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The field of epitranscriptomics is growing in importance, with chemical modification of RNA being 
associated with a wide variety of biological phenomena. A pivotal challenge in this area is the 
identification of modified RNA residues within their sequence contexts. Next-generation sequencing 
approaches are generally unable to capture modifications, although workarounds for some epigenetic 
marks exist. Mass spectrometry (MS) offers a comprehensive solution by using analogous approaches 
to shotgun proteomics. However, software support for the analysis of RNA MS data is inadequate at 
present and does not allow high-throughput processing. In particular, existing software solutions 
lack the raw performance and statistical grounding to efficiently handle the large variety of 
modifications present on RNA. We present a free and open-source database search engine for RNA 
MS data, called NucleicAcidSearchEngine (NASE), that addresses these shortcomings. We 
demonstrate the capability of NASE to reliably identify a wide range of modified RNA sequences in 
three original datasets of varying complexity. In a human tRNA sample, we characterize over 20 
different modification types simultaneously and find many cases of incomplete modification. 
 

Introduction 
RNA is an extensively modified biological macromolecule. Over 150 chemically distinct modifications have 
been reported. The presence of methylated adenine, cytosine, and guanine in RNA was uncovered in the 
1960s1, and pseudouridine has been referred to as the “fifth base” for decades2. However, widespread interest in 
these epitranscriptomic marks has been raised by recent reports that underscore their importance in a wide 
variety of developmental signalling. In stem cells the intracellular effector proteins SMAD2 and SMAD3 
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promote binding of the N6-methyladenosine (m6A) writer complex to a subset of mRNAs associated with 
early cell fate decisions3. Likewise, a number of modifications are associated with disease. It has been 
demonstrated that the loss of taurine modification in the anticodon of mitochondrial tRNA-Leu is responsible 
for mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS)4. m6A is 
implicated in obesity5 and associated with defects in functional axon regeneration in mice6. Aberrant 
methylation of cytosine-5 (m5C) in tRNAs has been linked to neuro-developmental disorders7. 
Recent interest in epitranscriptomics has also been spurred by technical advances in next-generation sequencing 
(NGS) technology, which has allowed modifications in mRNA to be profiled individually. All of the 
approaches based on Solexa/Illumina sequencing use antibodies to immunoprecipitate modified RNA, and/or 
apply chemical treatments to alter it and read out modifications as mutations or truncations in the preparation 
of cDNA8,9. The primary caveat of these methods is that only a single type of modification can be profiled in 
each experiment, and specific chemical and/or antibody reagents do not exist for every modification. Further 
complications can be caused by lack of specificity of the existing antibodies, in particular m6A and m6Am10. 
Steps have been made towards uncovering modifications directly using long-read sequencing platforms11,12, but 
many technical challenges stand between these approaches and routine use, not least a significant error rate of 
greater than 13% per single RNA read13. NGS-based methods have also generated conflicting results in the 
past14,15, underscoring the need for orthogonal approaches. 
Mass spectrometry (MS) is currently the only technique that can directly and comprehensively characterize 
chemical modifications in RNA sequences. The majority of RNA MS has focused on reducing the RNA to 
mono-nucleosides and applying workflows analogous to metabolite analysis16. While these techniques are 
effective  in determining what modifications are present in a sample, all information about the location and co-
occurrence of modifications is lost. This information is critical in complex samples to allow attributing 
modifications to specific RNAs. Even in simpler cases, modification location and co-occurrence may be 
important for a phenotypic effect; for example, in microRNA 2’-O-methylation of the 3’-most nucleic acid 
sterically inhibits 3’ exonuclease digestion, which increases the half-life of the modified microRNA in the cell. 
For this reason there is interest in analyzing samples in as close to their native states as possible. Analysis of intact 
RNA oligonucleotides by tandem mass spectrometry (MS/MS) is capable of determining modification sites 
with single-nucleotide resolution, by comparing mass spectra with a sequence database17. However, 
oligonucleotides are challenging to separate via liquid chromatography (LC) that is compatible with mass 
spectrometry. The current approach of choice is reversed-phase ion-pair liquid chromatography18. 
In addition to the experimental challenges, difficulties emerge in interpreting the acquired data. Considerable 
efforts towards automating data analysis have been made in recent years, starting with SOS19 in 2002, Ariadne20 
in 2009, OMA/OPA21 in 2012, and RNAModMapper22 in 2017, all of which are programs for database-
matching or decoding the complicated patterns of oligonucleotide fragmentation. However, none of the 
existing software solutions offers key features necessary to analyze data from large-scale experiments. First, no 
software can efficiently handle the analysis of RNA oligonucleotide data - especially of more complex samples 
or involving many different modifications - in batch-compatible fashion. Second, statistical validation strategies 
such as false-discovery rate (FDR) estimation are not implemented. This leads to unreliable sequence 
assignments and subjective manual assessment of spectra for validation. Third, existing solutions do not tie into 
any larger analytical framework, making integration with other (e.g. quantitative) data difficult. In contrast, 
shotgun proteomics has been sequencing peptides reliably for many years, and the inference, identification and 
quantification of proteins from constituent peptides has been automated to such a degree that the field has 
matured into answering biological questions at a more fundamental level23. 
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To fill this fundamental gap, we developed a fast, scalable database-matching tool called 
NucleicAcidSearchEngine (NASE) for the identification of RNA oligonucleotide tandem mass spectra. We 
implemented this new software within the OpenMS framework, an open-source toolset for processing mass 
spectrometric data24. NASE will be fully integrated into the primary distribution of OpenMS in the upcoming 
version 2.5, and will then be available for download as part of OpenMS at https://www.openms.de. In the 
meantime OpenMS builds containing NASE are available at https://www.openms.de/nase. Beyond speed and 
sensitivity, NASE provides advanced features like FDR estimation, precursor mass correction, and support for 
salt adducts. Powerful visualization capabilities are available through OpenMS’ data viewer. By supporting the 
common interface of The OpenMShttp://www.openms.de/applications/nase Proteomics Pipeline25, NASE 
can be easily used in automated data analysis workflows. This interoperability also enables the label-free 
quantification of RNA oligonucleotides based on NASE search results - as a first in the field of nucleic acid 
mass spectrometry. 
Based on three original datasets we demonstrate the capability of NASE to reliably identify a variety of RNA 
types from different sources, and show how data visualization and label-free quantification can augment the 
interpretation of identification results. 
 

