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Abstract

Dashing is a fast and accurate software tool for estimating similarities of genomes
or sequencing datasets. It uses the HyperLogLog sketch together with cardinality
estimation methods that specialize in set unions and intersections. Dashing
sketches genomes more rapidly than previous MinHash-based methods while
providing greater accuracy across a wide range of input sizes and sketch sizes. It
can sketch and calculate pairwise distances for over 87K genomes in under 6
minutes. Dashing is open source and available at
https://github.com/dnbaker/dashing.
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Background
Since the release of the seminal Mash tool [1], data sketches such as MinHash have

become instrumental in comparative genomics. They are used to cluster genomes

from large databases [1], search in databases for datasets with certain sequence

content [2], accelerate the overlapping step in genome assembly tools [3, 4], map

sequencing reads [5], and find similarity thresholds characterizing species-level dis-

tinctions [6].

Mash’s advantages come from its use of the MinHash sketch, first developed for

finding similar web pages among vast numbers of candidates [7]. MinHash can

summarize a large genomic sequence collection as a small set of constituent k-mers,

in turn stored as a list of integers. The summary is much smaller than the original

data but can be used to estimate relevant set cardinalities such as the size of the

union or the intersection between the k-mer contents of two genomes. From these set

cardinalities one can obtain a Jaccard-coefficient (J) or a “Mash distance,” which is

a proxy for Average Nucleotide Identity (ANI) [1]. These make it possible to cluster

sequences and otherwise solve massive genomic nearest-neighbor problems.

MinHash is related to other computational ideas gaining traction in bioinformat-

ics. Minimizers, which can be thought of as a special case of MinHash, are widely

used in metagenomics classification [8] and alignment and assembly [9]. More gen-

erally, MinHash can be seen as a kind of Locality-Sensitive Hashing (LSH), which

involves hash functions designed to map similar inputs the same value. LSH has also

been used in bioinformatics, including in homology search [10] and metagenomics

classification [11]. Here we focus on MinHash and other methods that are geared

toward cardinality estimation, which (via the Jaccard coefficient) can measure se-

quence distance or similarity.
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Spurred by MinHash’s utility, other groups have proposed alternatives using new

ideas from search and data mining. BinDash [12] uses a b-bit one-permutation rolling

MinHash to achieve greater accuracy and speed compared to Mash at a smaller

memory footprint. More theoretical improvements are proposed in the HyperMin-

Hash [13] and SuperMinHash [14] studies.

Some studies have also pointed out shortcomings of Mash and MinHash. Koslicki

and Zabeti argue that MinHash cardinality estimates suffer when the sets are very

different sizes [15]. This is not an uncommon scenario, e.g. when finding the distance

between two genomes of very different lengths or when finding the similarity between

a short sequence (say, a bacterial genome) and a large collection (say, deep-coverage

metagenomics datasets).

Here we propose to use the HyperLogLog (HLL) sketch [16] as an alternative to

MinHash that exhibits excellent accuracy and speed across a range of scenarios,

including when the input sets are very different sizes. HLL has been applied in

other areas of bioinformatics, e.g. to count the number of distinct k-mers in a

genome or data collection [17, 18, 19]. Our approach additionally builds on recent

theoretical improvements in cardinality estimates for set unions and intersections

[20], the crucial components needed to estimate J and other similarity measures.

These improvements, together with the HLL’s inherent advantages, yield greater

accuracy and speed compared to both Mash and BinDash in many situations.

We implemented the HLL sketch in the Dashing software tool (https://github.

com/dnbaker/dashing), which is free and open source under the GPLv3 license.

