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Abstract 22 

A computer joystick is an efficient and cost-effective response device for recording continuous 23 

movements in psychological experiments. Movement trajectories and other measures from 24 

continuous responses have expanded the insights gained from discrete responses (e.g. button 25 

presses) by providing unique information on how cognitive processes unfold over time. However, 26 

few studies have evaluated the validity of joystick responses with reference to conventional key 27 

presses, and response modality can affect cognitive processes. Here, we systematically compared 28 

human participants’ behavioural performance of perceptual decision-making when they responded 29 

with either joystick movements or key presses in a four-alternative motion discrimination task. We 30 

found evidence that the response modality did not affect raw behavioural measures including 31 

decision accuracy and mean reaction time (RT) at the group level. Furthermore, to compare the 32 

underlying decision processes between the two response modalities, we fitted a drift-diffusion 33 

model of decision-making to individual participant’s behavioural data. Bayesian analyses of the 34 

model parameters showed no evidence that switching from key presses to continuous joystick 35 

movements modulated the decision-making process. These results supported continuous joystick 36 

actions as a valid apparatus for continuous movements, although we highlighted the need for 37 

caution when conducting experiments with continuous movement responses. 38 

 39 

Keywords 40 

Joystick trajectory, decision-making, computational modelling, behavioural experiments, drift-41 

diffusion model  42 
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Introduction 43 

Discrete key presses on a keyboard or button box have been the long-standing response modality 44 

in computer-based experiments in psychology, from which on/off responses and response time 45 

(RT) are commonly measured. Developments in computers and electronics technology have 46 

improved the accessibility of other devices that are capable of recording continuous responses, 47 

e.g., joystick, computer mouse, motion sensor and robotic arm (Koop & Johnson, 2011; O’Hora, 48 

Dale, Piiroinen, & Connolly, 2013). In addition to the standard behavioural measures available 49 

from key presses, continuous responses enable further inferences from movement trajectories. 50 

However, to utilize the full capacity of continuous response recording, we need to ensure that 51 

experimental results from these devices are consistent with, or generalizable to, the findings from 52 

conventional response modalities such as key presses. The current study addressed this issue by 53 

comparing the behavioural performance between joystick movements and key presses in a 54 

perceptual decision-making task. Using computational modelling of behavioural data, we further 55 

compared the decision-making processes from the two response modalities.  56 

 57 

Continuous and discrete responses in experimental psychology 58 

Continuous responses can offer theoretical and practical advantages in experiments. First, although 59 

a discrete response is consistent with the assumption of sequential stages of cognition and motor 60 

outputs, a growing number of studies suggested a continuous and parallel flow of information 61 

between brain systems involved in sensory, cognitive and motor processes (Cisek & Kalaska, 62 

2005; Spivey, Grosjean, & Knoblich, 2005). Continuous responses can capture the dynamics of 63 

these multiple mental processes, as well as the transitions between them (Resulaj, Kiani, Wolpert, 64 
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& Shadlen, 2009). Second, in experiments involving clinical populations, it can be difficult for 65 

patients to make discrete responses accurately on a keyboard, especially in patients with dementia 66 

or parkinsonism. Patients with motor function impairments (e.g., tremor, apraxia or loss of 67 

dexterity) often omit button presses, press the button too early or too late, press wrong buttons 68 

accidentally or are confused with response-button mapping. This limitation may result in a 69 

significant amount of experiment data being rejected in some studies (Wessel, Verleger, 70 

Nazarenus, Vieregge, & Kömpf, 1994), while continuousresponses with natural movements can 71 

be well tolerated in patients (Limousin et al., 1997; Strafella, Dagher, & Sadikot, 2003) 72 

The trajectories of continuous movements contain rich spatiotemporal information of the action, 73 

and provide unique insights into how cognitive processes unfold in time (Freeman, Dale, & 74 

Farmer, 2011; Song & Nakayama, 2009). In continuous reaching, movement trajectories showed 75 

that human participants can initiate a reaching action prior to when the target becomes fully 76 

available, and select from competing action plans at a later stage (e.g. Chapman et al., 2010; 77 

Gallivan & Chapman, 2014). In perceptual decision-making, movement trajectories from joysticks 78 

and other similar devices have been successfully used to investigate the cognitive processes 79 

underlying changes of mind (Resulaj et al., 2009), error correction (Acerbi, Vijayakumar, & 80 

Wolpert, 2017) and subjective confidence (Berg et al., 2016) that are otherwise difficult to study 81 

with key presses. 82 

 83 

A comparison between response modalities  84 

To extend currently available experimental findings to otherdevices, it is necessary to assess the 85 

consistency of performance between response modalities. More importantly, characterising the 86 
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consistency between response modalities may help us understand the interdependence of cognitive 87 

processes and motor systems. For example, in decision-making tasks, comparisons between 88 

saccadic eye movements and manual responses has suggested a domain general decision 89 

mechanism regardless of response modality (Gomez, Ratcliff, & Childers, 2015; Ho, Brown, & 90 

Serences, 2009), and the apparent difference in response speed is accounted for by the 91 

neuroanatomical distinctions in saccadic and manual networks (Bompas, Hedge, & Sumner, 2017). 92 

The current study aimed to examine the validity and consistency of continuous joystick responses 93 

versus discrete button presses in perceptual decision-making. Participants performed a four-94 

alternative motion discrimination task (Churchland, Kiani, & Shadlen, 2008) with two levels of 95 

perceptual difficulty. The task was to indicate the coherent motion direction from random dot 96 

kinematogram, a standard psychophysical stimulus for visual perceptual decision (Fredericksen, 97 

Verstraten, & Van De Grind, 1994; Lappin & Bell, 1976; Pilly & Seitz, 2009; Ramachandran & 98 