Results 

RNA oligonucleotide MS datasets 
Using nanoflow ion-pair liquid chromatography coupled to high-resolution tandem mass spectrometry (nLC-
MS/MS), we generated three datasets from RNA samples of increasing complexity. First, oligonucleotides with 
the sequence of mature Drosophila let-7 microRNA, 21 nt in length, were produced synthetically in 
unmodified and modified (2’-O-methylated at the 3’ uridine) forms (“synthetic miRNA” dataset). We 
characterized a 1:1 mixture of both forms of this RNA. Replicate measurements were acquired using different 
normalized collision energy (NCE) settings in the mass spectrometer. Second, we prepared two samples of an in 
vitro-transcribed yeast lncRNA (NME1, 340 nt long), one of which was treated with an RNA 
methyltransferase (NCL1) catalyzing the 5-methylcytidine (m5C) modification (“NME1” dataset). These 
samples were subsequently digested with an RNA endonuclease (RNase) to generate oligonucleotide sequences 
of a length amenable to mass spectrometry. Third, we generated a sample of human total tRNA from a cellular 
extract - a complex mixture of highly modified RNAs (“human tRNA” dataset). This sample was again RNase-
treated prior to nLC-MS/MS analysis. 

A powerful new search engine for RNA MS data 
We developed a sequence database search engine for the identification of (modified) RNA sequences based on 
tandem mass spectra. The software, termed NucleicAcidSearchEngine (NASE), was implemented within the 
OpenMS framework and combines existing functionality (e.g. for data input/output, filtering, and FDR 
estimation) with newly developed features. (See Methods section for details.) Given a mass spectrometry data 
file and a FASTA file containing target and decoy (shuffled or reversed) RNA sequences as inputs, NASE 
generates oligonucleotide-spectrum matches with statistically meaningful FDR scores. OpenMS’ interactive 
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viewer, TOPPView26, was extended to support RNA identification results obtained using NASE, mirroring and 
augmenting existing functionality for visualizing peptide identifications in proteomics experiments. 
In addition to the built-in FDR calculation, NASE provides other features that set it apart from alternative tools 
that are currently available. Even with extensive preparation, nucleotide samples frequently contain salt adducts 
(in the form of cations attached to the phosphate backbone). NASE searches can take this into account, by 
allowing users to specify chemical formulas of adducts to consider in the precursor mass comparisons. 
Furthermore, NASE supports the correction of precursor masses for MS2 spectra that were sampled from 
isotopologue peaks other than the monoisotopic one. Especially for longer sequences, MS2 precursor ions are 
often picked from higher-intensity, heavier isotopologues by the mass spectrometer’s data-dependent 
acquisition software. Without adjustment, the MS2 precursor masses would not closely match the theoretical 
(monoisotopic) masses of the correct oligonucleotides, leading to no assignment or incorrect matches. This 
feature thus greatly increases NASE’s ability to identify oligonucleotides with longer sequences. 
Finally, through the OpenMS toolbox NASE enables seamless label-free quantification of the oligonucleotides 
that were identified in a sample. A corresponding analysis pipeline can be easily created and run using a 
graphical workflow editor. Supplementary Fig. 1 shows an example pipeline from our analysis of the NME1 
data, using the editor that is conveniently included with OpenMS27. 

