163 

compute the score of different bases (A/T/C/G). 164 

(6) Consensus read generating: for each position in a cluster, its base diversity is 165 

computed according to the scores of different bases computed in last step. If gencore 166 

finds one dominant base, this base will also be presented in the consensus read. 167 

Otherwise if exists one or more reads are concordant with reference genome with high 168 

quality, or all reads at this positions are with low quality, the corresponding base in 169 

the reference genome will be used. The using of reference genome is one of the major 170 

differences between gencore and other tools. Since a base is more likely an error 171 

when it’s not concordant with reference, gencore assigns lower weight to them when 172 

computing the consensus reads. 173 

(7) Buffered reads outputting: when one consensus read is generated, it will be 174 

buffered in a position-sorted queue to be written to output. To minimize the memory 175 

used by this queue, gencore implements a writing-while-processing strategy. With 176 

this strategy, gencore maintains a pointer that always points to the unprocessed read 177 

with least mapping position, and periodically outputs the reads in queue with mapping 178 

position less than it.  179 

After the processing is done, gencore will generate a summary of the data before and 180 

after processing. Some metrics like coverage, duplication histogram, mapping rate, 181 

duplication rate, passing filter rate and mismatch rate are reported in HTML/JSON 182 
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format reports. The HTML report contains no image figures but some interactive 183 

figures, which are built based on Plotly.js. Comparing to conventional HTML reports 184 

with static images, this single-page standalone JavaScript-based HTML report is 185 

much more interactive and easier to transfer. Fig. 2 shows a demonstration of the 186 

coverage statistics in both genome scale and capturing regions in the HTML reports. 187 

 188 

 189 

Fig. 2 The coverage statistics figures in the HTML report. In this interactive 190 

HTML report, a region is selected in a), and then enlarged in b). While a) and b) are 191 

coverage in genome scale, c) is the coverage only in the capturing regions. The BAM 192 

file of this report was generated by targeted sequencing using a panel with hundreds 193 

of genes. So the coverage in genome scale is very sparse, whereas the coverage in 194 

capturing regions is high and dense. 195 

Application  196 

Since gencore can be used to reduce sequencing errors, it is very useful for the 197 

application of detecting low-frequency somatic mutations from cancer sequencing 198 

data, particularly in liquid biopsy technology [16]. When the samples are from blood, 199 
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urine or malignant effusion, the MAF of variants can be even much lower than 1%. 200 

The detection of such low-frequency variants can be seriously affected by the errors, 201 

which are usually introduced by library preparation and sequencing. gencore can 202 

significantly reduce the sequencing errors of deep sequencing data, and consequently 203 

reduce the false positive calling rate.  204 

To evaluate how gencore can help the variant detection, we conducted two evaluation 205 

experiments using 8 DNA samples, obtained from the National Center for Clinical 206 

Laboratories (NCCL) in China. The dataset #1 (1801, 1802, 1803 and 180N) was 207 

generated by sequencing plasma cell-free DNA samples, and each data contains ~55G 208 

bases. Sample 1801, 1802 and 1803 were DNA extracted from blood of one lung 209 

adenocarcinoma patient at different time, whereas sample 180N was DNA from a 210 

healthy control. The dataset #2 (1811, 1812, 1813 and 181N) was generated by 211 

sequencing tissue DNA samples, and each data contains ~10G bases. Sample 1811 212 

and 1812 were DNA of tumor tissues collected from two breast cancer patients, 213 

whereas sample 1813 was DNA of a biopsy tissue collected from a lung 214 

adenocarcinoma patient, and sample 181N was DNA from a healthy control. These 215 

DNA samples are publicly provided by NCCL as reference materials for conducting 216 

inter-lab quality assessments. The golden standard mutations of all samples were also 217 

provided by NCCL. Among all the mutations, the lowest frequency was about 0.15%. 218 

In our experiment, all samples sequencing libraries were prepared using IDT xGen 219 

Dual Index Adapters, captured with a 451-gene cancer panel, and then sequenced 220 

using an Illumina NovaSeq 6000 sequencer. UMI adapters were used for 1801, 1802, 221 

1803 and 180N samples. The detailed file sizes and commands of experiments are 222 

provided in Supplementary file 1. 223 

The FASTQ files were preprocessed by fastp, and then mapped to reference genome 224 

hg19 using BWA [13]. After the mapped bam file was sorted using Samtools, the 225 

sorted bam files were then processed by different tools. VarScan2 [14] was used to 226 

call SNVs from the processed bam files, and ANNOVAR [15] was then used to 227 

annotate the VCF files. The missense variants detected in the coding sequences were 228 
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then filtered with conditions (dataset #1: supporting reads ≥  5; dataset #2: 229 

supporting reads ≥ 8 and variant allele frequency ≥ 2%). The variant calling 230 

results were evaluated by comparing to the golden standard results provided by NCCL, 231 

and the speed and memory performance were also compared. The comparison result is 232 

shown in Fig 3. 233 

 234 

Fig. 3 Comparison of speed, memory peak and processing results of different 235 

tools in both UMI and non-UMI modes. a) memory peak and execution time of 236 

different tools. Samtools and Picard (in UMI mode) need to prepare the data before 237 

performing deduplication, whereas gencore and UMI_tools needn’t. b) average depth 238 

of output BAM. For the cfDNA samples (1801, 1802 and 1803), the depths of UMI 239 

mode results are much higher than non-UMI mode, indicating that over-deduplication 240 

may happen when performing deduplication without UMI for ultra-deep sequencing 241 

data. c) specificity of downstream variant calling results comparing to the golden 242 

standard results provided by NCCL.  243 
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 244 