Anstis, 1983; Watamaniuk, Sekuler, & Williams, 1989). In two counterbalanced sessions, the 99 

participants indicated their decisions with either joystick movements or key presses. The joystick 100 

response was to move the lever from its neutral position towards one of the four cardinal directions, 101 

aligned to the coherent motion direction, and the corresponding key press was one of the four 102 

arrow keys on the keyboard. We compared raw behavioural performance (decision accuracy and 103 

mean RT) between the two response modalities and between the two levels of task difficulty. From 104 

continuous movement trajectories, we also examined whether joystick-specific measures were 105 

consistent between movement directions (i.e., trajectory length, peak velocity and acceleration 106 

time).  107 

To assess whether the response modality affected the decision-making process, we fitted a drift-108 

diffusion model (DDM) (Gold & Shadlen, 2007; Ratcliff, Smith, Brown, & McKoon, 2016) to 109 
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individual participant’s behavioural data and compared model parameters derived from the 110 

joystick and keyboard sessions. The DDM belongs to a family of sequential sampling models of 111 

reaction time. These models assume that the decision process is governed by the accumulation of 112 

noisy sensory evidence over time until a threshold is reached (Bogacz, Brown, Moehlis, Holmes, 113 

& Cohen, 2006; Ratcliff & Smith, 2004), consistent with the electrophysiological (Britten, 114 

Shadlen, Newsome, & Movshon, 1992; Churchland et al., 2008; Hanks, Kiani, & Shadlen, 2014; 115 

Huk & Shadlen, 2005; Shadlen & Newsome, 2001) and neuroimaging (Heekeren, Marrett, & 116 

Ungerleider, 2008; Ho, Brown, & Serences, 2009; Zhang, Hughes, & Rowe, 2012) evidence on 117 

the identification of neural accumulators in the frontoparietal cortex. The current study used the 118 

DDM to decompose the observed RT distributions and accuracy into three main model 119 

components: decision threshold for the amount of evidence needed prior to a decision, drift rate 120 

for the speed of evidence accumulation, and non-decision time to account for the latencies of 121 

stimulus encoding and action initiation (Karahan, Costigan, Graham, Lawrence, & Zhang, 2019; 122 

Ratcliff & McKoon, 2008; Wagenmakers, 2009; Zhang, 2012). The latter parameter is of interest, 123 

because one may expect a difference in the latency distribution of action initiation between joystick 124 

movements and key presses.  125 

Our findings demonstrated that when human participants used ballistic movements to respond with 126 

a joystick, their behavioural performance was modulated by task difficulty and similar to that from 127 

key presses during the same perceptual task. Further computational modelling analysis showed no 128 

evidence of a change in any model parameter when switching between response modalities. As 129 

such, we concluded that joystick movement is a valid response modality for extending discrete 130 

actions to continuous behaviour in psychological experiments, although participants may exhibit 131 

differences in movement trajectory measures towards different directions. 132 
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 133 

Method 134 

Participants 135 

Twenty-one participants (7 males, aged range 18-24 years; M = 20.43 years, SD = 2.91 years) took 136 

part in the study following written informed consent. All but three were right-handed. All the 137 

participants had normal or corrected-to-normal vision, and none reported a history of motor 138 

impairments or neurological disorders. The study was approved by the Cardiff University School 139 

of Psychology Ethics Committee. 140 

 141 

Apparatus 142 

The experiment was conducted in a behavioural testing room with dimmed light. Stimuli were 143 

displayed on a 22-inch CRT monitor with 1600x1200 pixels resolution and 85 Hz refresh rate. A 144 

chin rest was used to maintain the viewing distance and position. A joystick (Extreme 3D Pro 145 

Precision, Logitech International S.A., Switzerland) was used to record movement trajectories at 146 

85 Hz in the joystick session. The experimental setup for joystick and keyboard sessions was 147 

illustrated in Supplementary Figure 1. The joystick handle could move nearly freely, with little 148 

resistance from its neutral position within the 20% movement radius. Beyond the 20% radius, the 149 

resistance during joystick movement was approximately constant. A standard PC keyboard was 150 

used to record key presses. The experiment was written using PsychoPy 1.85.4 library (Peirce, 151 

2008). 152 

 153 
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Stimuli 154 

In both the joystick and keyboard sessions, a random-dot kinematogram was displayed within a 155 

central invisible circular aperture of 14.22° diameter (visual angle). White dots were presented on 156 

a black background (100% contrast) with a dot density of 27.77 dots per deg2 per second and a dot 157 

size of 0.14°. Similar to previous studies (Britten et al., 1992; Pilly & Seitz, 2009; Roitman & 158 

Shadlen, 2002; Shadlen & Newsome, 2001; Zhang & Rowe, 2014), we introduced coherent motion 159 

information by interleaving three uncorrelated sequences of dot positions across frames at 85 Hz. 160 

In each frame, a fixed proportion (i.e., the motion coherence) of dots was replotted at an 161 

appropriate spatial displacement in the direction of the coherent motion (51.195°/s velocity), 162 

relative to their positions three frames earlier, and the rest of the dots were presented at random 163 

locations within the aperture. Signal dots had a maximum lifetime of three frames, after which 164 

they were reassigned to random positions. The coherent motion direction in each trial was set in 165 

one of the four cardinal directions (0°, 90°, 180° or 270°).  166 

 167 

Task and procedure 168 

Each participant took part in two experimental sessions using keyboard or joystick as a response 169 

modality. The order of response modality was counterbalanced across participants. In both 170 

sessions, participants performed a four-alternative motion discrimination task, indicating the 171 

coherent motion direction from four possible choices (0°, 90°, 180° or 270°). Each session 172 

comprised 960 trials, which were divided into 8 blocks of 120 trials. Each block had 15 repetitions 173 

of each of the four motion directions and two difficulty conditions. The motion coherence was set 174 

to 10% in the “Difficult” condition and 20% in the “Easy” condition. Feedback on the mean 175 
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decision accuracy was provided after each block. The order of the conditions was pseudo-176 

randomized across sessions and participants, ensuring that the same direction and difficulty 177 

condition did not occur in four consecutive trials. In the keyboard session, the participants 178 

responded with four arrow keys corresponding to the coherent motion direction (right - 0°, up - 179 