MS-based sequencing of an intact synthetic microRNA 
In our analysis of data from the synthetic miRNA sample, we found a strong dependence of sequence coverage 
on the Normalized Collision Energy (NCE) value. Identical samples were run with NCE ranging from 5 to 55. 
The best results were obtained for an NCE of 20 (Supplementary Fig. 2). Subsequent LC-MS/MS analyses, 
including of the NME1 and tRNA samples, were thus carried out with this NCE setting. 
At the optimal NCE, both unmodified and modified RNA were detected, and the location of the modification 
could be determined with high confidence. 874 spectra were identified that passed our hyperscore cutoff, 
matching sequences of length 5-21 nt, including the full-length let-7. The shorter sequences correspond to 
artefacts of incomplete solid-phase RNA synthesis, which are easily detectable by LC-MS. In the full 21-nt 
sequence we averaged over two-fold MS2 ion coverage of the let-7 sequence, with one or more forward (a-
B/a/b/c/d) ion and one or more reverse (w/x/y/z) ion detected at each base (see Fig. 1, ion naming scheme from 
McLuckey et al.28). This demonstrates our ability to sequence even relatively long (>20 nt) RNAs. 
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Figure 1: A tandem mass spectrum of synthetic let-7 denoting all of the assigned peaks. The primary ion was 
deprotonated seven times to give a charge state of -7 (m/z 971.55). The ion coverage plot in the upper right 
shows coverage for nine different types of fragment ion. 

Performance comparison of search engines for RNA MS data 
We processed the NME1 data using the three search engines Ariadne, RNAModMapper, and NASE. We ran 
target/decoy database searches using m5C as a variable modification and compared the results in terms of: A, 
the number of identified spectra at different FDR thresholds; B, the sequence length distribution of the 
identified oligonucleotides at 5% FDR (Fig. 2). NASE identified significantly more spectra at a given confidence 
level than the other tools. It also found longer oligonucleotides, which would be more informative for 
identifying RNAs in complex samples. About 8% of the oligonucleotide-spectrum matches generated by NASE 
at 1% FDR included sodium adducts and would have been missed without the adduct search capabilities. 
Note that Ariadne’s performance in this comparison was hampered by the fact that a recommended tool for 
data preprocessing, the commercial software SpiceCmd, was not available to us. RNAModMapper had 
previously been evaluated based on searches against “expected” sequences only (i.e. no decoys), followed by 
manual validation of spectral assignments22,29. 
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Figure 2: Performance comparison of RNA identification engines - Ariadne, RNAModMapper (RAMM) 
and NucleicAcidSearchEngine (NASE) - based on searches of the NME1 data. (a) Number of successfully 
identified spectra plotted against the q-value, a measure of the false discovery rate, which was calculated from 
a target/decoy database search using each of the three tools. (b) Sequence length distribution of identified 
oligonucleotides for each tool at a confidence level of 5% FDR. 

Detection of differential methylation sites in a benchmark sample 
To assess the performance of our software at detecting RNA modifications, we compared the NASE search 
results for the NME1 lncRNA with and without NCL1 incubation (Fig. 3a). We considered results at a high 
confidence level of 1% FDR; at this level, 74% sequence coverage was achieved for both the control and the 
NCL1-treated sample. As Fig. 3a shows, there is good agreement between the unmodified oligonucleotides that 
were identified in both samples, indicating that our method works reproducibly. While a number of m5C-
modified oligonucleotides were identified in the control sample, all except two of these false positives were 
observed in only a single oligonucleotide-spectrum match - in proteomic LC-MS/MS experiments, such “single 
hits” would be commonly filtered out30. We suspect that trace amounts of carry-over from earlier test runs of 
the NCL1 sample on the same chromatographic column may have caused these identifications in the control 
sample. Nonetheless, two modified oligonucleotides, “UCACAAAU[m5C]G” (at position 21-30 in the NME1 
sequence) and “UAACC[m5C]AAUG” (position 299-308), were identified only in the NCL1-treated sample, 
based on 5 and 4 spectra in multiple charge states (-2 to -4 and -3 to -4, respectively). These (isobaric) 
oligonucleotides thus provide strong evidence for true m5C modification sites. Illustrating this, Fig. 4a shows a 
data section from the NCL1-treated sample, visualized as a two-dimensional LC-MS map. Identifications of the 
unmodified, adducted, and modified variants of the two oligonucleotides are displayed in the context of MS1 
signal intensities. At the bottom, the isobaric oligonucleotides “UCACAAAUCGp” (left) and 
“UAACCCAAUGp” (right) can be seen eluting with slight separation. (In our notation, “p” at the end of a 
sequence represents the 3’ phosphate generated by RNase T1 cleavage.) In the middle, the corresponding 
mono-methylated oligonucleotides are convincingly detected, with a mass shift of 14 Da and a slight RT shift 
relative to their unmethylated counterparts. At the top, the oligonucleotide “UCACAAAUCGp” was 
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identified with a sodium adduct (mass shift of 23 Da). A corresponding image showing the loss of signal for the 
modified oligonucleotides in the control sample is available as Supplementary Fig. 3. Fig. 4b compares spectrum 
matches for the two modified oligonucleotides, showcasing the high quality of the matches as well as our MS2 
visualization capabilities, including the newly added ion coverage diagrams. 
 

