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ABSTRACT 

Sensory decisions involve multiple cortical areas, but the specific roles of these areas are not well 

understood. We trained head-fixed mice to discriminate visual contrast and report their decision with a 

wheel turn. Widefield calcium imaging revealed task-related activity in multiple cortical areas: visual 

(VIS), secondary motor (MOs), primary motor and somatosensory. Optogenetic inactivation, however, 

impaired performance only in VIS and MOs. The animal’s choices could be related to cortical activity 

using a simple neurometric model that weighed activity in VIS and MOs. The model’s weights revealed 

different roles for these regions: VIS promotes contraversive and suppresses ipsiversive choices, 

whereas MOs promotes both contraversive and ipsiversive choices. With no further parameter 

adjustments, the same model predicted the effect of local optogenetic inactivation. These results 

indicate that neocortex causally supports visual discrimination through visual and frontal but not primary 

motor areas, and provides a quantitative framework relating cortical activity to decisions

INTRODUCTION 

Decision-making in humans and animals can 

often be described by probabilistic models. 

Although we may respond to a sensory stimulus 

differently on different occasions, the probabilities 

of our choices often depend regularly on 

quantities such as stimulus strength or expected 

reward. Mathematical formulae relating the 

probabilities of different choices to sensory 

variables are known as psychometric models, 

and include signal detection theory (Green and 

Swets, 1966; Sridharan et al., 2014), logistic 

regression (Greene, 2011), and drift diffusion 

(Gold and Shadlen, 2001; Ratcliff et al., 2016). 

To relate a psychometric model of behavior to 

brain circuits, one must demonstrate both 

correlation and causation. First, one must 

correlate quantities appearing in the model with 

neural measurements (Corrado and Doya, 2007). 

For example, quantities in the drift-diffusion model 

have correlates in macaque sensory and parietal 

cortex (Britten et al., 1992; Roitman and Shadlen, 

2002), and in rat parietal and frontal cortex 

(Brunton et al., 2013; Hanks et al., 2015). Such 

correlations allow one to build “neurometric” 

models, which predict behavior directly from brain 

activity (Lakshminarasimhan et al., 2018; 

Newsome et al., 1989; Nikbakht et al., 2018). 

Neurometric models can go beyond 

psychometric models by predicting not just the 

probabilities of each choice, but also accounting 

for trial-to-trial variability in choices to identical 

stimuli. However, such predictions still do not 

provide causal evidence, which require one to 

perturb neural activity and test if behavioral 

changes conform to the model. For example, the 

changes seen when perturbing sensory and 

frontal regions conform with the predictions of the 

drift-diffusion model (Erlich et al., 2011, 2015; 

Katz et al., 2016; Liu and Pack, 2017). However, 

behavioral changes are less clear when one 

perturbs parietal areas (Akrami et al., 2018; Erlich 

et al., 2015; Hanks et al., 2006; Katz et al., 2016), 
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suggesting that these areas may not play a direct 

causal role in behavior selection in those tasks. 

Perceptual decision making appears to engage 

multiple cortical areas, but the nature of their 

interaction is debated (Cisek and Kalaska, 2010; 

Lakshminarasimhan et al., 2018). Some aspects 

of sensory processing are consistent with a 

sequential process, where the stimulus 

sequentially activates early sensory, premotor, 

and frontal cortical areas (Guo et al., 2014; 

Hernández et al., 2010; Le Merre et al., 2018; 

Ledberg et al., 2007; Siegel et al., 2015). 

However, choice-predictive activity can emerge 

simultaneously in several cortical areas 

(Hernández et al., 2010; Siegel et al., 2015), 

suggesting that decisions can arise from parallel 

interaction among these areas. 

Here we provide both correlative and causal 

evidence for a simple neurometric model of 

decision making involving multiple cortical areas. 

We used widefield calcium imaging and scanning 

optogenetic inactivation in mice performing a 

visual discrimination task (Burgess et al., 2017). 

The imaging revealed sequential activation of 

multiple areas in dorsal cortex, but the 

inactivation revealed that only visual and 

secondary motor cortex played a causal role. We 

developed a simple neurometric model 

summarizing the parallel contribution of these two 

regions towards a decision. This model 

accounted for the relationship of activity to 

behavior and also predicted the effects of 

inactivations, despite the inactivation data playing 

no part in fitting the model. The results provide a 

quantitative and causal framework for modeling 

how cortical activity relates to decisions. 

RESULTS 

We begin by describing the task and a simple 

psychometric model. We then introduce 

measurements of cortical activity and results from 

cortical inactivations. Finally, we return to the 

psychometric model and replace parts of it with 

neural substrates, thus obtaining a neurometric 

model of visual decision making. 

Visual discrimination task and psychometric 

model of behavior 
We trained mice to perform a two-alternative 

unforced-choice visual discrimination task 

(Burgess et al., 2017). Mice were head-fixed and 

their forepaws rested on a steering wheel 

surrounded by three screens (Fig. 1a). Each trial 

began after a quiescence period during which the 

mice refrained from any wheel movements for a 

minimum duration. Grating stimuli appeared in 

the left and right hemifields together with an 

auditory Go cue (Fig. 1b-d). Mice were rewarded 

with water for rotating the wheel Left or Right to 

bring the higher-contrast stimulus into the center, 

or for holding the wheel still (NoGo) if no stimulus 

was present. Mice became proficient in the task, 

achieving 86 ± 9% correct choices (mean ± SD, 

n=34 sessions in 6 mice) on trials with single high 

contrast gratings, and the probability of their 

choices varied smoothly with the contrasts of the 

two gratings (Fig. 1e-h). 

To account for the mouse’s choices we employed 

a simple logistic model (Burgess et al., 2017) (Fig. 

1i-j), related to multiple-choice models used in 

econometrics (Greene, 2011) and in 

psychophysics (Sridharan et al., 2014). In this 

model, the probabilities of the three possible 

choices (𝑝𝐿 , 𝑝𝑅 , 𝑝𝑁𝐺)  depend on two decision 

variables, 𝑍𝐿  and 𝑍𝑅 , which measure the log 

probability ratio for a Left or Right choice relative 

to NoGo, 

ln(𝑝𝐿/𝑝𝑁𝐺) = 𝑍𝐿 (1) 
ln(𝑝𝑅/𝑝𝑁𝐺  ) = 𝑍𝑅 

We modeled each decision variable as the sum of 

a bias term 𝑏  and a term depending on visual 

contrast 𝑐 on the corresponding side: 

𝑍𝐿 = 𝑏𝐿 + 𝑠𝐿𝑓(𝑐𝐿) (2) 
𝑍𝑅 = 𝑏𝑅 + 𝑠𝑅𝑓(𝑐𝑅) 

The contrast-dependent terms were the product 

of a visual sensitivity factor 𝑠  and a saturating 

function of contrast 𝑓(𝑐) = 𝑐𝑛 with exponent 𝑛 <

1 (Fig. 1j). The dependence of the two decision 

variables on contrast was therefore summarized 

by two sensitivity parameters (𝑠𝐿 , 𝑠𝑅 ) and one 

exponent (𝑛). Bias parameters (𝑏𝐿 , 𝑏𝑅) controlled 
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the tendency to make a choice independently of 

sensory evidence. 

To fit the model, we used a multi-level Bayesian 

approach that allowed parameters to vary across 

sessions and mice (see Methods). The fits 

accounted for the mean probabilities of choice 

both averaged across all mice and sessions (Fig. 

1e-h), and across individual sessions (e.g. Fig. 

1k-m). 