90°, left - 180° and down - 270°). In the joystick session, the participants were instructed to indicate 180 

the motion direction with an appropriate joystick movement from the joystick’s central position 181 

towards one of the four edges (right - 0°, up - 90°, left - 180° and down - 270°).  182 

Every trial started with a 400 ms fixation period (Figure 1a). The random dot kinematogram 183 

appeared after the fixation period for a maximum of 3000 ms or until response. In the keyboard 184 

session, stimuli disappeared after a button press. In joystick condition, stimuli disappeared when 185 

the participants stopped joystick movement. The chosen stopping rule was when the joystick 186 

position did not change in the last four sampling points, and its position was outside of the 20% 187 

motion radius. After response, a blank screen was presented as the intertrial interval, with a 188 

duration uniformly randomized between 1000 and 1400 ms. 189 

The response time (RT) in the keyboard session was defined as the latency between the onset of 190 

random-dot kinematogram and the time of key press. In the joystick session, the RT was defined 191 

as the duration between the onset of the random-dot kinematogram and the first time when the 192 

joystick’s position left the 20% movement radius from its neutral position. It coincided with the 193 

first noticeable increase in the velocity of the movement from the stimulus onset. Participants’ 194 

choice in the joystick session was one of the four cardinal directions (i.e., 0°, 90°, 180° and 270°) 195 

closest to the last position of the joystick. 196 

 197 
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Drift-diffusion model (DDM) analysis 198 

We fitted the DDM to each participant’s response time distributions and accuracy. The DDM 199 

decomposes the behavioural data into four key model parameters (Ratcliff & McKoon, 2008). (1) 200 

The decision threshold (a) denotes the distance between the two decision boundaries. (2) The mean 201 

drift rate (v) denotes the strength of sensory information. (3) The starting point (z) denotes the 202 

response bias towards one of the two alternatives. (4) The non-decision time (Ter) denotes the 203 

latencies of stimulus encoding and response initiation. In addition, the DDM can be extended to 204 

include trial-by-trial variability in drift rate sv and non-decision time st, which improves model fit 205 

to the data (Ratcliff & McKoon, 2008). The DDM predicts the decision time as the duration of the 206 

accumulation process and the observed RT as the sum of the decision time and Ter (Figure 1B). 207 

Similar to previous studies (Churchland et al., 2008) , we simplified the four-alternative forced 208 

choice task in the current study to a binary decision problem for model fitting. This was achieved 209 

by separately grouping trials with correct responses and trials with incorrect responses. The 210 

behavioural task was then reduced to a binary choice between a correct and an incorrect alternative. 211 

We used the hierarchical drift-diffusion model (HDDM) toolbox to fit the behavioural data 212 

(Wiecki, Sofer, & Frank, 2013). The HDDM implemented a hierarchical Bayesian model 213 

(Vandekerckhove, Tuerlinckx, & Lee, 2011) for estimating the DDM parameters, which assumes 214 

that the model parameters for individual participants are sampled from group-level distributions at 215 

a higher hierarchy. Given the observed experimental data, the HDDM used Markov chain Monte 216 

Carlo (MCMC) approaches to estimate the joint posterior distribution of all individual- and group-217 

level parameters. The posterior parameter distributions can be used directly for Bayesian inference 218 

(Gelman et al., 2014), and this Bayesian approach has been shown to be robust in recovering model 219 
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parameters when limited data are available (Ratcliff & Childers, 2015; Wiecki et al., 2013; Zhang 220 

et al., 2016).  221 

We applied a few constraints to the model parameters based on our task design. First, we allowed 222 

all the model parameters (a, v, Ter, sv, and st) to vary between the two response modalities. Second, 223 

the mean drift rate v was further allowed to vary between task difficulties (easy, difficult) and 224 

correct directions (up, down, left and right). Third, the starting point z was fixed at 0.5, suggesting 225 

that there was no bias towards the two decision boundaries and the equal amount of evidence was 226 

required for a correct and incorrect decision. This was because the participants did not have a 227 

priori knowledge about the correct alternative at the beginning of each trial.  228 

We generated 15,000 samples from the joint posterior distribution of all model parameters by using 229 

MCMC sampling (Gamerman & Lopes, 2006). The initial 7,000 samples were discarded as burn-230 

in for stable posterior estimates. Geweke diagnostic (Cowles & Carlin, 1996) and autocorrelation 231 

were used to assess the convergence of the Markov chains in the last 8,000 samples. All parameter 232 

estimates were converged after 15,000 samples. 233 

 234 

Data analysis 235 

First, we used both Bayesian and frequentist repeated-measures ANOVA to make inferences on 236 

behavioural measures (JASP Team, 2018). For frequentist ANOVAs, Greenhouse-Geisser 237 

correction was applied when the assumption of sphericity was violated. For Bayesian ANOVAs, 238 

we followed the standard heuristic to characterize the strength of evidence based on the Bayes 239 

factor (BF10) (Wagenmakers, Lee, Lodewyckx, & Iverson, 2008), which can provide evidence 240 

supporting either null (BF10<1) or alternative (BF10>1) hypotheses. A BF10 between [1, 3] (or [0, 241 
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1/3]) suggests weak evidence for the alternative (or null) hypothesis. A BF10 between [3, 10] (or 242 

[1/10, 1/3]) suggests moderate or compelling evidence for the alternative (or null) hypothesis. A 243 

BF10 larger than 10 (or smaller than 1/10), suggests strong evidence for the alternative (or null) 244 

hypothesis. 245 

Second, to quantify the difference of RT distributions between response modalities, we used the 246 