 
 

Figure 3: Comparison of the NME1 control and NCL1-treated sample based on NASE search results at 1% 
FDR. (a) Coverage plot showing oligonucleotides identified in the respective sample above/below the NME1 
RNA sequence. Bars representing oligonucleotides are colored according to their number of identifications 
(spectral counts). Putative 5-methylcytidine (m5C) modification sites are marked in green. Sites with an 
asterisk (*) were uniquely localized, while “blank” sites indicate uncertainty between two possible locations, 
due to the absence of discriminating peaks in the corresponding mass spectrum. (b) Label-free quantification 
results for identified oligonucleotides, comparing feature-based signal intensities in the two samples. 
Intensities were aggregated over multiple charge and adduct states, where applicable. m5C-modified 
oligonucleotides are marked in red. Oligonucleotides that were quantified in only one of the samples are 
shown directly on the x and y axis, respectively. The grey diagonal line represents equal intensity in both 
samples. 
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Figure 4: Screenshots from TOPPView showing data from the NCL1-treated NME1 sample. (a) MS1 view 
(RT-by-m/z) of a data section. LC-MS peaks are shown as small squares, colored according to their signal 
intensities. Small black diamonds and horizontal lines indicate MS2 fragmentation events; oligonucleotide 
sequences identified by NASE from the MS2 spectra are shown in dark red font. Rounded black boxes give 
an approximate outline of the chromatographic peaks corresponding to the oligonucleotides shown in black. 
These manual annotations are based on the identified sequences and signal intensity patterns. All 
oligonucleotides shown have a charge state of -3. (b) “Identification view” comparing two MS2 spectra, 
identified by NASE as the sequences “UAACC[m5C]AAUGp” and “UCACAAAU[m5C]Gp”. Matching 
peaks between the acquired and theoretical spectrum are annotated and highlighted in red and green. In the 
top-right corner of each spectrum plot, an ion coverage diagram shows which of the theoretical fragment ions 
of the sequence were matched in the MS2 spectrum (in any charge state). 

 

 

                  

                              

                      

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 19, 2018. ; https://doi.org/10.1101/501668doi: bioRxiv preprint 

https://doi.org/10.1101/501668
http://creativecommons.org/licenses/by-nc/4.0/


 

9 

Label-free quantification of RNA MS data 
We quantified the identified oligonucleotides in the two NME1 samples, using a label-free, feature detection-
based approach. Fig. 3b summarizes the results. Although all oligonucleotides come from the same RNA, they 
were quantified with signal intensities spanning several orders of magnitude. This is indicative of widely varying 
ionization efficiencies during MS analysis, a common caveat that generally limits label-free quantification to 
relative comparisons between similar samples. 
Of 37 and 40 oligonucleotides that were identified at 1% FDR in the control and NCL1-treated sample, 
respectively, 34 could be quantified in each sample (corresponding to 92% and 85% success rates). Most 
oligonucleotides were quantified at similar levels in both NME1 samples, with putative m5C-modified 
oligonucleotides generally found at lower intensities. The notable exception is the pair of modified 
oligonucleotides “UCACAAAU[m5C]G”/“UAACC[m5C]AAUG” already discussed above. While the 
chromatographic peaks for the unmodified oligonucleotides “UCACAAAUCG” and “UAACCCAAUG” 
were distinct enough to allow separate quantification of each, their modified variants could only be quantified 
together. The difference in signal intensities for these modified oligonucleotides between the control and 
NCL1-treated sample is clearly visible in Fig. 4a and Supplementary Fig. 3. This difference is exacerbated in the 
label-free analysis by the fact that only one corresponding identification was made in the control sample, while 
multiple charge states were identified, quantified and aggregated in the NCL1-treated sample. (The other 
obvious outlier, with the sequence “AUUUAAAAAUUUUAAAUUG”, was eluted at the very end of the 
chromatographic gradient and thus could not be quantified reliably.) 
More advanced capabilities for LC-MS-based quantification, including retention time alignment, inference of 
identified analytes across samples, and labelling approaches, are already available in OpenMS for proteomics 
experiments. With future improvements to the support for nucleic acids in the framework, these features will 
become available for RNA analyses as well. 