Sequential activation of cortical areas  
To reveal how the activity of different cortical 

areas correlates with task performance, we 

trained mice expressing GCaMP6s/f (see 

Methods) in excitatory neurons (n=4) or in all 

 

Figure 1 | Visual discrimination task and psychometric model. a. Behavioral setup, with the mouse surrounded by 3 screens. 

b. Example stimulus, with higher contrast on the right than left. The correct movement is to turn the wheel so that the right 

stimulus moves to the middle (dashed circle, not visible to the mouse). Bottom: Task timeline. Trials began after a quiescence 

period of 0.2-0.6 s. Grating onset was accompanied by an auditory Go cue. Mice could then make a choice (Left/Right) or 

hold the wheel for 1.5 s (NoGo). Trials were separated by a 2 s interval. c. The 16 possible stimulus conditions. Gratings on 

each screen could have one of four contrasts. d. Rewarded actions depended on stimulus condition: Left (L), Right (R), 

NoGo, (NG). When the contrasts were equal, Left and Right choices were rewarded randomly (L/R). e. Probability of Left 

choices as a function of left and right contrast, averaged over 34 sessions in 6 mice (circles and dashed lines). Choices 

could be correct (black), rewarded randomly (gray), or incorrect (white). Blue curves indicate the mean fit of the 

psychometric model shown in (i). f,g. Same format, showing NoGo trials (f) and Right choice trials (g). h. Summary of these 

choices for unilateral stimuli, showing the probability of Left (blue), NoGo (purple) and Right (orange) choices as a function 

of contrast on the unilateral grating (dots). Curves and shaded region are the mean and 95% credible intervals of the mean 

fit from the psychometric model. i. Psychometric model. See text for a description. j. Estimated contrast function f(c). k-m. 

Model fits to three example sessions, with low (k), medium (l), and high (m) NoGo rate, formatted as in (h). 
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neurons (n=2) and 

performed widefield 

calcium imaging during 

task performance. 

Presentation of the grating 

stimulus elicited a reliable 

sequence of activation in 

the hemisphere 

contralateral to the 

stimulus side (Fig. 2a,b). 

Activity started in primary 

visual cortex (VISp) at 

47±2 ms (time to 30% of 

peak; median ± m.a.d. 

across 6 mice), spread to 

secondary visual cortex 

(e.g. VISal at 54±4 ms), 

and then to secondary 

motor cortex (MOs at 

97±6 ms). This activity was 

observed both for trials 

where mice made a 

correct Left or Right 

choice, and on NoGo 

trials, suggesting that 

activity in these regions 

was related to stimuli more 

than to actions. 

In trials where mice 

responded to the stimulus 

by moving the wheel, this 

stimulus-related activity 

was followed by broad 

movement-related bilateral 

activity (Fig. 2a; 

Supplementary Figure 1). 

This activity reached 

primary motor and primary 

somatosensory areas 

bilaterally at similar times 

(MOp: 144±10 ms; SSp: 

149±13 ms; Fig. 2c-f) and 

subsequently spread to 

the visual cortex ipsilateral 

to the stimulus (200±19 

ms). Thus, activity in visual 

cortex arrived much earlier 

 

Figure 2 | Sequential activation of cortical areas. a. Average cortical fluorescence (dF/F) 

over all sessions of one mouse (mouse 1). Columns show successive times relative to 

stimulus onset, for trials with a stimulus on the left screen only and the mouse made a 

Left choice. Gray lines: contours of cortical areas defined from the Allen Common 

Coordinate Framework (CCF; image cropped to this region). Black dot: bregma. b. Same 

as in (a) but for NoGo trials. Average stimulus contrast was matched between NoGo and 

Left trials in (a). c. Task timeline during widefield calcium imaging. To distinguish activity 

associated with initial wheel movement from activity driven by visual motion, we 

introduced an open-loop period 0.5-1.2 s after grating onset, when wheel movements 

did not move the grating. Trials were excluded post-hoc if choices were made after this 

period. d. Stimulus-locked calcium fluorescence at 5 ROIs for one example session from 

mouse 1. Thick lines are the average response to contralateral stimuli over all correct 

trials. Thin lines are the same but for trials with only ipsilateral stimuli. Response latency, 

marked with a dot, is defined as the time for the mean fluorescence across trials to reach 

30% of the peak. e. Summary of fluorescence response latencies to the contralateral 

stimulus for 6 mice (see Methods for genotype information). Rows show data from 

individual mice, with dots showing each ROI’s response latency for trials pooled across 

sessions. Bottom row: response latencies and reaction time averaged across mice (dots 

and lines: median ± m.a.d.). f. Response latencies to contralateral and ipsilateral stimuli 

for each region, averaged across mice (closed and open circles). Significance was 

determined by a two-tailed paired t-test, t(5)=-10.38, -12.00, -5.46, -1.97, -4.72. 
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on the side contralateral to the stimulus than on 

the ipsilateral side, while activity in primary motor 

and somatosensory cortices arrived in both 

hemispheres near-simultaneously (Fig. 2f). 

Causal roles of visual and secondary motor 

cortex  
Having observed that the task activates virtually 

all of dorsal cortex, we asked which specific 

regions play a causal role in the task. To test for 

causality, we inactivated each of 52 sites across 

  

Figure 3 | Causal roles of visual and secondary motor cortex. a. Scanning inactivation. On ~75% of trials, a blue laser (1.5 

mW, 40 Hz sine wave) illuminated one of 52 locations, from stimulus onset until a choice or NoGo was registered. Matrix 

shows stimulus conditions considered for visualization below. b. Behavioral effect of inactivating 52 cortical regions. Colors 

show change in probability of rightward choices for each stimulation site relative to no stimulation, averaged over all trials 

with equal non-zero contrast on each side, and size indicates statistical significance (permutation test, see Methods). c. 

Higher-power inactivation experiment focused on VIS, MOs and MOp. Laser illumination lasted 1.5 s from stimulus onset. 

d. Probability of correct (contraversive) choice on trials with visual stimuli present only contralateral to the inactivated 

hemisphere, during cortical inactivation (bars) or in control condition (dashed line). Error bars: S.E. across sessions. 

Statistical significance was determined for each session using Fisher’s exact test, and significance across sessions was 

determined using Fisher’s combined probability test, *** p<0.001, ** p<0.01, * p<0.05. e. Same format as d, showing change 

in probability of ipsiversive choices. f. Pulse inactivation experiments. On each trial, a 25 ms laser pulse was presented 

randomly between -300 and +300 ms relative to the stimulus onset. g. Behavioral accuracy in trials where the contralateral 

contrast was greater than the ipsilateral contrast, in non-laser trials (dashed line) and during pulsed inactivation of VIS (blue 

curve) and MOs (green curve). Curves show average of all sessions and mice, smoothed with a 100 ms boxcar window. 

Shaded regions: 95% binomial confidence intervals. Blue and green bars: time range in which accuracy differs significantly 

from non-laser condition (χ2 test, α=10-4). h. Same format as (g), showing effect of pulsed inactivation on median reaction 

times for correct choices. Blue and green bars: time range in which reaction time is significantly longer than control condition 

(one-tailed Wilcoxon rank sum test, α=10-4). 
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dorsal cortex by shining a blue laser in transgenic 

mice expressing ChR2 in Parvalbumin-

expressing inhibitory neurons (Olsen et al., 

2012), using transcranial laser scanning (Guo et 

al., 2014). Laser illumination onset coincided with 

the onset of visual stimuli and lasted until a choice 

(or NoGo) was registered. 

Inactivation only affected the mice’s choices 

when targeted at visual cortex (VIS) and 

secondary motor cortex (MOs) – the two regions 

that are activated earliest by sensory stimuli (Fig. 

3a,b). We illustrate the results by showing the 

effects of inactivation in trials when the two stimuli 

had equal contrast (Fig. 3b). Inactivation of sites 

in VIS (due to light diffusion we could not target 

individual visual areas selectively) decreased the 

proportion of choices contralateral to the 

inactivated site by 35% (p<0.0002, permutation 

test). Inactivation of MOs had similar effects, 

decreasing contralateral choices by 22% 

(p<0.0002). These reductions were 

accompanied by increases in ipsiversive choices: 

by 35% following inactivation of VIS (p<0.0002) 

and by 18% following inactivation of MOs 

(p<0.0002; Supplementary Figure 2). These 

effects could be to some extent increased by 

increasing laser power, but not to the point of 

abolishing contralateral choices completely 

(Supplementary Figure 2). Furthermore, 

inactivation of other regions such as primary 

motor cortex (MOp), primary somatosensory 

cortex (SSp), and retrosplenial cortex had no 

apparent effect, despite strong activity seen in 

those regions using calcium imaging. This was 

true even for increased laser powers tested on 

MOp. Thus, much of the widespread cortical 

activity preceding the subject’s choice is not 

causally necessary for it. 