Kolmogorov-Smirnov test (Pratt & Gibbons, 1981), a non-parametric statistical measure of 247 

difference between two one-dimensional empirical distributions. 248 

Third, to compare a fitted DDM parameter between two conditions (e.g., between response 249 

modalities or between task difficulties), we used Bayesian hypothesis testing (Bayarri & Berger, 250 

2004; Gelman et al., 2014; Kruschke, 2015; Lindley, 1965) to make inferences from the posterior 251 

parameter distributions, under the null hypothesis that the parameter value is equal between the 252 

two conditions.  253 

More specifically, we first calculated the distribution of the parameter difference from the two 254 

MCMC chains of the two conditions, and we obtained the 95% highest density interval (HDI) of 255 

that difference distribution between the two conditions. We then set a region of practical 256 

equivalence (ROPE) around the null value (i.e., 0 for the null hypothesis), which encloses the 257 

values of the posterior difference that are deemed to be negligible from the null value 0 (Kruschke, 258 

2013). In each Bayesian inference, the ROPE was set empirically from the two MCMC chains of 259 

the two conditions under comparison. For each of the two conditions, we calculated the 95% HDI 260 

of the difference distribution between odd and even samples from that condition’s MCMC chain. 261 

This 95% HDI from a single MCMC chain can be considered as negligible values around the null, 262 

because posterior samples from different portions of the same chain are representative values of 263 

the same parameter. That is, we accepted that the null hypothesis is true when comparing the 264 
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difference between odd and even samples from the same MCMC chain. The ROPE was then set 265 

to the widest boundaries of the two 95% HDIs of the two conditions. 266 

From the 95% HDI of the difference distribution and the ROPE, a Bayesian P-value was 267 

calculated. To avoid confusion, we used p to refer to classical frequentist p-values, and Pp|D to refer 268 

to Bayesian P-values based on posterior parameter distributions. If ROPE is completely contained 269 

within 95% HDI, Pp|D = 1 and we accept the null hypothesis (i.e., the parameter values are equal 270 

between the two conditions). If ROPE is completely outside 95% HDI, Pp|D = 0 and we reject the 271 

null hypothesis (i.e., the parameter values differ between the two conditions). If ROPE and 95% 272 

HDI partially overlap, Pp|D equals to the proportion of the 95% HDI that falls within the ROPE, 273 

which indicates the probability that the parameter value is practically equivalent between the two 274 

conditions (Kruschke & Liddell, 2018).  275 

 276 

Results 277 

Behavioural results 278 

The behavioural performance of the four-alternative motion discrimination task was quantified by 279 

accuracy (proportion of correct responses, Figure 2A) and mean reaction time (RT, Figure 2B). 280 

We compared the behavioural performance between response modalities (joystick or keyboard), 281 

task difficulties (easy or difficult) and motion directions (up, down, left or right) using three-way 282 

Bayesian and frequentist repeated-measure ANOVAs. Across the two response modalities, 283 

participants showed decreased accuracy (BF10 = 5.112 × 1030
;
 F(1,20) = 292.709, p < 0.001) and 284 

increased mean RT (BF10 = 1.458 × 1018
;
 F(1,20) = 63.163, p < 0.001) in the more difficult 285 

condition. There was compelling evidence against the main effect of response modality on 286 
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accuracy (BF10 = 0.124; F(1,20) = 0.083, p = 0.776) and weak evidence against the main effect of 287 

response modality on mean RT (BF10 = 0.560; F(1,20) = 0.495, p = 0.490). These results indicated 288 

similar behavioural performance between joystick and keyboard responses. 289 

When comparing the behavioural performance between motion directions, there was compelling 290 

evidence against the main effect on accuracy (BF10 = 0.185; F(2.248, 44.961) = 0.107, p = 0.357). 291 

On mean RT, the frequentist ANOVA suggested a significant main effect of motion direction 292 

(F(2.853, 57.052) = 3.021, p = 0.039), but this results was supported by neither post-hoc tests 293 

(p>0.139 in all post-hoc comparisons, Bonferroni corrected) or Bayesian ANOVA (BF10 = 0.305). 294 

Furthermore, there was a significant interaction on accuracy between task difficulty and motion 295 

direction (F(2.586, 51.718) = 6.317, p = 0.002), although this was again not supported by Bayesian 296 

analysis (BF10 = 0.299). There was evidence against all the other interactions on accuracy (BF10 < 297 

0.179; p > 0.228) and mean RT (BF10 < 0.199; p > 0.083). 298 

The results above suggested no systematic bias at the group level when comparing responses from 299 

a joystick and a keyboard. However, the consistency of behavioural performance between response 300 

modalities could vary between participants. For experiments with multiple response modalities, 301 

the researcher may want to confirm whether the consistency between response modalities is 302 

maintained across experimental conditions. This would allow, for example, a pre-screening 303 

procedure to identify participants with high response consistency to be recruited for further 304 

experiments. Here, we used Kolmogorov-Smirnov (K-S) statistics to quantify the difference of 305 

individual participant’s RT distributions between the joystick and keyboard sessions in each 306 

difficulty condition, separately for correct and incorrect trials. There was strong evidence of a 307 

positive correlation between the K-S statistics of the easy and difficult conditions (correct trials: 308 

BF10 = 3.647 × 106, R= 0.92, p < 0.001; incorrect trials: BF10 = 4526.00, R = 0.82, p < 0.001) 309 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2019. ; https://doi.org/10.1101/501536doi: bioRxiv preprint 

https://doi.org/10.1101/501536
http://creativecommons.org/licenses/by-nc-nd/4.0/


Revised manuscript 

15 

 