Analysis of a complex, highly modified tRNA sample 
Previous work on tRNA has shown that it is heavily modified31. Our analysis confirms this. We ran NASE on 
the “short RNA” fraction of a cell extract sample that had been digested with RNase T1. We searched for 26 
variable modifications with different molecular masses, which had previously been identified to be present in 
yeast or human tRNA32,33. Most of these represent sets of isobaric modifications which we cannot distinguish, 
such as position-specific variants of the same modification; e.g. “m1A” was used to represent any singly-
methylated adenosine (incl. Am, m6A etc.). Note that it was not feasible to search this dataset with this high 
number of variable modifications using other available database-matching tools (RNAModMapper, Ariadne). 
At an FDR cutoff of 5%, 1341 spectra were matched to 236 different oligonucleotide sequences. The sequences 
of human tRNAs are highly similar, especially for tRNAs of one isotype, i.e. tRNAs that bind the same amino 
acid. Consequently, only 38 (16%) of the identified oligonucleotides map to a unique tRNA sequence; 
however, 225 (95%) map uniquely to a single tRNA isotype. The sequence coverage, when counting all 
matching oligonucleotides for each of the detected tRNA sequences, ranged from 8.1% up to 54.8% (see Fig. 
5a), with a median coverage of 20.8%. Coverage levels along the tRNA sequences were far from uniform, with 
the majority of identified oligonucleotides overlapping the anticodon loop and 3’ anticodon stem, or the T-loop 
and 3’ T-stem (Fig. 5b). We hypothesize that the corresponding parts of the tRNA structure are more amenable 
to RNase T1 digestion than other regions. 
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Many of the oligonucleotides we identified contained multiple modifications. In the search, up to three 
modifications per oligonucleotide were allowed, to limit the combinatorial space of modified sequences that 
needed to be explored. Of the unique oligonucleotides identified at 5% FDR, 11% were unmodified 
(accounting for 16% of the identified spectra), while 36% carried one, 26% carried two, and 25% carried three 
modifications (accounting for 45%, 23% and 16% of the identified spectra, respectively). 
All modifications included in the search, except queuosine, wybutosine and their derivatives, were detected as 
part of identified oligonucleotides. However, the prevalences of different modifications differed widely - see 
Table 1 for details. 
 

Table 1: Summary of modifications detected in the HAP1 tRNA data using NASE at a 5% FDR level. 
Columns: 1. Short code of the modification specified as a search parameter. 2. The set of modifications 
implied by the corresponding mass shift, since e.g. position-specific variants of a modification (Am, m1A, 
m6A etc.) generally cannot be distinguished. 3. Number of identified oligonucleotide-spectrum matches with 
at least one instance of the corresponding modification in the sequence. 4. Number of unique 
oligonucleotides with at least one corresponding modification among the search results. 
 

Search mod. 
(short code) 

Represented isobaric modification(s) Spectrum matches Unique oligonucleotides 

m1A Adenosine monomethylation 391 55 

m5U Uridine or pseudouridine monomethylation 247 46 

t6A N6-threonylcarbamoyladenosine 222 29 

m5C Cytidine monomethylation 173 24 

m2G Guanosine monomethylation 114 26 

D Dihydrouridine 107 26 

I Inosine 78 26 

acp3U 3-(3-amino-3-carboxypropyl)uridine or -pseudouridine 63 18 

i6A N6-isopentenyladenosine 55 13 

m2,2G Guanosine dimethylation 48 13 

ncm5s2U 5-carbamoylmethyl-2-thiouridine 43 17 

ac4C N4-acetylcytidine or 5-formyl-2’-O-methylcytidine (f5Cm) 37 14 

Ar(p) 2’-O-ribosyladenosine (phosphate) 26 14 

mnm5U 5-methylaminomethyluridine 23 5 

m1I Inosine monomethylation 20 7 

m1Im Inosine dimethylation 10 6 

f5C 5-formylcytidine 9 7 
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io6A N6-(cis-hydroxyisopentenyl)adenosine 5 4 