Surprisingly, inactivation of VIS increased 

ipsiversive choices even when the ipsilateral 

stimulus was absent (Fig. 3c-e). If cortical 

inactivation simply rendered a subject unable to 

see on the contralateral side, and there was no 

ipsilateral stimulus, one would expect the subject 

to respond with a NoGo. We found effects 

consistent with this when inactivating MOs: the 

significant decrease in contraversive choices 

(Fig. 3d) was mostly matched by an increase in 

NoGo choices, not by an increase in ipsiversive 

choices (Fig. 3e). In these same conditions, 

instead, VIS inactivation increased ipsiversive 

choices (Fig. 3e), as if it conjured a non-existent 

visual stimulus ipsilateral to the inactivated site. 

The times at which inactivating VIS and MOs 

maximally disrupted task performance matched 

the times at which these areas were most strongly 

activated by the stimuli (Fig. 3f-h). To study the 

effect of timing, we performed further 

experiments where we inactivated VIS or MOs 

with a brief laser pulse (25 ms, 15 mW) at different 

times relative to stimulus onset (Fig. 3f). The 

critical time windows for VIS and MOs inactivation 

were different (Fig. 3g). Inactivation of VIS 

significantly affected the percentage of correct 

choices around the time of stimulus onset (-110 

to +130 ms). While it may seem paradoxical that 

inactivation prior to stimulus onset can affect 

behavior, optogenetic pulse activation of Pvalb 

cells inhibits cortical firing for at least 100 ms 

(Supplementary Figure 3), so the time during 

which VIS activity is causally required is likely near 

the end of this window. Inactivation of MOs 

significantly impaired performance in a later 

window (+52 to +174 ms). Inactivation of either 

VIS or MOs during similar time windows also 

delayed choices (-34 to +79 ms for VIS, and +32 

to +130 ms for MOs, Fig. 3h). By contrast, 

applying this pulsed inactivation to MOp caused 

no significant impairment (Supplementary Figure 

2). 

Neurometric model predicts single-trial 

decisions and effect of inactivations  
To relate the results of neural recordings and 

inactivations to the mouse’s decisions, we 

modified the psychometric model to obtain a 

neurometric model (Fig. 4a). Just as in the 

psychometric model (Fig. 1i), we assumed that 

the probabilities of each choice were based on 

two decision variables 𝑍𝐿  and 𝑍𝑅  (Equation 1). 

However, rather than computing these decision 

variables as a function of the stimulus on the 

screen (Equation 2), we now compute them as a 

weighted sum of cortical activity in VISp and MOs: 
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𝑍𝐿 = 𝛼𝐿 + 𝑣𝑐𝑉𝑅 + 𝑣𝑖𝑉𝐿 + 𝑚𝑐𝑀𝑅 + 𝑚𝑖𝑀𝐿 (3)
𝑍𝑅 = 𝛼𝑅 + 𝑣𝑖𝑉𝑅 + 𝑣𝑐𝑉𝐿 + 𝑚𝑖𝑀𝑅 + 𝑚𝑐𝑀𝐿

 

 

where 𝑉𝐿, 𝑉𝑅 are the trial-by-trial population firing 

rates in the left and right primary visual cortex 

(VISp), and 𝑀𝐿, 𝑀𝑅 are the population firing rates 

in the left and right secondary motor cortex 

(MOs). These firing rates are multiplied by 

weights 𝑣𝑐  and 𝑚𝑐  applied to the contralateral 

cortices, and by factors 𝑣𝑖 and 𝑚𝑖 applied to the 

ipsilateral cortices. The weights from cortical 

activity to the decision variables could be 

interpreted mechanistically as the strength of 

cortical input to a downstream circuit that 

probabilistically determines the mouse’s choice. 

  
Figure 4 | Neurometric model predicts single-trial decisions and effect of inactivations. a. Schematic of the neurometric 

model. Activity in VISp and MOs is measured by widefield calcium imaging and used to estimate population firing rates on 

each trial (Supplementary Figure 4). A weighted sum of activity in both hemispheres determines decision variables 𝑍𝐿 and 

𝑍𝑅, and a multinomial logistic (softmax) function generates the probability of each behavioral choice. b. Posterior distribution 

of model weights from the four regions to the two decision variables. Contours show Gaussian fit to posterior distribution 

over all experiments. c-e. Probability of Left, NoGo, and Right outcomes as a function of left and right contrast, averaged 

over 39 sessions in 9 mice (circles and dashed lines). Solid curves show neurometric model predictions. f. Trial-to-trial 

variability in behavioral choices predicted from neurometric model. Left: among trials with medium contrast on left only, trials 

where the subject chose Left had larger average values of 𝑍𝐿 (gray bar) than NoGo trials (black bar). Error bars: standard 

error across trials. Right: similar plot for trials with medium contrast on the right only, showing the value of 𝑍𝑅 for trials when 

mice chose Right or NoGo. Below each plot is the cross-validated % correct of a logistic classifier of choice from decision 

variable. g. Model predicts effects of inactivation on contraversive choices. Dashed gray line: session-averaged probability 

of correctly responding to a stimulus present on the contralateral side only. Open bars: effect of silencing VIS or MOs in the 

neurometric model. Colored dots: experimental results (as shown in Fig. 3d). h. Same as in (g) but for ipsiversive choices to 

contralateral stimuli. i. Prediction of neurometric model for sessions with optogenetic inactivation. Columns show the 

probability of Left, NoGo and Right outcomes, rows show inactivated region. X-axis shows contrast of a unilateral stimulus 

on the (right positive, left negative). Black dots: non-laser trials, averaged over 34 sessions in 6 mice (from Fig. 3c-e); gray 

shaded regions: 95% credible interval. Colored shaded regions: prediction of neurometric model. Colored dots: actual 

probability of choices made when inactivating these regions. 
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Finally, the parameters 𝛼𝐿and 𝛼𝑅 measure a bias 

towards a Left or Right choice not accounted for 

by cortical activity. 

To fit this model, we inferred the population firing 

rates from widefield calcium imaging, calibrated 

using separately-measured spiking data (see 

Methods; Supplementary Figure 4). Each region’s 

activity was taken over the last 50 ms of the 

critical time windows determined by pulse 

inactivation experiments, adding 30 ms to 

account for slower GCaMP6s onset (VISp: 105-

155 ms, MOs: 155-205 ms; Fig. 3g,h). The 

model’s 6 free parameters (𝛼𝐿, 𝛼𝑅, 𝑣𝑐, 𝑚𝑐, 𝑣𝑖 and 

𝑚𝑖) were then fit by a multi-level Bayesian method 

similar to the one used for the psychometric 

model. 

The weights obtained by fitting the model 

indicated a distinct role for VISp and MOs in 

determining the value of the contraversive and 

ipsiversive decision variables (Fig. 4b). Each 

hemisphere’s VISp had a positive weight onto the 

contraversive decision variable and a negative 

weight onto the ipsiversive decision variable (i.e. 

higher activity in left VISp correlated with higher 

likelihood of Right choices and lower likelihood of 

Left choices, and the opposite for right VISp). By 

contrast, each hemisphere’s MOs was positively 

weighted towards both the contraversive and 

ipsiversive decision variables, with larger weight 

to the contraversive variable. 

The neurometric model captured not only the 

mean psychometric curves, but also the 

apparently random choices made in trials with 

identical stimulus conditions (Fig. 4c-f). The 

model fitted the mean psychometric curves 

averaged across sessions and mice to a degree 

that was comparable to the psychometric model 

(Fig. 4c-e). Moreover, the decision variables in 

the neurometric model could do something that 

the decision variables in the psychometric model 

would not be able to do: they correlated with trail-

by-trial variations in choices to the same stimuli. 