Dashing supports the functions available in similar tools like Mash [1], BinDash [12]

and Sourmash [21]. Dashing can build a sketch of an input sequence set (dashing

sketch), including FASTA files (for assembled genomes) or FASTQ files (for se-

quencing datasets). Like Mash, Dashing has a sketch-based facility for removing

k-mers that likely contain sequencing errors prior to sketching. The dashing dist

function performs all-pairwise distance comparisons between pairs of datasets in a

large collection, e.g. all the complete genomes from the RefSeq database. This is

similar to Mash’s mash dist and mash triangle functions. Since Dashing’s sketch

function is extremely fast, Dashing can perform both sketching and all-pairs distance

calculations in the same command, saving the user from having to store sketches

on disk between steps. Dashing is parallelized and we show that it scales efficiently

to 100 threads. Dashing also uses Single Instruction Multiple Data (SIMD or “vec-

tor”) instructions on modern general-purpose computer processors to exploit the

finer-grained parallelism inherent in calculating the HLL estimate.

Results
Here we briefly discuss of the design of the Dashing software tool, then present sim-

ulation results demonstrating HLL’s accuracy relative to other sketch data struc-

tures. We then describe experiments demonstrating Dashing’s improved accuracy

relative to Mash and BinDash in a range of scenarios. Finally, we discuss Dashing’s

computational efficiency relative to Mash and BinDash.

Unless otherwise noted, experiments were performed on a Lenovo x3650 M5 sys-

tem with 4 2.2Ghz Intel E5-2650 CPUs with 12 cores each and 512 GB of DDR4

RAM. Input genomes and sketches were all stored on a SAS-attached Lenovo Stor-

age E1000 disk array with 12 8TB 7,200-RPM disks combined using RAID5.
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All experiments were conducted using scripts available in the dashing-experiments

repository at https://github.com/langmead-lab/dashing-experiments.

Design

Dashing is a software tool that uses the HyperLogLog (HLL) sketch to solve ge-

nomic distance problems. Similarly to tools like Mash, Dashing takes one or more

sequence collections as input. These could be assembled genomes in FASTA format

or sequencing datasets in FASTQ format. It then builds an HLL sketch for each

input collection based on its k-mer content. The sketch can be written to disk or

simply forwarded to the next phase, which performs a distance comparison between

one or more pairs of sketches. In one usage scenario, the user provides two FASTA

files and Dashing sketches them and emits a set of similarity estimates, including

an estimate of the Jaccard-coefficient J . This is similar to Mash’s mash dist mode.

In another scenario, the user provides a large collection of FASTA files (e.g. all the

complete bacterial genome assemblies in Refseq) and Dashing sketches them and

emits estimates for all pairwise distances, similarly to mash triangle.

Dashing is written in C++. It can use many threads in parallel, with both the

sketching and distance phases readily scaling to 100 threads. It also makes effective

use of data-parallel SIMD instructions, including the recent AVX512-BW extensions

that have been effective at accelerating other bioinformatics software [22]. Dashing

also provides Python bindings that enable other developers to easily make use of

our HLL implementation.

Sketch accuracy

To assess HLL’s accuracy, we measured Jaccard-coefficient estimation error across

a range of set and sketch sizes. We implemented and compared three structures in

Dashing v0.1.1: HLL [16], Bloom filters [23] and MinHash [7]. For HLL, we used

Ertl’s Maximum Likelihood Estimator (MLE) method for estimating set cardinal-

ities [20], though we explore alternate methods in later sections. For the Bloom

filter, we used both a naive (collision-agnostic) and a collision-aware method [24]

for estimating set cardinalities. For the MinHash structure, we used a k-bottom

sketch with a single hash function, following Mash’s strategy [1]. In all cases, we

used Thomas Wang’s 64-bit reversible hash function [25]. In all cases, the tools

used canonicalized k-mers, so that a k-mer and its reverse complement are treated

as equal when sketching.

While it can improve accuracy to use more than one hash function in a Bloom

filter, we used just one hash function here. This is a reasonable choice in the absence

of any foreknowledge of the set cardinality. Additionally, because our aim is high

accuracy in reduced space, the optimal number of hash functions for a Bloom Filter

(m
n ln(2)) ≤ 1 for any experiments with cardinality greater than sketch size.