m5Cm Cytidine dimethylation 3 3 

m5D Dihydrouridine monomethylation 2 2 

m6Am Adenosine dimethylation 2 1 

m5Um Uridine or pseudouridine dimethylation 1 1 

yW Wybutosine 0 0 

Q Queuosine 0 0 

o2yW Peroxywybutosine 0 0 

galQ Galactosyl- or mannosyl-queuosine (manQ) 0 0 

 
Existing data on the modification landscape of human cytosolic tRNAs is incomplete (e.g. tRNAdb33 lists 
information for 20 genes covering 15 isotypes) and at least some modifications are differentially regulated, 
complicating comparisons. We will focus on cytosine monomethylation (mC, represented by m5C in our 
search) as one example that has been studied more thoroughly, e.g. via bisulfite sequencing to detect m5C. At 
5% FDR we identified 24 unique oligonucleotides with unambiguous assignments of mC. The oligonucleotides 
contained one or two mC sites each and were supported by a total of 173 identified spectra. Each mC-
containing oligonucleotide was associated with one unique or predominant (more matching genes) tRNA 
isotype. At the level of these isotypes, a total of 18 unique mC sites were identified. Seven of these sites agree 
with the “canonical” m5C sites in the VL junction of tRNAs at consensus sequence positions 48-507. Cytosine 
methylation at position 34 in the anticodon, previously reported34 as m5C for tRNA-LeuCAA and 2’-O-
methylcytidine (Cm) for tRNA-Met in tRNAdb, was here observed for tRNA-Met and tRNA-Trp. 
Methylation at C32 was detected in several tRNAs (tRNA-GlnCTG, tRNA-LeuTAA, tRNA-PheGAA, tRNA-Trp, 
tRNA-ValCAC); correspondingly, Cm is reported at this position for tRNA-Gln and tRNA-Phe in tRNAdb. 
We find that our results generally recapitulate annotated modifications in tRNAdb, in regions where we have 
sequence coverage and with the caveat that we cannot distinguish between isobaric modifications (including 
uridine/pseudouridine). Known recurring modifications that we identify in several tRNAs include 
monomethylation at G10, mono- or dimethylation at G26, and monomethylation at A58. In many cases we 
find additional, alternatively modified (or unmodified) variants of “expected” oligonucleotides. In particular, 
for an oligonucleotide that matches the T-loop region in several tRNA-Ala genes we robustly detect the 
unmodified form and a doubly methylated form (mU55 and mA58; see Fig. 5c/d for annotated spectra). The 
ability to identify and localize multiple different modifications simultaneously is a unique advantage of the 
oligonucleotide MS approach. In this example, each form was matched to 13 different spectra at our 5% FDR 
cutoff; singly methylated variants were also detected in lower numbers. For the equivalent oligonucleotides in 
tRNA-Cys and tRNA-Gln (or tRNA-ThrTGT - same partial sequence), we found multiple matches of both the 
double methylation and a single methylation at A58. In oligonucleotides overlapping the anticodon loop and 
the 3’ anticodon stem, we detect multiple forms for tRNA-GlyCCC (mU39 with and without mU32), tRNA-
Met (either or both of mC34 and  t6A37), tRNA-ValCAC (unmodified and mC32) and tRNA-iMet 
(unmodified and t6A38). For tRNA-Ser we observe several different forms at this location - primarily mA37 
and mU44 with or without N6-threonylcarbamoyladenosine (t6A) at A42 for tRNA-SerGCT, and N6-
isopentenyladenosine (i6A) at A37 with either or both of mU39 and mU44 for tRNA-Ser*GA. Based on our data 
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it is impossible to determine whether these and other cases correspond to partial modifications of a particular 
tRNA, or to mixtures of differently modified tRNAs from separate genes. However, overall these results 
support newer findings that question the stoichiometric and static nature of tRNA modifications, and favor the 
notion of a complex and dynamic tRNA modification landscape35. 
 

 
Figure 5: Human tRNA analysis results. (a) A schematic depiction of Homo sapiens tRNA-ValAAC-3-1. 
Sequences which we detected at 5% FDR are highlighted in yellow for unmodified, and orange for modified 
residues. Total coverage is 54.8%. The tRNAdb entry for tRNA-Val agrees with our findings, except for the 
methylation at U4 (based on four identified spectra) and the three modifications in the anticodon loop and 
stem (bottom right, based on two identified spectra). (b) Aggregated coverage of the consensus tRNA 
sequence by oligonucleotides identified in the human tRNA dataset. Every spectrum match at 5% FDR is 
counted. Some oligonucleotide positions in long tRNAs (tRNA-Leu, tRNA-SeC, tRNA-Ser) were adjusted 
to fit the consensus sequence. Complementary regions in the acceptor stem (orange), D-stem (green), 
anticodon stem (blue) and T-stem (red) are highlighted. D: D-loop, Ac: anticodon loop, V: variable region, 
T: T-loop. (c),(d) Tandem mass spectra of an oligonucleotide from human tRNA-AlaAGC, which was 
characterized with and without post-transcriptional modifications. Both primary ions shown here were 
triply-charged (m/z 1154.14 and 1163.48, respectively). In our analysis at 5% FDR, the modified and 
unmodified forms were both identified 13 times each, with charge states ranging from -2 to -5 and from -3 to 
-5, respectively. 
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Discussion 
NASE is a new open-source database search engine for RNA, optimized for high-resolution MS data. It 
supports arbitrary modifications, salt adducts, and FDR estimation through a target/decoy search strategy. 
Moreover, integration with the OpenMS toolbox enables high-quality data visualization, e.g. for manual 
validation of spectral assignments, and label-free quantification of RNA oligonucleotides. We have tested 
NASE against a range of sample types and complexities, spanning synthetic nucleic acids, in vitro-transcribed 
sequences, and cell extracts. In all of these experiments we have been able to effectively identify RNA sequences 
and their modifications. 
NASE contains many unique functionalities that are not currently realized in other database search tools for 
RNA. To our knowledge, no other tools account for precursor mass defect resulting from instrumental 
selection of higher isotopologue peaks. This functionality is a major contributor to the excellent performance of 
NASE in identifying longer oligonucleotides compared to other database-matching tools. NASE also provides 
powerful correction for cation adduction events, which lessens the impact of sodium and potassium ions on 
sequence characterisation. In addition, OpenMS in general and NASE specifically were designed to be fast. Our 
search times for complex samples are orders of magnitude faster than other tools. The searches on the NME1 
and let-7 data take seconds; the much more complicated 26-modifications search of the tRNA dataset took 24 
hours in multithreaded mode (20 parallel threads) on our server. For comparison, an analogous search using 
RNAModMapper was not feasible, with an estimated running time of one month. An equivalent search with 
Ariadne did not return any modified oligonucleotides. 
The open-source nature of OpenMS and NASE enables users to modify the software to fit their specific needs, 
to extend the existing functionality, and to create new interoperating programs. Already, many analysis tools 
have been implemented within the OpenMS framework to support mass spectrometry-based proteomics and 
metabolomics experiments. The present work, and here in particular the pioneering application of label-free 
quantification, gives a foretaste of the power of leveraging these methods for the analysis of nucleic acid data. 
Future developments will streamline the use of OpenMS tools and algorithms, e.g. for improved quantification 
and comparisons across many samples, in the field of epitranscriptomics. In conclusion, the development of 
NASE is an important step towards the large-scale analysis of RNA by mass spectrometry. 
 