For example, on trials with medium contrast on 

one side only, trial-to-trial variation in the decision 

variable associated with that side correlated with 

the choice eventually made by the mouse (Fig. 

4f). Thus, a single weighted sum of cortical 

activity not only captures how the subject’s 

choices depend on stimulus contrast, but also 

captures how fluctuations in cortical responses to 

an identical stimulus relate to behavioral choice. 

We finally asked if the same model – with weights 

fit only from widefield imaging experiments – 

could also predict the behavioral effects of 

optogenetic inactivation, and found that it could 

predict them to a large extent (Fig. 4g-i). To 

simulate the effect of laser inactivation we 

recomputed psychometric curves using the 

weights previously estimated from the widefield 

dataset, but setting activity in the inactivated 

region to zero. Although the inactivation trials 

were not used to constrain any model 

parameters, we nevertheless found that the 

model successfully predicted the primary features 

of the effect of optogenetic inactivation on real 

behavior, including the result that VIS but not 

MOs inactivation increases the probability of 

ipsiversive choices. The model explains this effect 

by applying negative weights 𝑣𝑖 from VIS activity 

to the ipsilateral decision variable. Indeed, the 

decision variables are subtractively comparing 

activity in right and left visual cortex, so that even 

without any visual stimulation, suppressing 

baseline activity on one side would lead to 

increased ipsilateral choices. 

DISCUSSION 

We found that a simple equation can 

quantitatively summarize the causal role of cortex 

in a two-alternative unforced-choice task. We 

started from a model of the mouse’s average 

choices, in which decision variables were 

functions of visual contrast. Using widefield 

imaging, we were able to replace the visual 

processing stages of this psychometric model 

with actual neural recordings, to obtain a 

neurometric model, where the decision variables 

are weighted sums of activity in cortical areas VIS 

and MOs. This model was able to additionally 

account for trial-to-trial fluctuations in the 

subjects’ choices. Furthermore, it could 

quantitatively predict the behavioral effects of 

optogenetic cortical inactivation, even though 
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optogenetic data were not used to fit its 

parameters. 

The neurometric model’s success suggests that it 

captures the role of cortex in this task. It is 

therefore natural to hypothesize that a circuit 

downstream of VIS and MOs computes a similarly 

weighted sum of cortical activity, uses it to 

compute probabilities according to a logistic 

function, and selects a behavior according to 

these probabilities. The current data do not 

constrain what the downstream circuit might be, 

but previous work has suggested corticostriatal 

pathways as critical for decision-making (Xiong et 

al., 2015; Znamenskiy and Zador, 2013), and a 

paper studying the same task as here (Steinmetz 

et al., 2018) implicates basal ganglia and 

midbrain regions. 

These inferences were made possible by our 

unforced choice design. Had we employed a 

Go/NoGo design, we would have inferred from 

our neurometric model that VIS and MOs play 

similar functional roles in the task, as both regions 

would have positive weights onto the one decision 

variable required for a model of such a task. 

Without a competing choice, we would have 

missed that VIS activity correlates negatively with 

the ipsilateral choice, whereas MOs activity 

correlates positively with both. Likewise, had we 

employed a 2-alternative forced choice design, 

we could not have observed the effect that MOs 

inactivation suppressed contraversive choices 

without affecting ipsiversive choices, since with 

only two alternatives a decrease in one choice is 

identical to an increase in the other. 

Despite the model’s success, there are several 

opportunities for further improvement. First, the 

model predicted behavior based on widefield 

calcium signal, which corresponds to a single 

measure of population activity in each region. 

However, cortical neurons are diverse in their 

responses (Chen et al., 2017; Goard et al., 2016; 

Murakami et al., 2014; Raposo et al., 2014), and 

it is likely that behavior could be better predicted 

by fitting weights to individual cortical neurons. 

Second, the model assumes that inactivation of 

one region of cortex has no effect on firing in 

another region of cortex, which may not be the 

case. Related to this, we were limited in the spatial 

precision of the inactivation effect, and therefore 

we do not distinguish different visual areas, nor 

target posterior parietal cortex independently of 

visual cortex or somatosensory cortex. Finally, we 

have assumed a feedforward model, in which 

information is fed from cortex to a decision 

making circuit. Electrophysiological recordings of 

MOs neurons in the same task (Steinmetz et al., 

2018) implicate MOs in a recurrent loop rather 

than a feedforward system. Despite these 

simplifications, the model accurately captures 

multiple experimental results and therefore 

comprises a credible working hypothesis for the 

role of cortex in this task. Moreover, though the 

effects of inactivating brain regions in some 

behaviors may arise from off-target effects (Otchy 

et al., 2015), the combination of approaches 

employed here argue that this is not the case for 

this behavior: a model of the behavior 

constructed with imaging measurements can 

predict the effects of inactivation via a simple 

mechanism, without any additional parameters. 

Thus, the effects of cortical inactivation in this 

behavior are straightforward to interpret in the 

context of the neurometric model. 

Many regions active in the task were not 

necessary for task performance. The most 

striking such area is MOp, for which inactivation 

produced no detectable effect on choice or 

reaction time, despite fluorescence activity larger 

than VIS and MOs. Our present data cannot rule 

out that MOp controls aspects of task 

performance we did not measure, such as fine 

control of distal muscles (Gharbawie et al., 2005) 

or learning (Akrami et al., 2018; Kawai et al., 

2015). Alternatively, it is possible that MOp is 

involved in producing some other behaviors that 

the subject produces together with the wheel turn 

but are not necessary for it (Auffret et al., 2018; 

Musall et al., 2018; Stringer et al., 2018). 

However, it is also possible that this activity simply 

plays no role in the task at all. Electrophysiological 

recordings in this task show that movement is 

accompanied by increased firing over many brain 

regions (Steinmetz et al., 2018). This activity 
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therefore appears to be a non-causal correlate of 

movement. 

Our results suggest that in this task, frontal-motor 

areas are involved in high-level decision making, 

rather than low-level motor control. 

Microstimulation of homologous areas in rats 

leads to a combined set of eye, eyelid, vibrissa, 

and head movements consistent with orienting 

(Tennant et al., 2011), suggesting this cortical 

area interfaces with circuitry generating complex 

behavioral patterns. However, in our experiment 

inactivation of MOs did not unilaterally paralyze 

forelimb movements. Instead, for certain contrast 

conditions, the wheel was turned in the wrong 

direction, and reaction times were increased, 

suggesting that MOs may have more of a role in 

sensory-motor planning (Ebbesen et al., 2018). A 

role for secondary motor (and nearby) regions in 

behavioral tasks has been suggested by several 

previous studies (Allen et al., 2017; Chen et al., 

2017; Erlich et al., 2015; Goard et al., 2016; Guo 

et al., 2014; Hanks et al., 2015; Kopec et al., 

2015; Makino et al., 2017), although many of 

these have suggested this region is important 

specifically for tasks requiring evidence 

accumulation or short-term memory. Our task 

required neither, suggesting that MOs may be 

more generically involved in perceptual decision-

making. 

In summary, we have proposed and tested a 

theoretical account of the neural basis of visual 

contrast discrimination in mice. By combining 

measurements and manipulations with 

quantitative models, we provide direct evidence 

for the sequential and distinct roles of multiple 

cortical areas in this behavior. 
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METHODS 

Ethics 
These experimental procedures were conducted 

at UCL according to the UK Animals Scientific 

Procedures Act (1986) and under personal and 

project licenses granted by the Home Office 

following appropriate ethics review. 

Mouse transgenic lines 
For the widefield calcium imaging, we used 

transgenic mice expressing GCaMP6s/f in 

excitatory neurons (tetO-G6s x CaMK2a-tTA; 

VGlut1-cre x Ai95) or all neurons (Snap25-

GCaMP6s). For the neurometric model fit, data 

was sourced from these mice, plus additional 

mice (VGlut1-cre x Ai95). For the optogenetic 

inactivation experiments, we used transgenic 

mice expressing ChR2 in Parvalbumin-positive 

inhibitory interneurons (B6;129P2-

Pvalbtm1(cre)Arbr/J, Jax #008069), crossed with Ai32 

(B6;129S-Gt(ROSA)26Sortm32(CAG-

COP4*H134R/EYFP)Hze/J, Jax #012569)). All mice were 

10-73 weeks of age at the time of data collection. 