We performed sets of experiments where we first fixed the two input sets — their

sizes and the true Jaccard-coefficient between them — as well as the size of the

data structures. Though the structures differ in character, with the HLL storing an

array of narrow integers, the MinHash storing an array of wider integers and the

Bloom filter storing an array of individual bits, we can nonetheless parameterize

them to use exactly the same amount of storage. (A practical detail is that the
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width of the integers stored in the MinHash sketch depend on the selected k-mer

length; we account for this so as to maintain equal size across tools.) We populated

each structure using its natural insert operation; for the HLL this involves hashing

the item and using the resulting value to identify the target register and possibly

update it according to the leading zero count of the remainder bits. This is discussed

in detail in Methods. For the Bloom filter, inserting involves hashing the item and

setting the corresponding array bits to 1. For the bottom-k MinHash, inserting

involves hashing the item and updating the sketch if the hash is less than the

current greatest sketch element.

We populated the input sets with random numbers, thereby simulating an ideal

hash function with uniformly distributed outputs. Sets were constructed in order

to achieve a target Jaccard coefficients for a set of predetermined Js ranging from

0.00022 to 0.818. A range of set-size pairs were evaluated ranging from equal-size

sets to sets with sizes differing by a factor of 212. In total, 36 set-size / J pairs were

evaluated, with full results presented in Supplementary Table 1. Note that set sizes

and Jaccard-coefficient are dependent; if set A has cardinality c times greater than

set B, J(A,B) ≤ 1
c .

Figure 1 shows results for two values of the true Jaccard coefficient, 0.0465 and

0.111, for five pairs of unequal-cardinality input sets, and for various sketch sizes.

The vertical axis shows the difference in absolute error between the alternate struc-

ture and the HLL. Points appearing below y = 0 indicate where the HLL sketch

had higher absolute error than the alternative. The three rows show successively

tighter zoom-ins on the y axis.

We first observed that HLL exhibits lower absolute error in most circumstances,

especially for smaller sketches and larger sets. For the two Js tested here, HLL

had lower error compared to MinMash as seen most clearly in the second row of

Figure 1. The Bloom-filter-based methods, especially the collision aware method

(Bloom+) achieved slightly lower error in some scenarios. Bloom+ had lower error

(by < 0.0025) for sketches of size 213 bytes and higher for the smallest sets. For

larger sets, the point where Bloom+ began to have lower error than HLL moved

rightward. The naive Bloom method also eventually outperformed HLL, though only

at the largest sketch size and smallest input sets. That the Bloom filters outperform

at large sketch sizes is not surprising; as the number of filter bits increases far past

the set cardinality, collisions become rare and the method converges on error-free

linear counting.

Though Figure 1 plots error differences between pairs of structures, full results,

including absolute and squared errors, can be found in Supplementary Table 1.

There we observed that even in the most adverse scenarios (small data structures

and very different set sizes) HLL’s absolute error never exceeded 3% (compared

to 8% for MinHash). Overall, the results recommend HLL has an accurate and

memory-economical sketch requiring no major assumptions about input set sizes.

Accuracy for complete genomes

Encouraged by HLL’s accuracy, we measured the accuracy of Dashing v0.1.1’s HLL-

based Jaccard-coefficient estimates versus Mash v2.1 [1] and BinDash v0.2.1 [12].
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Figure 1 Jaccard-coefficient estimation error for different-size sets using HLL, Bloom filters
and MinHash. Left column shows a set of experiments with various set sizes but with the true
Jaccard-coefficient fixed at 0.111. Right shows the same but for a true coefficient of 0.0465. All
pairs of input sets differ in size by a factor of 23 = 8. The second and third rows zoom further in
with respect to the y-axis so as to highlight the relative performance of MinHash (2nd row) and
the Bloom+ filter (3rd row).