(Figure 2C). Therefore, the difference in behavioural performance between response modalities 310 

was consistent within participants across difficulty levels. 311 

 312 

Hierarchical drift-diffusion model analyses 313 

To compare the underlying decision-making process between joystick and keyboard responses, we 314 

simplified the four-alternative motion discrimination task to a binary decision task (Churchland et 315 

al., 2008; see also “Drift-diffusion model” section) and fitted the drift-diffusion model (DDM) to 316 

the behavioural data using the hierarchical DDM (HDDM) toolbox (Wiecki et al., 2013). The 317 

DDM decomposed individual participant’s behavioural data into model parameters of latent 318 

psychological processes, and the HDDM toolbox allowed to estimate the joint posterior estimates 319 

of model parameters using hierarchical Bayesian approaches. To evaluate the model fit, we 320 

generated model predictions by simulations with the posterior estimates of the model parameters. 321 

There was a good agreement between the observed data and the model simulations across response 322 

modalities, task difficulties and motion directions (Figure 3). 323 

With no a priori knowledge on the effect of response modality on the decision-making process, 324 

we allowed all model parameters to vary between joystick and keyboard responses: the boundary 325 

separation a, the mean drift rate v, the mean non-decision time Ter, the trial-by-trial variability of 326 

drift rate sv, and the trial-by-trial variability of non-decision time st (Table 1). The mean drift rate 327 

was further allowed to vary between task difficulties and motion directions. We performed 328 

Bayesian hypothesis testing on the posterior parameter estimates between response modalities 329 

(Bayarri & Berger, 2004; Gelman et al., 2014; Kruschke, 2015; Lindley, 1965). This analysis 330 
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yielded 95% HDI of the parameter difference between the joystick and keyboard sessions, as well 331 

as Bayesian P-values PP|D (see “Data analysis” section for details). 332 

For all the model parameters, we could not reject the null hypothesis that the posterior parameter 333 

estimates are practically equal between the joystick and keyboard sessions. The PP|D, which 334 

quantifies the probability that the model parameter is practically equal between the two conditions, 335 

ranged from 0.641 to 0.964 (Table 1). Therefore, there was no evidence to support that switching 336 

from keyboard to joystick altered the decision-making process. Next, because the mean drift rate 337 

is often assumed to increase with decreased task difficulty (Ratcliff & McKoon, 2008), we 338 

compared the drift rate averaged from the joystick and keyboard sessions between easy and 339 

difficult conditions. As expected, the drift rate was larger in the easy compared with the difficult 340 

condition in all motion directions (up: 95% HDI = [0.589, 1.613], PP|D=0; down: 95% HDI = 341 

[0.930, 1.958], PP|D=0; left: 95% HDI = [1.204, 2.227], PP|D=0; right: 95% HDI = [1.185, 2.214], 342 

PP|D=0).  343 

 344 

Additional measures from joystick trajectories 345 

In the joystick session, the participants’ movement trajectories were close to the four cardinal 346 

directions (Figure 4A). Continuous movements with the joystick enabled to acquire additional 347 

single trial behavioural measures beyond that possible from simple key presses. We examined 348 

three such measures: peak velocity (Figure 4B), acceleration time (Figure 4C) and trajectory length 349 

(Figure 4D). These additional joystick measures were subsequent to accuracy and RT. In the 350 

current study, we did not expect them to have critical influence on the two primary behavioural 351 

measures. Hence our analyses were focused on the effects of movement direction and task 352 
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difficulty on the trajectory measures. However, we acknowledged that, in experiments with more 353 

complex movement trajectories, decisions may be more directly coupled to continuous motor 354 

responses (Song & Nakayama, 2009). 355 

We calculated the action velocity as the rate of changes of joystick position. There was a single 356 

peak of action velocity in each trial, consistent with the ballistic nature of the movement. There 357 

was strong evidence for the main effect of response direction on the peak velocity (Figure 5B, BF10 358 

= 3.900 × 1024 , F(2.000, 40.002) = 39.25, p < 0.001), moderate evidence for the main effect of 359 

difficulty (BF10 = 4.612, F(1,20) = 22.70, p < 0.001) and strong evidence for the interaction 360 

between direction and difficulty (BF10 = 58.433, F(2.841,56.813) = 30.58, p < 0.001). 361 

We calculated the acceleration time as the latency between the RT and the time of peak velocity 362 

(Figure 5C). There was strong evidence for the main effect of response direction (BF10 = 1147.376, 363 

F(2.253, 45.05) = 4.741, p = 0.011). We found moderate evidence against difficulty level (BF10 = 364 

0.172, F(1,20) =0.178, p = 0.677). Frequentist ANOVA showed a significant interaction between 365 

the response direction and difficulty levels (F(2.853, 57.053) = 4.470, p = 0.008), which was not 366 

supported by the Bayes factor (BF10 = 0.256). 367 

We calculated the trajectory length as the sum of the Euclidean distance between adjacent joystick 368 

positions in each trial (Figure 5D). There was no compelling evidence for the main effect of 369 

response direction on trajectory length (BF10 =1.759; F(3, 60) = 1.944, p = 0.151), nor the main 370 

effect of task difficulty (BF10 = 0.450, F(1, 20) = 3.171, p = 0.09). The evidence against the 371 

interaction between direction and difficulty was strong (BF10 = 0.090, F(3, 60) = 0.978, p = 0.409). 372 

In summary, the peak action velocity of joystick movements was affected by both action direction 373 

and task difficulty, and acceleration time was affected only by trajectory direction. There was no 374 
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compelling evidence to support that trajectory length was affected by action direction or task 375 

difficulty. 376 

 377 

Discussion 378 

The current study systematically compared the consistency between continuous and discrete 379 

responses during rapid decision-making. In a four-alternative motion discrimination task, joystick 380 

movements and key presses led to similar accuracy and mean RT. Further modelling analysis with 381 

hierarchical DDM showed no evidence in supporting a change of any model parameters between 382 

response modalities. Together, our findings provide evidence for the validity of using continuous 383 

joystick movement as a reliable response modality in behavioural experiments. 384 