Mice and session numbers were as follows, 

Group Mice (genotype) 

A 2 male, 1 female (tetO- GCaMP6s x 

CaMK2a-tTA) 

B 1 male, 1 female (Snap25-GCaMP6s) 

C 3 male (Ai95 x VGlut1-cre) 

D 2 male, 3 female (Ai32 x PV-cre) 

E 6 male (Ai32 x PV-cre) 

 

Figure Mice Number 

of 

sessions 

Fig. 1e-g 5 mice from Group E 34 

Fig. 2a-b 1 (male) from Group A 7 

Fig. 2e-f Group A + Group B + 1 mouse 

from Group C 

35 

Fig. 3a-b Group D 91 

Fig. 3c-e 5 mice from Group E 34 

Fig. 3f-h Group E 65 

Fig. 4b-f Group A + Group B + Group C 39 

Fig. 4g-i 5 mice from Group E 34 

 

Surgery 
For both widefield imaging and optogenetic 

inactivation experiments, mice were prepared 

with a clear skull cap similar to that of Guo et al. 

(2014) and described previously (Burgess et al., 

2017). The implantation surgery proceeded as 

follows. The dorsal surface of the skull was 

cleared of skin and periosteum, and the junction 

between cut skin and skull was sealed with 

cyanoacrylate. The exposed skull was prepared 

with a brief application of green activator to 

ensure strong connection between cement and 

bone (Super-Bond C&B, Sun Medical Co, Ltd, 

Japan). The junction between skin and skull was 

again covered, using dental cement (Super-Bond 

C&B). In most cases, a 3D printed ‘cone’ was 

attached to the head with cyanoacrylate and 

dental cement at this stage, surrounding the 

exposed skull and providing light isolation. A thin 

layer of cyanoacrylate was applied to the skull and 

allowed to dry. Two to four thin layers of UV-

curing optical glue (Norland Optical Adhesives 

#81, Norland Products Inc., Cranbury, NJ; from 

ThorLabs) were applied to the skull and cured 

(~10 s per layer) until the exposed skull was 

covered (thin layers were used to prevent 

excessive heat production). A head-plate was 

attached to the skull over the interparietal bone 

with SuperBond polymer. 

Behavioral task 
Apparatus: The two-alternative unforced choice 

task design was described previously (Burgess et 

al., 2017). In this task, mice were seated on a 

plastic apparatus with forepaws on a rotating 

wheel, and were surrounded by three computer 

screens (Adafruit, LP097QX1) at right angles 

covering 270 x 70 degrees of visual angle (d.v.a.). 

Each screen was ~11cm from the mouse’s eyes 

at its nearest point and refreshed at 60 Hz. The 

screens were fitted with Fresnel lenses (Wuxi 

Bohai Optics, BHPA220-2-5) to ameliorate 

reductions in luminance and contrast at larger 

viewing angles near their edges, and these lenses 

were coated with scattering window film 

(“frostbite”, The Window Film Company) to 

reduce reflections. The wheel was a ridged 

rubber Lego wheel affixed to a rotary encoder 

(Kubler 05.2400.1122.0360). A plastic tube for 

delivery of water rewards was placed near the 

subject’s mouth. Full details of the experimental 
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apparatus including detailed parts list can be 

found at 

http://www.ucl.ac.uk/cortexlab/tools/wheel. 

Pre-stimulus quiescence: For two experiments, 

trials began after a period of no wheel movement 

(widefield imaging sessions: 0.3-0.7 s, 52-

coordinate inactivation experiment: 0.2-0.6 s). 

For all other behavioral sessions, there was no 

constraint however trials were excluded post-hoc 

if wheel movement was detected -150 to +50ms 

from stimulus onset.  

Stimulus onset: At trial initiation, a visual stimulus 

was presented on the left, right, both, or neither 

screen. The stimulus was a Gabor patch with 

orientation 45 degrees, sigma 9 d.v.a., and 

spatial frequency 0.1 cycles/degree. The grating 

stimuli on the left and right screens displayed at 

all combinations of four contrast levels, totaling 16 

contrast conditions. The proportion of trials of 

each stimulus type were weighted towards easy 

trials (high contrast vs zero, high vs low, medium 

vs zero, and no-stimulus trials) to encourage high 

overall reward rates and sustained motivation. 

For all experiments except for widefield imaging 

(see ‘open-loop period’ below), the onset of the 

visual stimulus also coincides with the onset of an 

auditory ‘go cue’ (12 kHz tone, 100ms duration), 

marking the time at which the mouse can 

respond. 

Wheel movements: Wheel turns in which the top 

surface of the wheel was moved to the subject’s 

right led to rightward movements of stimuli on the 

screen, i.e. a stimulus on the subject’s left moved 

towards the central screen. Put another way, 

clockwise turns of the wheel, from the perspective 

of the mouse, led to clockwise movement of the 

stimuli around the subject. A left or right choice 

was registered when the wheel was turned by an 

amount sufficient to move the visual stimuli by 90 

d.v.a. in either direction. When at least one 

stimulus was presented, the subject was 

rewarded for driving the higher contrast visual 

stimulus to the central screen (if both stimuli had 

equal contrast, Left/Right choices were rewarded 

with 50% probability). When no stimuli were 

presented, the subject was rewarded if no turn 

(NoGo) was registered during the 1.5 s following 

the go cue. 

Open-loop period: For widefield calcium imaging 

sessions, there was a random delay interval of 

0.5-1.2 sec, during which time the subject could 

turn the wheel without penalty, but visual stimuli 

were locked in place and rewards could not be 

earned. The subjects nevertheless typically 

responded immediately to the stimulus onset, and 

trials were excluded if choices were made after 

0.5 s. At the end of the delay interval, an auditory 

go cue was delivered (8 kHz pure tone for 0.2 

sec) after which the visual stimulus position 

became coupled to movements of the wheel. This 

small task modification was important to ensure 

that stimulus-related cortical activity was not 

inter-mixed with activity related to the auditory go 

cue, and that movement-related activity was not 

inter-mixed with signals related to visual motion of 

the stimulus on the screen.  

Feedback: Immediately following registration of a 

choice or expiry of the 1.5 s window, feedback 

was delivered. If correct, feedback was a water 

reward (0.7 – 2.5 µL) delivered by the opening of 

a valve on the water tube for a calibrated duration. 

If incorrect, feedback was a white noise sound 

played for 1 s. During the 1 s feedback period, the 

visual stimulus remained on the screen. After a 

subsequent inter-trial interval of 1 s (or 2 s for the 

52-coordinate inactivation experiment; Fig. 3a), 

the mouse could initiate another trial by again 

holding the wheel still for the prescribed duration. 

Training: Mice were trained on this task with the 

following shaping protocol. First, high contrast 

stimuli (50 or 100%) were presented only on the 

left or the right, with an unlimited choice window, 

and repeating trial conditions following incorrect 

choices (‘repeat on incorrect’). Once mice 

achieved high accuracy and initiated movements 

rapidly – approximately 70 or 80% performance 

on non-repeat trials, and with reaction times 

nearly all < 1 second – trials with no stimuli were 

introduced, again repeating on incorrect. Once 

subjects responded accurately on these trials (70 

or 80% performance, at experimenter’s 

discretion), lower contrast trials were introduced 
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without repeat on incorrect. Finally, contrast 

comparison trials were introduced, starting with 

high vs low contrast, then high vs medium and 

medium vs low, then trials with equal contrast on 

both sides. The final proportion of trials presented 

was weighted towards easy trials (high contrast 

vs zero, high vs low, medium vs zero, and no-

stimulus trials) to encourage high overall reward 

rates and sustained motivation. 