For HLL, we repeated the experiment for three HLL cardinality estimation meth-

ods: Flajolet’s canonical method using harmonic mean [16], and two maximum-

likelihood-based methods (MLE and JMLE) proposed by Ertl [20]. We selected

400 pairs of bacterial genomes from RefSeq [26] covering a range of Jaccard-

coefficient values. To select the pairs, we first used dashing dist with s = 16,

k = 31 and the MLE estimation method on the full set of 87,113 complete RefSeq

assemblies (latest versions). We then selected a subset such that we kept 4 distinct

genome pairs per Jaccard-coefficient percentile. In this way, we started out with an

even spread of Jaccard-coefficient values, though some unevenness emerges later due

to differences between data structures and different selections of k. Of the genomes

included in these pairs, the maximum, minimum and mean lengths were 11.7 Mbp,

308 Kbp, and 4.00 Mbp respectively.
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We ran the three tools to obtain Jaccard-coefficient estimates for the 400 pairs

and plotted the results versus true Jaccard-coefficients, as determined using a full

hash-table-based k-mer counter. Results for k = 16 and k = 21 and for sketches

of size 210 and 214 bytes are shown in Figure 2. The horizontal axis is the true

Jaccard-coefficient while the vertical is the difference between the tool-estimated

Jaccard-coefficient and the true Jaccard-coefficient . We plot a smooth (loess) curve

for each tool to make J-dependent biases more evident. For Dashing we used the

MLE estimation method. We made a minor change to the Mash software to allow

it to output estimated Jaccard coefficient, as it typically emits only Mash distance.

−0.2

−0.1

0.0

0.1

0.00 0.25 0.50 0.75 1.00

True J

E
st

 J
 −

 T
ru

e 
J

k = 16, log2(sketch bytes) = 10

−0.025

0.000

0.025

0.050

0.00 0.25 0.50 0.75 1.00

True J

E
st

 J
 −

 T
ru

e 
J

k = 16, log2(sketch bytes) = 14

−0.2

−0.1

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75 1.00

True J

E
st

 J
 −

 T
ru

e 
J

k = 21, log2(sketch bytes) = 10

−0.06

−0.03

0.00

0.03

0.06

0.00 0.25 0.50 0.75 1.00

True J

E
st

 J
 −

 T
ru

e 
J

k = 21, log2(sketch bytes) = 14

Mash   BinDash   Dashing (MLE)

Figure 2 Estimated versus true Jaccard coefficients (Js) for various methods across a range of
true J . Each point is one pair from an overall set of 400 pairs of genomes, selected to evenly
cover the range of true Js. Smooth loess curves are drawn to highlight systematic bias as a
function of J .

Dashing’s estimates were consistently near the true J . Mash shows a pattern of

bias whereby its estimates are somewhat too low at low Jaccard-coefficients then

too high at higher coefficients, causing the smooth curve to bend down and then up

as it moves to the right. This is sometimes combined with an overall bias shifting

estimates too high (in the case of k = 16, sketch size = 214) or low (in the case of

k = 21, sketch size = 214). BinDash and Dashing exhibit less J-specific bias, but

with Dashing staying noticeably closer to y = 0 compared to BinDash.
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Table 1 shows mean squared Jaccard-coefficient estimation error (MSE) for a

range of sketch sizes and for k = 31, and also including the two alternate cardinality

estimation methods for Dashing (Original and JMLE). The lowest two MSEs are

highlighted in each row. While JMLE consistently has the lowest MSE, we show

later that it is also quite time consuming; Dashing’s default estimation method is the

MLE, which performed similarly to (but somewhat worse than) JMLE. The HLL

methods performed better than Mash and BinDash in every J decile except the

lowest, where BinDash had the lowest MSE across all sketch sizes. Supplementary

Table 2 shows a fuller set of results for k ∈ {16, 21, 31} and sketch sizes of 2i bytes

for i ∈ {10, 11, 12, 13, 14, 15}.

Table 1 Jaccard-coefficient estimation accuracy for Mash, BinDash and Dashing for k = 31 and a
range of sketch sizes. Results are stratified by Jaccard-coefficient decile (first column), and
within-decile results are mean squared errors across all genome pairs having Jaccard-coefficient in the
decile; the number of such pairs is shown in the n column. The lowest two errors in each row are
bolded.