 385 

Behavioural measures 386 

In both joystick and keyboard sessions, participants had lower accuracy and longer mean RT in 387 

the more difficult condition (i.e., lower motion coherence), in line with previous findings with 388 

similar tasks (Britten et al., 1992; Pilly & Seitz, 2009; Ramachandran & Anstis, 1983; Roitman & 389 

Shadlen, 2002). Using Bayesian statistics, we found evidence that response modality (joystick 390 

motion or key press) did not affect either accuracy or mean RT, confirming the validity of using 391 

joystick as a response device in decision-making tasks. Importantly, across participants, the 392 

difference in the RT distributions between response modalities was positively correlated between 393 

easy and difficult conditions. Therefore, participants with similar behavioural performance 394 

between response modalities maintained their consistency between experimental conditions. 395 
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Joystick positions estimated at a high sampling rate enabled additional behavioural measures 396 

beyond on/off key presses. In the current study, most of the movement trajectories were along the 397 

four cardinal directions (Figure 5A). The averaged trajectory length was close to 1 (Figure 5D), 398 

which was the shortest distance from the joystick’s neutral position to the maximum range, 399 

suggesting that the participants were able to make accurate and ballistic movements following the 400 

task instruction. Nevertheless, it is worth noting that the movement direction affected the peak 401 

velocity and acceleration time. This may be due to the difference in upper limb muscle contractions 402 

when moving the joystick towards different directions (Oliver, Northey, Murphy, MacLean, & 403 

Sexsmith, 2011). Therefore, for future behavioural experiments relying on sensitive trajectories 404 

measures, we suggest extra cautious on the effects of ergonomics and human motor physiology, 405 

especially for rapid movements as in the current study. One potential solution would be to acquire 406 

baseline recordings of the movements to be expected during the experiment, which can then be 407 

used to compensate measurement biases. 408 

 409 

Model-based measures 410 

The DDM and other sequential sampling models  are commonly used to investigate the cognitive 411 

processes underlying rapid decision-making (Bogacz et al., 2006; Smith & Ratcliff, 2004). In the 412 

current study, the mean drift rate increased in the easier task condition, consistent with previous 413 

modelling results (Ratcliff & McKoon, 2008). The combination of posterior parameter estimation 414 

and Bayesian inference allowed us to obtain the probability of the parameter being practically 415 

equal, a more informative measure than frequentist p-values (Kruschke, 2015). Although our 416 

results suggested that most parameter values had high probabilities to remain the same between 417 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2019. ; https://doi.org/10.1101/501536doi: bioRxiv preprint 

https://doi.org/10.1101/501536
http://creativecommons.org/licenses/by-nc-nd/4.0/


Revised manuscript 

20 

 

response modalities (Table 1), we could not accept the null hypothesis for certain (which requires 418 

PP|D = 1) and need more data to confirm the inference. 419 

We highlighted two model parameters with low PP|D values, which indicate that, with additional 420 

observed data from future experiments, the posterior model parameters might be in favour of the 421 

alternative hypothesis (i.e., a difference between response modalities). First, when switching from 422 

key presses to joystick movements, there was a small increase in the mean non-decision time (PP|D 423 

= 0.658). Second, responding with a joystick resulted in a slightly decreased decision threshold 424 

(PP|D = 0.872). Several previous studies showed that instructing to respond faster or more 425 

accurately could efficiently modulate participants’ behaviour (Beersma et al., 2003; Schouten & 426 

Bekker, 1967; Wickelgren, 1977). The decision threshold plays a substantial role under such 427 

speed-accuracy instructions (Mulder et al., 2013; Rae, Heathcote, Donkin, Averell, & Brown, 428 

2014; Ratcliff & McKoon, 2008; Starns & Ratcliff, 2014; Zhang & Rowe, 2014): a decrease of 429 

threshold is accompanied with faster reaction speed and lower accuracy. If participants do 430 

implicitly trade accuracy for speed when switching from keyboard to joystick movements, this 431 

cognitive discrepancy needs to be considered when conducting experiments involving continuous 432 

responses. One hypothesis for this potential behavioural change is that continuous joystick 433 

movements allow participants to change or correct their responses later in a trial (Albantakis & 434 

Deco, 2009; Gallivan & Chapman, 2014; Gallivan, Logan, Wolpert, & Flanagan, 2016; Selen, 435 

Shadlen, & Wolpert, 2012), and this response flexibility may lead to reduced deliberation in initial 436 

movements. 437 

The trial-by-trial variabilities in drift rate and non-decision time also had Pp|D values. Empirically, 438 

across-trial variability was introduced in DDM to improve the model fit to RT distributions 439 

(Ratcliff & McKoon, 2008), although the functional significance of these parameters to the 440 
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decision process is still unclear. Across-trial variability in the drift rate produces different RT 441 

between correct and error trials (Ratcliff & Rouder, 1998), and across-trial variability in the non-442 

decision time accounts for the large variability in trials with short RT across experimental 443 

conditions (Ratcliff & Tuerlinckx, 2002). These model parameters allow the DDM to account for 444 

the subtle differences in the shape of RT distributions between response modalities. Future studies 445 

could apply formal model comparison to evaluate the need of trial-by-trial variability in modelling 446 

joystick responses. 447 

 448 

The use of joystick and its validity 449 

We aimed to establish the validity of joystick response in rapid decision-making tasks. More 450 

specifically, we examined whether response modality (joystick movements vs. key presses) alters 451 

the raw behavioural measures (RT and accuracy) and underlying cognitive processes. We found 452 

that both behavioural measures and model parameters from cognitive modelling did not differ 453 

significantly between response modalities. In other words, using joystick movements to indicate 454 

choices of perceptual decisions elicit behavioural and cognitive characteristics similar to those 455 

from conventional key presses. 456 

Motion discrimination based on random dot kinematogram is a typical paradigm for simple 457 

decisions. The same computational mechanism of evidence accumulation has been suggested to 458 

account for the cognitive processes underlying a broad range of decision-making tasks, spanning 459 

across sensory modalities (O’Connell, Dockree, & Kelly, 2012) and cognitive domains (Gold & 460 