Widefield calcium imaging 
Mice and apparatus: Imaging was performed in 

transgenic mice expressing GCaMP6 in 

excitatory neurons (tetO-G6s x CaMK2a-tTA; 

mouse ID 3,4,5; VGlut1-cre x Ai95; mouse ID 6) 

or all neurons (Snap25-GCaMP6s; mouse ID 

1,2). Imaging data was also acquired in 3 more 

VGlut1-cre x Ai95 mice, but due to the small 

number of sessions these mice are not shown in 

Fig. 2. However, the data for all 9 mice were 

included in the neurometric model fit (Fig. 4b-f). 

Aberrant epileptiform activity has not been 

observed in these mouse lines (Steinmetz et al., 

2017). Details of the imaging have been 

described before (Jacobs et al., 2018) and are 

reproduced here. We imaged using a 

macroscope (Scimedia THT-FLSP) with sCMOS 

camera (PCO Edge 5.5) and dual-wavelength 

illumination (Cairn OptoLED). The macroscope 

used 1.0x condenser lens (Leica 10450028) and 

0.63x objective lens (Leica 10450027). Images 

were acquired from the PCO Edge with ~10 ms 

exposures and 2 x 2 binning in rolling shutter 

mode. Images were acquired at 70 Hz, 

alternating between blue and violet illumination 

(35 Hz each). The light sources were 470 nm and 

405 nm LEDs (Cairn OptoLED, P1110/002/000; 

P1105/405/LED, P1105/470/LED). Excitation 

light passed through excitation filters (blue: 

Semrock FF01-466/40-25; violet: Cairn 

DC/ET405/20x), and through a dichroic (425 nm; 

Chroma T425lpxr). Excitation light then went 

through 3 mm core optical fiber (Cairn 

P135/015/003) and reflected off another dichroic 

(495 nm; Semrock FF495- Di03-50x70) to the 

brain. Emitted light passed through the second 

dichroic and an emission filter (Edmunds 525/50-

55 (86-963)) to the camera. Alternation was 

controlled with custom code on an Arduino Uno, 

and illumination was restricted to the ‘global’ 

phase of the rolling shutter exposures, i.e. only 

the times when all pixels of a frame were being 

exposed together. 

Preprocessing: We de-noised the signal with 

singular value decomposition and normalized the 

signal to the mean fluorescence at each pixel. The 

signal from the 405 nm illumination frames was 

used to correct for parts of the 470 nm signal that 

were due to changes in blood flow that obstruct 

the fluorescence signal (Ma et al., 2016) and the 

correction was performed with custom Matlab 

code (https://github.com/cortex-lab/widefield). 

We then low-pass filtered the signal at 8.5 Hz and 

applied a derivative filter to the fluorescence trace 

to approximate deconvolution of the calcium 

sensor’s time course from the underlying neural 

activity. When computing event-triggered 

averages of the fluorescence, pre-event baseline 

activity was removed, removing impact of long-

term trends. 

ROI selection: All ROIs were selected on the right 

hemisphere, based on the Allen CCF atlas aligned 

manually to each mouse, guided by skull features 

and retinotopic maps. ROI positions were 

manually adjusted to account for inter-mouse 

differences. VISp was selected as the peak of the 

most posterior-medial activated site in visual 

cortex in response to a contralateral stimulus. 

VISal was selected as the center of VISal 

according to the Allen CCF. VISal was taken as 

an exemplary secondary visual cortical area 

because it was furthest from the part of VISp 

activated by our visual stimuli, ensuring minimal 

contamination of fluorescence between these two 

ROIs. The MOs ROI was selected as the most 

anterior site activated by the contralateral 

stimulus. MOp and SSp ROIs were selected as 

the most anterior-medial and posterior-lateral 

regions of the region that spanned the MOp-SSp 

border and was active during wheel movements. 

Optogenetic inactivation 
While mice performed the task, we 

optogenetically inactivated several cortical areas 

through the skull using a blue laser. In the 52-
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coordinate experiment (Fig. 3a-b), unilateral 

inactivation was achieved by mounting a fiber-

optic cable on a moving manipulator (Scientifica, 

Patch-Star). On every trial, custom code drove 

the manipulator to set the position of the fiber-

optic cable to one of 52 different coordinates 

distributed across the cortex. Inactivation 

coordinates were defined stereotaxically from 

bregma. On ~75% of trials, the laser was 

switched on (473 nm, 1.5 mW, 40 Hz sine wave) 

to inactivate the cortical site. Laser and non-laser 

trials, and the location of the cortical inactivation, 

was randomized. The duration of the laser was 

from visual stimulus onset, until a behavioral 

choice was made. For any given session, a single 

cortical site on the inactivation grid may only be 

inactivated a handful of times. This discouraged 

any adaptation effects that may occur on more 

frequent inactivation paradigms, however this 

approach does require combining data across 

sessions. The laser positioning was independent 

of laser power, so auditory noise from the 

manipulator did not predict inactivation. 

In subsequent inactivation experiments, a pair of 

mirrors mounted on galvo motors were used to 

orient the laser (462 nm) to different points on the 

skull. We also introduced improved light isolation 

to ensure no light could reflect from the skull 

surface and be seen by the mouse. In the higher-

power inactivation experiment (Fig. 3c-e), we 

inactivated visual and secondary motor and 

primary motor areas (-0.5 mm AP, ±0.5 mm ML) 

for a fixed duration 1.5 s, 40 Hz sine wave using 

different laser powers (1.5, 2.9, 4 mW). Trials of 

different laser powers were pooled together. In 

the pulse inactivation experiment (Fig. 3f-h), we 

inactivated only visual (-4 mm AP, ±2 mm ML) 

and secondary motor areas (+2 mm AP, ±0.5 mm 

ML), using a brief 25 ms DC pulse at 15 mW 

power. The onset time of the laser pulse was set 

randomly trial by trial, ranging -300 ms to +300 

ms relative to stimulus onset. 

Electrophysiological recordings 
Hardware: Recordings were made using 

Neuropixels “Phase3A” electrode arrays (Jun et 

al., 2017). Probes were mounted to a custom 3D-

printed PLA piece and affixed to a steel rod held 

by a micromanipulator (uMP-4, Sensapex Inc.). 

To allow later track localization, prior to insertion 

probes were coated with a solution of DiI 

(ThermoFisher Vybrant V22888 or V22885) by 

holding 2 µL in a droplet on the end of a 

micropipette and touching the droplet to the 

probe shank, letting it dry, and repeating until the 

droplet was gone, after which the probe appeared 

pink. 

Procedure: On the day of recording or within two 

days before, mice were briefly anaesthetized with 

isoflurane while one or more craniotomies were 

made, either with a dental drill or a biopsy punch. 

The craniotomies for VISp were targeted in some 

cases using measured retinotopic maps in the 

same mice, and in other cases to the same 

position stereotaxically (-4 mm AP, 1.7 mm ML, 

left hemisphere). The craniotomies for MOs were 

targeted stereotaxically (+2 mm AP, 0.5 mm ML, 

left hemisphere). After at least three hours of 

recovery, mice were head-fixed in the setup. 

Probes had a soldered connection to short 

external reference to ground; the ground 

connection at the headstage was subsequently 

connected to an Ag/AgCl wire positioned on the 

skull. The craniotomies as well as the wire were 

covered with saline-based agar. The agar was 

covered with silicone oil to prevent drying. In 

some experiments a saline bath was used rather 

than agar. Probes were advanced through the 

agar and through the dura, then lowered to their 

final position at ~10 µm/s. Electrodes were 

allowed to settle for ~15 min before starting 

recording. Recordings were made in external 

reference mode with LFP gain = 250 and AP gain 

= 500. Recordings were repeated on multiple 

subsequent days. All recordings were made in the 

left hemisphere. 