HLL HLL HLL
J bin k log2(size) Mash BinDash Original Ertl-MLE Ertl-JMLE n

0.0 – 0.1 31 12 269.0 71.7 120.8 116.3 97.3 36
13 155.8 33.1 95.6 89.6 72.7 36
14 120.7 25.4 42.4 41.2 31.8 36
15 75.9 14.5 30.0 27.4 23.5 36

0.1 – 0.2 31 12 1,323.5 200.0 179.8 177.7 135.2 46
13 655.8 138.6 92.3 88.6 76.2 46
14 443.5 85.0 57.6 58.4 47.6 46
15 228.7 28.8 17.1 15.8 14.0 46

0.2 – 0.3 31 12 1,025.7 277.4 118.6 113.4 91.3 38
13 631.0 145.7 70.4 57.8 57.8 38
14 478.8 57.5 31.6 30.0 27.7 38
15 145.5 70.8 21.8 19.8 20.3 38

0.3 – 0.4 31 12 1,518.9 333.1 90.3 85.6 82.3 40
13 532.2 164.8 63.9 61.1 59.5 40
14 377.7 77.6 39.8 41.4 36.5 40
15 260.5 73.8 5.6 5.8 5.7 40

0.4 – 0.5 31 12 2,017.8 509.7 130.4 114.4 100.0 41
13 773.8 162.5 39.6 36.2 39.2 41
14 220.4 102.4 29.3 29.5 30.7 41
15 99.2 72.3 15.3 14.8 14.1 41

0.5 – 0.6 31 12 2,126.7 586.3 131.5 132.2 124.4 39
13 997.0 265.4 52.3 52.1 49.1 39
14 379.2 138.5 17.3 17.6 16.0 39
15 165.4 75.9 13.2 12.0 11.5 39

0.6 – 0.7 31 12 2,950.5 544.2 85.8 80.4 80.7 40
13 899.1 239.4 48.5 47.9 46.0 40
14 387.3 96.6 37.4 36.8 34.9 40
15 206.0 42.3 18.0 17.8 17.2 40

0.7 – 0.8 31 12 2,584.8 383.5 99.9 87.9 85.5 40
13 405.5 178.1 67.1 63.0 61.6 40
14 166.3 99.4 32.2 32.9 32.6 40
15 121.3 41.1 12.2 12.4 12.6 40

0.8 – 0.9 31 12 1,641.6 285.0 69.2 65.2 64.7 39
13 145.9 131.0 19.4 19.0 18.9 39
14 222.9 87.4 12.0 10.4 10.4 39
15 157.8 43.6 6.6 5.8 5.7 39

0.9 – 1.0 31 12 178.5 110.3 19.0 14.9 14.8 41
13 110.9 79.6 10.7 9.1 9.0 41
14 70.9 35.9 5.1 4.3 4.3 41
15 34.9 7.7 1.6 1.4 1.3 41

Computational efficiency

To assess computational efficiency and scalability in a realistic context, we used

Dashing v0.1.1, Mash v2.1 and BinDash v0.2.1 to sketch and perform all-pairs
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distance calculations for 87,113 complete genome assemblies (marked “latest” and

“Complete genome” and without “contig” in the name) from RefSeq [26], requiring

over 3.7 billion pairwise comparisons. The set included genomes from various taxa,

spanning viral, archaeal, bacterial and eukaryotic. Genome lengths varied from 288

bases to 4,502,951,408 bases with mean and median lengths of 9.8Mb and 3.8Mb,

respectively. We repeated the experiment for a range of sketch sizes and k-mer

lengths. All experiments were performed on a Lenovo x3850 X6 system with 4

2.0Ghz Intel E7-4830 CPUs with 14 cores each and 1 TB of DDR4 RAM. After

hyperthreading, the system supports up to 112 simultaneous hardware threads.