Shadlen, 2007). Therefore, we expect that the validity of joystick response established in the 461 
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current study can be extended to experimental paradigms in which participants make rapid choices 462 

with motor actions (Ratcliff & McKoon, 2008). 463 

The joystick as a response modality has been successfully applied in ageing and clinical 464 

populations, in which conventional key presses may be error-prone due to impaired dexterity. Both 465 

older and young adults can operate joysticks in visuomotor tasks with similar response patterns 466 

(Kramer, Larish, Weber, & Bardell, 1999). Previous studies showed that older adults can complete 467 

multiple hour-long cognitive training sessions with joystick responses, and the performance 468 

benefit persisted for 6 months after training (Anguera et al., 2013). In patients with 469 

neurodegenerative diseases, volitional joystick movements have been successfully used to 470 

examine the motor deficits and underlying neural abnormalities (Kew et al., 1993). This evidence 471 

suggested that the use of joystick can be well tolerated in older adults and patients. 472 

In the current study, the participants did not report fatigue after joystick or keyboard sessions, 473 

which lasted approximately 45 minutes each. Other paradigms with longer experimental sessions 474 

and more intense joystick movements may impose a challenge to participants’ stamina. 475 

Nevertheless, it is possible to use measures from the continuous joystick recording (Kahol, Smith, 476 

Brandenberger, Ashby, & Ferrara, 2011) or concurrent physiological recording (Mascord & Heath, 477 

1992) to identify the onset of fatigue prior to performance deterioration. 478 

One may ask if joystick responses provide any additional value over conventional key presses. 479 

Here, we showed that, even in simple ballistic movements, joystick-specific measures (e.g. action 480 

velocity) can be affected by the task difficulty, providing additional information on behavioural 481 

performance in addition to RT and accuracy. It is yet to be determined whether continuous 482 

responses provide independent information from discrete responses (Freeman, 2018; Freeman & 483 

Ambady, 2010; Stillman, Medvedev, & Ferguson, 2017). However, the capacity of recoding 484 
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continuous responses via joysticks enables new experimental designs to probe the continuous 485 

interplay between action, perception and cognition. For example, the ongoing locomotion can 486 

modify the sensory information flow (Ayaz, Saleem, Schölvinck, & Carandini, 2013; Souman, 487 

Freeman, Eikmeier, & Ernst, 2010). 488 

Future directions 489 

Three issues require further consideration. First, we only used a joystick to record movement 490 

trajectories, which is commonly used and widely available in behavioural testing labs. There are 491 

many other devices capable for recording continuous responses, such as computer mouse (e.g. 492 

Koop & Johnson, 2011), optic motion sensor (e.g. Chapman et al., 2010) and robotic arms 493 

(Abrams, Meyer, & Kornblum, 1990; Archambault, Caminiti, & Battaglia-Mayer, 2009; Berg et 494 

al., 2016; Burk, Ingram, Franklin, Shadlen, & Wolpert, 2014; Resulaj et al., 2009). The current 495 

study offered a comprehensive comparison between key presses and joystick movements, but the 496 

measures from other devices are yet to be validated. We also offered a practical solution to measure 497 

RT from joystick movement comparable to that from key presses, taking in to account the small 498 

resistive forces near the joystick’s neural position. To facilitate future research, we have made our 499 

data and analysis scripts openly available (https://osf.io/6fpq4). 500 

Second, we instructed participants to make directional movements in the joystick session, which 501 

allows for intra-individual comparisons between response modalities. Motion trajectories 502 

suggested that the participants mainly made ballistic actions towards one of the four cardinal 503 

directions (Figure 5A). One could explore the further potential of continuous responses in 504 

behavioural tasks, such as in response to the change of mind (Berg et al., 2016; Burk et al., 2014; 505 

Resulaj et al., 2009) or external distractions (Gallivan & Chapman, 2014).  506 
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Third, the DDM required the behavioural data to be presented as binary choices (Ratcliff & 507 

McKoon, 2008). To meet this constraint, we simplified our four-choice task data into correct and 508 

incorrect decisions, and incorrect responses contained errors towards three different directions 509 

from the correct motion direction. Our modelling results provided a good fit to the observed data. 510 

It would be useful to extend the analysis using other models that are designed for decision problems 511 

with multiple alternatives (Bogacz, Usher, Zhang, & McClelland, 2007; Brown & Heathcote, 512 

2008; Usher & McClelland, 2001; Wong & Wang, 2006; Zhang & Bogacz, 2009), although a 513 

hierarchical Bayesian implementation of those more complex models is beyond the scope of the 514 

current study.  515 

In conclusion, our results validated the joystick as a reliable device for continuous responses during 516 

rapid decision-making. Compared with key presses, the additional complexity and continuity 517 

associated with joystick movements did not affect raw behavioural measures such as accuracy and 518 

mean RT, as well as underlying decision-making processes. However, we highlighted the effects 519 

of movement direction on continuous trajectory measures. Researchers should be cautious when 520 

adopting experimental designs that require complex movement trajectories.  521 
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Open practices statement: 522 

All the data and the materials for the experiment and analysis are available at https://osf.io/6fpq4 523 
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Table 1. Posterior estimates of the hierarchical drift-diffusion model parameters (decision 736 

threshold a, mean drift rate v, non-decision time Ter, trial-by-trial drift rate variability sv, trial-by 737 

trial non-decision time variability st). The first two data columns showed the posterior means and 738 

standard deviations of the parameters in the joystick and keyboard sessions. 95% HDI denoted the 739 