Preprocessing: The data were automatically spike 

sorted with Kilosort (Pachitariu et al., 2016) 

(https://github.com/cortex-lab/Kilosort) and then 

manually curated with the ‘phy’ gui 

(https://github.com/kwikteam/phy). Extracellular 

voltage traces were preprocessed common-

average referencing: subtracting each channel’s 

median to remove baseline offsets, then 

subtracting the median across all channels at 
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each time point to remove artifacts. During 

manual curation, each set of events (‘unit’) 

detected by a particular template was inspected 

and if the events (‘spikes’) comprising the unit 

were judged to correspond to noise (zero or near-

zero amplitude; non-physiological waveform 

shape or pattern of activity across channels), the 

entire unit was discarded. Units containing low-

amplitude spikes, spikes with inconsistent 

waveform shapes, and/or refractory period 

contamination were labeled as ‘multi-unit activity’ 

and not included for further analysis. Finally, each 

unit was compared to similar, spatially 

neighboring units to determine whether they 

should be merged, based on spike waveform 

similarity, drift patterns, or cross-correlogram 

features. 

Psychometric model 
We modeled probabilistic choice behavior using 

multinomial logistic regression. For each trial 𝑖 , 

the probability of choice on each trial by the 

softmax function of two decision variables 𝑍𝐿,𝑖  

and 𝑍𝑅,𝑖 : 

𝑝𝑁𝐺,𝑖 =
1

1 + exp(𝑍𝐿,𝑖 ) + exp(𝑍𝑅,𝑖 )
  

𝑝𝐿,𝑖 =
exp(𝑍𝐿,𝑖 )

1 + exp(𝑍𝐿,𝑖 ) + exp(𝑍𝑅,𝑖 )
 

𝑝𝑅,𝑖 =
exp(𝑍𝑅,𝑖 )

1 + exp(𝑍𝐿,𝑖 ) + exp(𝑍𝑅,𝑖 )
 

 

Choices 𝑦𝑖 ∈ (𝐿𝑒𝑓𝑡, 𝑅𝑖𝑔ℎ𝑡, 𝑁𝑜𝐺𝑜)  were drawn 

from a categorical probability distribution with 

these parameters: 

𝑦𝑖 ~ 𝐶𝑎𝑡(𝑝𝐿,𝑖; 𝑝𝑅,𝑖; 𝑝𝑁𝐺,𝑖) 

We denote the session in which trial 𝑖 occurred as 

𝑑[𝑖] , and the subject (mouse) that performed 

session as 𝑚[𝑑] . The decision variables 

depended on parameters which varied between 

sessions (and thus also between subjects) 

according to the following formulae: 

𝑍𝐿,𝑖 = 𝑏𝐿,𝑑[𝑖] + 𝑠𝐿,𝑑[𝑖](𝑐𝐿,𝑖 )
𝑛𝑑[𝑖]  

𝑍𝑅,𝑖 = 𝑏𝑅,𝑑[𝑖] + 𝑠𝑅,𝑑[𝑖](𝑐𝑅,𝑖 )
𝑛𝑑[𝑖]

 

Here, 𝑏𝐿,𝑑  and 𝑏𝑅,𝑑  are bias parameters, which 

capture stimulus-independent choice behavior in 

session 𝑑 , while 𝑠𝐿,𝑑  and 𝑠𝑅,𝑑  are session-

dependent sensitivity parameters scaling the 

visual input on the left and right. The visual input 

consists of the contrast presented on trial 𝑖 (𝑐𝐿,𝑖  

and 𝑐𝑅,𝑖 on the left and right), raised to a session-

dependent exponent 𝑛𝑑 < 1  to allow for a 

saturating non-linear contrast transformation. 

To model variability in the parameters across 

sessions and subjects, we used a hierarchical 

prior. Let 𝜽𝑑 be a 5-element vector containing the 

5 session-specific parameters stated above,  

𝜽𝑑 = [𝑏𝐿,𝑑,  𝑏𝑅,𝑑,  𝑠𝐿,𝑑,  𝑠𝑅,𝑑,  𝑛𝑑] 

We model each session’s parameter vector 𝜽𝑑 as 

drawn from a multivariate Gaussian distribution 

whose mean 𝜽̅𝑚[𝑑] depends on the subject, with 

a common covariance matrix 𝚺, 

𝜽𝑑  ~ 𝑁(𝜽̅𝑚[𝑑], 𝚺) 

The covariance matrix 𝚺  is given the following 

prior by first converting to a correlation matrix. 

The correlation matrix given a 𝐿𝐾𝐽(2) 

prior(Lewandowski et al., 2009), which penalizes 

large positive or negative parameter correlations 

across sessions. The standard deviation terms for 

each parameter are given a 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0,1) 

prior which penalizes large variability in each 

parameter across sessions. 

The subject-level mean vector 𝜽̅𝑚 is drawn from 

a Gaussian grand-average mean 𝜽∗ , with a 

covariance matrix 𝚺∗ which quantifies covariation 

in the parameters across subjects, 

𝜽̅𝒎 ~ 𝑁(𝜽∗ , 𝚺∗) 

The covariance matrix 𝚺∗ is given the same prior 

as 𝚺. Finally, the grand-average parameters are 

given the following weakly-informative hyperprior, 

𝜽∗ ~ 𝑁

(

 
 

[
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22
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The full joint posterior distribution of all 

parameters was numerically estimated with 

Hamiltonian Monte Carlo (No-U-Turn) sampling, 

using the Stan programming language 

(Carpenter et al., 2017). Sampling was performed 

in 4 chains, each with 500 warm up iterations and 

500 sampling iterations. The samples were 

checked manually to ensure convergence within 

and between chains. The posterior prediction 

from the model is constructed by computing the 

model prediction from each of the posterior 

distribution samples, and then computing the 

mean and 95% credible intervals on the 

prediction across samples. All model predictions 

shown in the figures use the grand-average 

parameter values 𝜽∗, unless specified otherwise. 

Neurometric model 
The neurometric model of behavior captures 

choice behavior using the firing rates of left VISp, 

right VISp, left MOs and right MOs regions. The 

model is superficially similar to the psychometric 

model, by virtue of having two decision variables. 

The value of each decision variable on each trial 

is determined from a weighted sum of activity in 

the four cortical areas, 

𝑍𝐿,𝑖 = 𝛼𝐿,𝑑[𝑖] + 𝒇𝑖 ⋅  𝒘𝐿,𝑑[𝑖] 

𝑍𝑅,𝑖 = 𝛼𝑅,𝑑[𝑖] + 𝒇𝑖 ⋅  𝒘𝑅,𝑑[𝑖] 

The value of the decision variable is set by offsets 

𝛼𝐿,𝑑[𝑖]  and 𝛼𝑅,𝑑[𝑖] , and two 4-element session-

dependent weight vectors 𝒘𝐿,𝑑[𝑖]  and  𝒘𝑅,𝑑[𝑖] , 

which multiply a vector 𝒇𝑖  containing the firing 

rate of activity in the four regions on trial 𝑖. The 

weights and offset parameters are given a 

hierarchical prior allowing for variation between 

sessions and subjects similar to in the 

psychometric model, with hyperpriors 

𝛼𝐿
∗, 𝛼𝑅

∗  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,42) 
𝒘𝑳

∗ , 𝒘𝑹
∗  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝟎, 𝕀 × 42) 

The neural activity contained within  𝒇𝑖  is the 

estimated population firing rate of the four cortical 

regions on each trial. The population firing rate is 

estimated from widefield calcium imaging at the 

four ROIs. Since the baseline activity in widefield 

calcium fluorescence is poorly defined, the 

calcium fluorescence was transformed to 

approximate population firing rates. To achieve 

this, we recorded extracellular spiking activity in 

VISp and MOs using Neuropixels probes in 

separate sessions, and computed trial-averaged 

firing rates for each of the contrast conditions 

over a time window (Supplementary Figure 4; VIS: 

75-125 ms, MOs: 125-175 ms). Calcium 

fluorescence was also averaged over the same 

windows but 30 ms later to allow for slower 

GCaMP6s kinetics. The transformation from 

widefield fluorescence to firing rate was 

computed by simple linear regression over the 16 

contrast conditions. This linear transformation 

was then applied to the fluorescence value for 

each individual trial, thereby providing a 

population firing rate estimate for the four cortical 

regions on every trial. To improve fit stability, we 

enforced parameter symmetry between the left 

and right hemispheres (e.g. the weight of left VISp 

onto the log odds of Left vs. NoGo was the same 

as right VISp onto Right vs. NoGo). 