The system runs CentOS 7.5 Linux, kernel v3.10.0, and is located at the Maryland

Advanced Research Computing Center (MARCC).

For Dashing, we used the dashing sketch command for the sketching phase and

dashing dist for the pairwise distance calculation. In a separate experiment, we

ran dashing dist such that both sketching and all-pairwise distance calculations

were performed in a single invocation, without writing the sketches to disk. For

Mash, we used mash sketch and mash triangle for the two stages respectively.

Likewise for BinDash we used bindash sketch and bindash dist. Though Mash

and BinDash lack a mode that combines sketching and distance calculations in a

single invocation, we simulated this by combining the results from the separate

invocations. Specifically, we summed wall clock times, took the maximum of the

peak memory footprints, and took a wall-clock-time-weighted average of the CPU

utilization measurements. Combined results are labeled “Both.”

All tools were configured to use up to 100 simultaneous threads of execution

(Dashing: -p 100, Mash: -p 100, BinDash: --nthreads=100). Since the system

supports a maximum of 112 simultaneous threads, 100 was chosen to achieve high

utilization while avoiding excessive contention. We report average number of CPUs,

user time, wall time, system time, and peak memory footprint utilizated in each

phase of each tool, as measured with the GNU time utility.

For Dashing, we repeated the experiment for each of its three cardinality estima-

tion methods: Flajolet’s canonical method (“Original”), Ertl’s Maximum Likelihood

Estimator (“Ertl-MLE”) and Ertl’s joint MLE (“Ertl-JMLE”).

Results for k = 31 are summarized in Figure 3 and Table 2, while Supplementary

Table 3 additionally shows results for k = 21. We observed that Dashing is the

fastest tool in the Sketch phase, running 3.5–3.9 times faster than BinDash and 4.0–

4.7 times faster than Mash. Though Dashing achieves the greatest CPU utilization

in the Sketch phase, the tools all perform similarly well on this measure, with Mash

utilizing about 85 CPUs on average, Bindash about 79 and Dashing about 85–97

(depending on estimation method). Thus, Dashing’s speed is explained mostly by

per-thread efficiency.

BinDash achieves the lowest memory footprint among the tools in the Sketch

phase, requiring 80 MB for the 1-KB sketch and 1.4 GB for the 64-KB sketch.

By contrast, Dashing required about 12 GB across all sketch sizes. This is largely

because of how Dashing is parallelized; Dashing threads simultaneously work on

separate sequence collections, each filling a buffer of size sufficient to hold the largest

sequence yet parsed by that thread. Mash had the highest memory footprint, ranging

from 16–37 GB.
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Figure 3 Computational efficiency of Mash, BinDash and Dashing. Results for k = 21, k = 31
and sketches of size 210 (1KB) 214 (16KB) and 216 (64KB). “Both” results obtained either by
using a combined Sketch+Distance mode (for Dashing) or by combining results from the separate
Sketch and Distance invocations (for Mash and BinDash). Dashing was assessed using three
estimation methods: Flajolet’s method using the harmonic mean (“Orig”) and Ertl’s MLE and
JMLE methods.

In the Distance phase, we noted that the estimation method had a major influence

on Dashing’s speed, with JMLE performing about 6–7.5 times slower than MLE.

This is because the JMLE perfors significantly more calculations, as described in

Methods. This result, together with the relatively small accuracy difference noted

earlier, led us to chose the Ertl-MLE method as Dashing’s default.

BinDash was the fastest tool in the Distance Phase, running up to 2–7 times

faster than Dashing’s MLE mode, with the largest speed gap observed at the largest
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Table 2 Comparison of computational efficiency of Mash, BinDash and Dashing. Results for k = 31
shown here, with k = 21 results shown in Supplementary Table 3. “Both” results obtained either by
using a combined Sketch+Distance mode (for Dashing) or by combining results from the separate
Sketch and Distance invocations (for Mash and BinDash). Dashing was assessed using three
estimation methods: Flajolet’s method using the harmonic mean (“Original”) and Ertl’s MLE and
JMLE methods.