95% highest density intervals for the parameter difference between the joystick and keyboard 740 

sessions. PP|D denoted the Bayesian P-value for the parameter difference being equal between 741 

response modalities. 742 

   
Joystick 

(mean ± sd) 

Keyboard 

(mean ± sd) 
95% HDI PP|D 

a   1.508 ± 0.072 1.572 ± 0.073 [-0.270, 0.120] 0.872 

v 

Easy 

Up 1.694 ± 0.263 1.269 ± 0.260 [-0.300, 1.144] 0.720 

Down 1.765 ± 0.264 1.454 ± 0.261 [-0.460, 0.999] 0.810 

Left 2.169 ± 0.267 1.906 ± 0.260 [-0.450, 1.020] 0.789 

Right 2.351 ± 0.267 2.187 ± 0.262 [-0.580, 0.880] 0.863 

Difficult 

Up 0.477 ± 0.257 0.291 ± 0.263 [-0.526, 0.896] 0.866 

Down 0.144 ± 0.262 0.202 ± 0.256 [-0.822, 0.603] 0.932 

Left 0.441 ± 0.261 0.216 ± 0.257 [-0.529, 0.909] 0.854 

Right 0.533 ± 0.263 0.597 ± 0.261 [-0.769, 0.685] 0.964 

Ter   0.613 ± 0.028 0.556 ± 0.028 [-0.025, 0.130] 0.658 

sv   0.992 ± 0.047 0.916 ± 0.042 [-0.039, 0.203] 0.669 

st   0.268 ± 0.007 0.283 ± 0.007 [-0.035, 0.004] 0.641 
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Figure 1. 744 

 745 

Figure 1. Behavioural paradigm and the drift-diffusion model (DDM). (A) The structure of a 746 

single trial of the experiment. A fixation screen was presented for 400 ms, after which the random-747 

dot kinematogram was presented for a maximum of 3000 ms or until response. The inter-trial 748 

interval was randomised between 1000 and 1400 ms. Participants were instructed to indicate the 749 

direction of the coherent motion direction (0°, 90°, 180° or 270°) using joystick or keyboard in 750 

two counterbalanced sessions. (B) The drift-diffusion model and examples of evidence 751 

accumulation trajectories. The parameter (a) indicates the distance between the correct and 752 

incorrect decision thresholds. The drift rate (v) represents the speed of evidence accumulation and 753 

its magnitude is determined by the quality of the evidence. A positive v indicates that, on average, 754 

the accumulation of sensory evidence is towards the correct decision threshold. The starting point 755 

(z) represents the response bias towards one of the two thresholds. The non-decision time (Ter) 756 

represents the latencies of non-decision processes, which is illustrated besides the decision time 757 

distribution in the figure. The diffusion process starts at the starting point (z) until the accumulated 758 

evidence reaches one of the two thresholds. If the accumulated evidence reaches the correct (upper) 759 
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threshold (blue trajectories), the model predicts a correct response. Because of noise, the 760 

accumulated evidence may reach the incorrect (lower) threshold (red trajectories) and the model 761 

predicts an incorrect response. The predicted single-trial RT is the sum of the duration of the 762 

evidence accumulation (decision time) and the non-decision time Ter. 763 
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Figure 2. 765 

  766 

Figure 2. Behavioural results in joystick and keyboard sessions. (A) Average decision accuracy 767 

(proportion of correct) across participants. Error bars denote standard errors of the means. (B) 768 

Average mean RT across participants. Error bars denote standard errors of the means. (C) The 769 

Kolmogorov-Smirnov (K-S) statistics when comparing the RT distributions between response 770 

modalities. The scatter plot showed the K-S statistics in the difficult condition as a function of the 771 

that in the easy condition. Each data point represents the correct (filled data point) or incorrect 772 

(open data point) trials of one participant. Linear regression lines were illustrated for correct (solid 773 

line) and incorrect (dashed line) trials. 774 
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Figure 3. 776 

 777 

Figure 3. Posterior predictive RT distributions from the fitted DDM. Each panel shows the 778 

normalized histograms of the observed data (blue bars – correct responses, red bars – incorrect 779 

responses) and the model prediction (black lines) across participants. The RT distribution along 780 

the positive x-axis is from correct responses, and the areas under the curve on the positive x-axis 781 

corresponds to the observed and predicted accuracy. The RT distribution along the negative x-axis 782 
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is from error responses, and the areas under the curve on the negative x-axis corresponds to the 783 

observed and predicted error. The posterior predictions of the model were generated by averaging 784 

500 simulations of the same amount of model predicted data as observed in the experiment using 785 

posterior parameter estimates. 786 
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Figure 4. 788 

 789 

Figure 4. Measures from joystick trajectories. (A) The summary of movement trajectories and 790 

final positions. The heat map in the centre represents the proportion of the total joystick position 791 

across trials and participants. The histogram on the edge represents the distribution of final 792 

positions. (B) The peak velocity of joystick movements averaged across participants. (C) The mean 793 

acceleration time of joystick movements averaged across participants (D) The mean trajectory 794 

length averaged across participants. The error bars denote the standard errors of the means. 795 
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Supplementary Figure 1. 796 

 797 

Supplementary Figure 1. The experimental setup and joystick positioning. Participant was 798 

seated in front of the screen. The distance from the screen and the head position was maintained 799 

using a chinrest. Seating height was adjusted to the most comfortable position. Joystick was 800 

positioned to the right of the participant (A). Exact position of the device was adjusted to the most 801 

comfortable position. Participants were asked to hold the base of the joystick while responding. 802 

Keyboard was placed parallel to the screen to ensure the arrow directions correspond to the 803 

direction of the motion of the visual stimuli (B). 804 
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