Methods 

Liquid chromatography-tandem mass spectrometry 
RNA samples were separated by reversed-phase ion-pair liquid chromatography (using 200 mM HFIP + 8.5 
mM TEA in H2O as eluent A, and 100 mM HFIP + 4.25 mM TEA in methanol as eluent B) and characterized 
by negative ion MS/MS in a hybrid quadrupole-orbitrap mass spectrometer (Q Exactive HF, Thermo Fisher). A 
gradient of 2.5 to 25% eluent B eluted oligonucleotides from various lengths of nanoflow Acclaim PepMap C18 
solid phase (Thermo Fisher) at 200 nL/min. The length of gradient was varied according to the complexity of 
the sample. Precursor ion spectra were collected at a scan range of 600 to 3500 m/z at 120k resolution in data-
dependent mode, with the top five MS1 species selected for fragmentation and MS2 at 60k resolution. 
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RNA samples 
A variety of RNA samples were characterized by nanoflow LC-MS/MS (nLC-MS/MS) and sequence analysis 
performed using NASE. Initial work was carried out on a mature Drosophila let-7 sequence that was prepared 
by solid-phase synthesis and purchased from IDT. This sequence is a 21 nt long microRNA that was among the 
first miRNAs to be characterized36. The RNA was chemically synthesized in unmethylated and methylated 
forms, i.e. with or without a 2’-O-methyluridine (Um) at position 21. A sample was prepared by mixing both 
forms, and was characterized by nLC-MS/MS without further processing, but with varying normalized 
collision energy (NCE) settings to give different levels of precursor fragmentation. 
Subsequent experiments were carried out on NME1, a 340 nt long Saccharomyces lncRNA. NME1 RNA was 
generated by in vitro transcription, and two samples with and without NCL1 enzyme treatment were prepared. 
NCL1 is a yeast RNA methyltransferase that catalyzes the 5-methylcytidine (m5C) modification37. RNA was 
extracted and digested with RNase T1 prior to nLC-MS/MS. This endonuclease generates shorter 
oligonucleotides by cleaving immediately after guanosine residues. 
The most complex sample was a solution of digested crude human cellular tRNA, which was isolated from 
HAP1 tissue culture using an RNeasy kit (Qiagen) as according to the manufacturer’s instructions. Briefly, 
RNAs can be fractionated by length by differential elution, with RNAs less than 200 nucleotides mostly made 
up of tRNA, and the larger fraction being mostly rRNA. The “shorter” RNA fraction was digested with RNase 
T1, and the resultant oligonucleotides were characterized by nLC-MS/MS. 

NucleicAcidSearchEngine implementation 
NASE was implemented in C++ within the OpenMS framework. The OpenMS library was extended with 
classes representing (modified) ribonucleotides (based on data from the MODOMICS database38), RNA 
sequences, and riboendonucleases. A new generalized data structure for spectrum identification results 
(supporting peptides/proteins, nucleic acid sequences, and small molecules) and an algorithm for theoretical 
spectrum generation of RNAs were added as well. NASE itself is a new executable tool that supports the 
common interface of The OpenMS Proteomics Pipeline25. 
Data processing with NASE works as follows: Inputs are an RNA sequence database (FASTA format) and a 
mass spectrometry data file (mzML format). RNA sequences are digested in silico using enzyme-specific 
cleavage rules for the user-specified RNase. Tandem mass spectra are pre-processed (intensity filtering, 
deisotoping) and mapped to oligonucleotides based on precursor masses. Mass offsets due to salt adducts or 
precursor selection from heavier isotopologue peaks can be taken into account. Next, theoretical spectra of 
relevant oligonucleotides in the appropriate charge states are generated and compared to the experimental 
spectra; matches are scored using a variant of the hyperscore algorithm39. If the sequence database contains 
decoy entries, the resulting oligonucleotide-spectrum matches can be statistically validated through the 
automatic calculation of q-values, a measure of the FDR40. Supported output formats are an mzTab-like41 text 
file, suitable for further analysis, and an XML file, suitable for visualization in TOPPView. 
In order to provide support for label-free quantification of identified oligonucleotides, NASE interfaces with 
the OpenMS tool FeatureFinderMetaboIdent (FFMetId). FFMetId handles the core step of the quantitative 
workflow, the detection of chromatographic features in the LC-MS data. As a variant of the proteomics tool 
FeatureFinderIdentification42, FFMetId provides targeted feature detection for arbitrary chemical compounds. 
NASE can write an output file with all relevant information about the oligonucleotides it identified, which is 
directly suitable as an input file for FFMetId. 
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Data processing 