From Fig. 3, we can learn that gencore runs much faster than all other tools. For the 245 

comparison of memory peak, gencore uses much less memory than Picard and 246 

UMI_tools. Due to gencore consumes extra memory to load reference genome and 247 

performs more processing, gencore uses more memory than Samtools. But, as shown 248 

on Fig. 3a, its memory peak is still less than 8GB. This result shows that gencore is 249 

littleweight and fast, and is much more cost-effective to be deployed on the cloud. 250 

The comparison of downstream variant calling results also shows that gencore 251 

outperforms other tools. From Fig. 3c, we can learn that gencore achieved higher 252 

specificity in both UMI and non-UMI modes. 253 

For the cfDNA samples (1801, 1802 and 1803), we applied a filter with condition 254 

(supporting reads≥5). The results showed all tools successfully detected all true 255 

positive variants for 1801 and 1802, but non-UMI mode tools missed one true positive 256 

variant for 1803 due to its variant allele frequency was too low (VAF = 0.15%). 257 

Moreover, we evaluated the detected variants by comparing their VAFs to the golden 258 

results, and considered a variant as unacceptable if its VAF exceeded 2 standard 259 

deviations. The results showed all non-UMI mode tools resulted in two variants with 260 

unacceptable VAFs. For UMI mode, UMI_tools detected one variant with 261 

unacceptable VAF, while all variants detected by Picard and gencore were acceptable.  262 

For the tissue DNA samples (1811, 1812 and 1813), we applied a filter with condition 263 

(supporting reads ≥ 8 and VAF ≥ 2%). The results showed that all tools could 264 

detect true positive variants at 100% sensitivity. But for sample 1811, both Picard and 265 

Samtools reported one false positive variant, while gencore achieved 100% specificity 266 

for all three samples.  267 

These results suggest that UMI technique is important for detecting variants with 268 

ultra-low VAFs, and gencore is one of the best tools to process UMI-enabled data due 269 

to its superior accuracy and performance. 270 

Results and discussion 271 
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By analysing the output data using downstream tools, gencore outperforms other tools 272 

in both non-UMI and UMI modes. By carefully exploring the data generated by these 273 

different tools, we found the major difference was that gencore applied reference 274 

genome based correction, whereas Picard and UMI-tools didn’t. Utilization of a 275 

reference genome is important for eliminating sequencing noises. When an 276 

inconsistent position is found when making a consensus read, the reference base 277 

should be taken into account since the base different from the reference may have 278 

higher probability to be a sequencing error. 279 

To explore how gencore eliminates the sequencing errors, we manually compared 280 

some the alignment files before and after gencore processing. In the case of sample 281 

1802, NM_005228.3(EGFR): c.2369C>T, p.T790M variant was one true positive 282 

variant. Fig. 4 shows the alignment visualization illuminated by Integrated Genome 283 

Viewer (IGV) for the files before and after processing. In Fig. 4a, which is the 284 

original alignment file generated by mapping by BWA [13], the double-line marked 285 

mismatch T base is the true positive variant EGFR p.T790M. However, there are also 286 

some other mismatch bases, which are false positive mismatches caused by 287 

sequencing errors. In Fig. 4b, which is the alignment file after gencore processing, we 288 

can find these false positive mismatches are gone, while the true positive variant is 289 

kept. This result suggests that gencore not only removes duplicates, but also 290 

eliminates sequencing errors.  291 

 292 

 293 
Fig. 4 Comparison of the alignment files before and after gencore processing. In 294 

this figure, the position marked by double lines is NM_005228.3(EGFR): c.2369C>T, 295 
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p.T790M variant. a) visualizes the mapped reads of original alignment file, b) 296 

visualizes the mapped reads after gencore processing. We can find that the false 297 

positive mismatches, which appear randomly in the original alignment file, are 298 

corrected by gencore.  299 

 300 

Conclusion 301 

We introduced a tool gencore, which is useful for performing deduplication and 302 

consensus read generation for deep next-generation sequencing data. We conducted 303 

several experiments to evaluate the performance of gencore, with comparisons to 304 

Picard, Samtools and UMI-tools. The result shows that gencore is much faster and 305 

more memory efficient, while providing similar or better results. This tool generates 306 

interactive HTML reports and informative JSON reports that can help manually 307 

checking and programmatically downstream analysis. According to our estimation, 308 

this tool has been used to process more than 10,000 samples in the authors’ institution, 309 

and is now suitable to be adopted by community users. 310 

 311 
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