To demonstrate that the neurometric model could 

predict behavior during optogenetic inactivation, 

the model was modified in two ways. Firstly, since 

neural activity in VIS and MOs was not measured 

during optogenetic inactivation sessions, the trial-

by-trial activity in 𝒇 was replaced with the trial-

averaged firing rate measured 

electrophysiologically for each contrast condition. 

Secondly, since the overall tendency to NoGo 

differed idiosyncratically between widefield 

imaging and optogenetic inactivation sessions, 

the model offset parameters (𝛼𝐿 and 𝛼𝑅) were re-

fit to the non-laser trials contained within 

optogenetic inactivation sessions. 

To simulate the effect of optogenetic inactivation 

of a single cortical area, one element of the firing 

rate vector 𝒇  was set to zero. This effect 

propagates forward through the model based on 

the fixed weights, thereby affecting the decision 

variables and the probability associated with each 

choice. Importantly, the behavioral prediction 

obtained from the model when simulating 

inactivation did not depend on any empirical data 

involving actual optogenetic inactivation. In this 

sense, the neurometric model cross-predicted 

behavior in a new dataset on which it was not fit. 
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Statistical tests 
For the 52-coordinate inactivation experiment 

(Fig. 3b; Supplementary Figure 2B), statistical 

significance of the inactivation effect was 

assessed using a permutation test. The test 

statistic used was the difference in the proportion 

of a specific choice type, between laser and non-

laser off trials (on trials with equal left and right 

contrast) for each of the inactivated coordinates. 

The null distribution of the test statistic was 

computed by repeated shuffling of laser and non-

laser trial identities, pooling across all sessions 

and subjects. All other statistical tests are 

specified in the main text. 

Code availability 
The code used in the current study is available 

from the corresponding authors on reasonable 

request. 

Data availability 
The datasets generated and/or analyzed during 

the current study are available from the 

corresponding authors on reasonable request. 
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SUPPLEMENTARY FIGURES 

 
Supplementary Figure 1 | Epoch-aligned cortical calcium fluorescence (dF/F) averaged across 7 sessions from one 

mouse.  

(A) Each colourmap shows cortical fluorescence (dF/F) aligned to stimulus onset. Each map is overlaid with an outline of 

cortical regions defined by the CCF, and the widefield fluorescence map is cropped to the outer edges of the CCF. Rows 

indicate different times relative to stimulus onset. Columns correspond to a specific stimulus-choice condition as indicated 

by the 2x2 grid on the top. Each column reflects the following conditions respectively: NoGo on zero contrast trials, NoGo 

choice on left contrast trials, Left choice on left contrast trials. The final column is the difference in fluorescence between 

two trial types: Left choice on left contrast (red) and Right choice on right contrast (blue). Average stimulus contrast was 

matched for conditions with non-zero contrast. 

(B) Same plotting convention as in (A) but aligned to movement onset. Movement “onset” for NoGo trials is defined as a 

fixed delay after stimulus onset, corresponding to the median reaction time on Go trials. 
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Supplementary Figure 2 | Optogenetic inactivation.  

(A) Schematic of 52-coordinate inactivation experiment. On ~75% of trials, the a 473nm 40Hz 1.5mW laser was switched 

on during stimulus presentation and ceased when a choice (or NoGo) was registered. The location of the laser varied 

randomly trial-to-trial over 52 different cortical sites. 

(B) Summary map of the effect of laser inactivation on contraversive choices on trials with equal non-zero contrast on 

each side. The colormap reflects the change in the probability of making a contraversive choice (Left choices for right 

hemisphere coordinates, and Right choices for left hemisphere coordinates), averaged across 91 sessions in 5 mice. 

Data are plotted symmetrically across the hemispheres. Black lines mark the pooling of trials used to test statistical 

significance. Significance is tested by shuffling the identities of laser and non-laser trials within each session. 

(C) Same plotting scheme as in (B) but plotting the change in ipsiversive choices (Left choices for left hemisphere, and 

Right choices for right hemisphere).  
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(D) Schematic of higher-power fixed-duration inactivation, focused on VIS, MOs and MOp regions. Inactivation was 

performed at higher laser powers (1.5, 2.9, 4.25mW), and the inactivation duration was fixed 1.5seconds, starting at 

visual stimulus onset. 

(E) The probability of moving contraversive to the inactivated hemisphere, on trials with visual stimuli only present on the 

side contralateral to the inactivated hemisphere. The dashed grey line represents the session-averaged non-laser 

probability of moving to the correct side indicated by the stimulus. Bar values represent the session-averaged probability 

of moving towards the side indicated by the stimulus, on trials when inactivating the contralateral VIS (blue), MOs (green) 

and MOp (dark grey) at different laser powers 1.5mW, 2.9mW and 4.25mW (shown inset). Error bars are the standard 

error in probabilities across sessions. Statistical significance was determined for each subject (pooling data across 

sessions) using Fisher’s exact test, and significance across subjects was determined using Fisher’s combined probability 

test, *** p<0.001, ** p<0.01, * p<0.05  

(F) Same plotting scheme as in (E) but plotting the probability of moving ipsiversive to the inactivated hemisphere, on 

trials with visual stimuli only present on the contralateral side. The dashed grey line represents the session-averaged non-

laser probability of moving to the opposite side than what is indicated by the stimulus. 

(G) Schematic of pulse inactivation experiment in MOp. The onset time of the laser (25ms, 15mW) was chosen randomly 

between -100ms and +300ms relative to stimulus onset. 

(H) Top: Performance is plotted as a function of laser onset time relative to stimulus onset. Data is smoothed with a 100ms 

boxcar window. Dash grey line is the non-laser performance. Bottom: Effect on reaction time for correct Go choices. 
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Supplementary Figure 3 | Electrophysiologically measured magnitude and time-course of a brief laser pulse.  

Outside of the context of behavior, we measured the firing rate of 189 VISp neurons following a local 4 mW 10 ms laser 

pulse. Here we plot the average firing rate across 152 broad-spiking neurons among the neurons recorded. The period 

during the light pulse is masked because recorded voltage deflections during this period may have corresponded to 

light artifacts and been mistakenly attributed to real firing events. Error bars represent s.e.m. across 219 trials.  

 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 8, 2019. ; https://doi.org/10.1101/501627doi: bioRxiv preprint 

https://doi.org/10.1101/501627
http://creativecommons.org/licenses/by-nc/4.0/


25 

 

 
Supplementary Figure 4 | Electrophysiological recording of VISp and MOs neurons in response to visual grating stimuli.  

(A) Example neuron in Left VISp and Left MOs. The waveforms are shown in black and the red dot marks the location of 

the neuron within an aligned Allen CCF atlas. 

(B) Raster plots, showing the spiking activity aligned to stimulus onset. The color reflects the contrast level presented to 

the contralateral hemifield. 

(C) PSTHs showing an estimate for the firing rate for the example neurons, averaged across trials.  

(D) PSTHs averaged over 204 neurons in VISp and 76 neurons in MOs. Shaded color region marks the standard error 

across trials. The gray shaded regions mark the time window when the firing rate is averaged for subsequent analyses 

(VISp: 75-125ms, MOs: 125-175ms). Horizontal red line marks the time of the critical time window identified in the pulse 

inactivation experiment. 

(E) Same plotting convention as in (D) but showing trial-averaged widefield calcium fluorescence of Left VISp (Left) and 

Left MOs (right) ROIs in response to stimuli present on the contralateral side. Shaded regions mark the time windows 

used for averaging in subsequent analyses. This window is 30ms after the window associated with electrophysiological 

data, to compensate for the slower kinetics of GCaMP6s. 

(F) The window-average fluorescence and firing rates for Left VISp (left) and Left MOs (right). The 16 open circles 

correspond to the 16 possible contrast conditions. Red line corresponds to the fit of a simple linear model f(x) = b0 + b1*x. 

The linear model is used to transform widefield fluorescence data into estimates of population firing rate. 
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