Sequence database searches 
For NASE analyses, all proprietary raw files were converted to mzML format43 without compression and with 
vendor peak-picking using MSConvert44 (https://github.com/ProteoWizard). The full list of fragment ion 
types (a-B, a, b, c, d, w, x, y, z) was considered for peak matching. Precursor and fragment mass tolerance were 
both set to 3 ppm. For precursor mass correction, the monoisotopic up to the fifth (+4 neutrons) isotopologue 
peak were considered. 
The synthetic let-7 data was searched with NASE using unspecific cleavage to account for incomplete RNA 
synthesis products. An extensive set of potential adducts (Na+, K+, Na2

2+, K2
2+, NaK2+, Na3

3+, K3
3+, Na2K3+, 

NaK2
3+) was used because of the substantial salt that remained from the RNA synthesis reactions. Two copies 

of the let-7 sequence, one with a fixed 2’O-methylation of uridine (Um) at the 5’ position, were specified in the 
FASTA sequence file. The small size of the sequence database prevented the use of a target/decoy approach for 
FDR estimation. We thus used a stringent hyperscore cutoff of 150 (corresponding to the 1% FDR in the 
tRNA sample, see below) to define a high-confidence set of results.  
The NME1 data analysis used RNase T1 digestion with one allowed missed cleavage. m5C was set as a variable 
modification; up to two modifications per oligonucleotide were considered. Na+ was specified as a potential 
adduct. The sequence database contained the NME1 (target) sequence as well as a shuffled decoy sequence.  
In our search of the tRNA data, 26 variable modifications (based on previous findings in yeast and human 
tRNA) were specified, at a maximum of three modifications per oligonucleotide. See Table 1 for the full list of 
modifications. Na+ was specified as a potential adduct. The FASTA file contained 420 human tRNA sequences 
collected from the tRNA sequence database tRNAdb33 (http://trna.bioinf.uni-leipzig.de) plus the same 
number of reversed decoy sequences. The digestion parameters were set to RNase T1 with up to two missed 
cleavages. 

Search engine comparison 
The NME1 data was processed with two other publicly available RNA identification engines, in addition to 
NASE: Ariadne20 and RNAModMapper22. To this end, the raw files were converted to MGF format using 
MSConvert. Cleavage and variable modification settings in the searches were the same as for NASE and 
appropriate for the samples. 
For Ariadne, the online version at http://ariadne.riken.jp was used in October 2018. The “Calc as partial 
modifications” option was enabled. The precursor and fragment mass tolerances were left at their default values 
(5 and 20 ppm). Alternatively, using the parameters from the Taoka et al.45 (20 and 50 ppm) made no 
appreciable difference for Ariadne’s performance in our tests. 
For RNAModMapper, a program version from July 2018 was used with settings recommended by the author, 
Ningxi Yu. All available ion types (a-B, w, c, y) were enabled; precursor and fragment mass tolerance were set to 
0.02 and 0.1 Da, respectively. 

Label-free quantification 
In order to perform label-free quantification on the NME1 dataset, target coordinates (chemical sum formulas, 
charge states, median retention times) for oligonucleotides identified at 1% FDR were exported from NASE. 
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Based on these coordinates, feature detection in the LC-MS raw data (mzML files) was carried out with the 
OpenMS tool FeatureFinderMetaboIdent. The results were exported to text format using OpenMS’ 
TextExporter, for subsequent processing and visualization in R 3.5.146. Results from both NME1 samples were 
merged and feature intensities for oligonucleotides were summed up over multiple charge and adduct states, 
where available. To ensure comparability, manual adjustments were made in a few cases where modified 
oligonucleotides had been identified with different m5C localizations in the two samples. 
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Supplementary Figures 
 

 
Supplementary Figure 1: Data analysis pipeline for the NME1 data, comprising target/decoy database 
generation, database search (incl. FDR estimation and filtering), targeted feature detection and data export. 
Screenshot from TOPPAS, the OpenMS workflow editor. The whole pipeline ran in only 12 seconds (single-
threaded) on our server. 
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Supplementary Figure 2: Graph showing the relationship between Normalized Collision Energy (NCE) used 
in HCD and the number of NASE search hits scoring above our cutoff in replicate runs of the let-7 sample. 
The optimum NCE is 20.  

 

 
Supplementary Figure 3: Annotated screenshot from TOPPView showing data from the NME1 control 
sample, corresponding to the NCL1-treated data shown in Fig. 4a. Note the loss of signal intensity and 
sequence identifications for the methylated oligonucleotides, compared to Fig. 4a. Due to a lower-quality 
MS2 spectrum, the m5C site in “UAACCCAUGp” has here been localized to the second, not third cytidine. 
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