Dashing Dashing Dashing
Phase Measure k log 2(size) Mash BinDash Original Ertl-MLE Ertl-JMLE
Sketch Wall clock (s) 31 10 1,313 1,098 271 316 277

14 1,349 1,097 283 287 287
16 1,425 1,127 295 305 283

Avg # CPUs 31 10 85.7 78.99 97.33 84.0 95.32
14 84.59 79.03 94.09 92.15 92.87
16 84.23 78.04 92.17 89.03 96.32

Peak mem (MB) 31 10 16,753 79 12,436 12,378 12,835
14 23,058 399 12,412 12,269 12,291
16 37,393 1,428 12,728 12,702 12,269

Distance Wall clock (s) 31 10 1,714 37 80 103 661
14 4,704 196 1,118 1,315 8,338
16 17,779 687 4,119 4,171 30,360

Avg # CPUs 31 10 18.52 47.97 99.36 98.08 97.48
14 88.97 77.45 94.39 93.48 87.26
16 99.79 87.41 90.1 89.92 84.42

Peak mem (MB) 31 10 1,217 95 116 115 115
14 5,473 461 1,392 1,391 1,391
16 21,394 1,492 5,477 5,477 5,477

Both Wall clock (s) 31 10 3,027 1,135 348 370 926
14 6,053 1,293 1,386 1,398 8,555
16 19,204 1,814 4,991 4,427 31,920

Avg # CPUs 31 10 47.66 77.97 99.48 99.02 98.07
14 87.99 78.79 95.45 95.62 87.41
16 98.64 81.59 84.44 90.49 83.85

Peak mem (MB) 31 10 16,753 95 12,604 12,763 12,591
14 23,058 461 14,113 14,043 13,458
16 37,393 1,492 17,998 18,394 18,326

sketch size. But Dashing is 3–16 times faster than Mash, with the largest speed gap

observed at the smallest sketch size.

When we compared tools based on combined performance across both phases,

BinDash again had the lowest memory footprint (always below 1.5GB), with Dash-

ing’s footprint in the 12–18 GB range and Mash’s in the 16–38GB range. Regarding

speed, we found that Dashing was the fastest at the 1-KB sketch size, slightly

( 8%) slower than BinDash at the 16-KB sketch size, and substantially slower at

the largest (64-KB) size. Mash was the slowest of the tools in all cases. Considering

Dashing’s accuracy at small sketch sizes, the fact that Dashing is fastest for those

sizes fits well with the scenarios we expect users to encounter.

Discussion
Genomics methods increasingly use MinHash and other locality-sensitive hash-

ing approaches as their computational engines. We showed that the HyperLogLog

sketch, combined with recent advances in cardinality estimation, offers a superior

combination of efficiency and accuracy compared to MinHash. This is true even for

small sketches and for the challenging case where the input sets have very different

sizes. While HLL has been used in bioinformatics tools before [17, 18, 19], this is

the first application to the problem of estimating genomic distances, the first im-

plementation of the highly accurate MLE and Joint-MLE estimators [20], and the

first comprehensive comparison to MinHash and similar methods.

We implemented HLL-based sketching and distance calculations in the Dashing

software tool. Dashing can sketch and calculate pairwise distances for over 87K

Refseq [26] genomes in under 6 minutes using 100 threads. The speed advantage
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is clearest in the sketching step. Notably, re-sketching from scratch is not much

slower than loading pre-made sketches from disk. Thus, Dashing users can forgo

the typical practice of saving sketches to disk between steps. Dashing’s accuracy at

smaller sketch sizes also allows us to set the default sketch size (1KB) substantially

below that of other tools (Mash: either 4KB or 8KB depending on k-mer length,

BinDash: 3.5–4KB).

HLLs also come with drawbacks relative to other sketches. As shown in Figure

3 and Table 2, distance calculations with Dashing is substantially slower than the

MinHash-based method implemented in BinDash. This is expected; the MinHash

approach for finding the distance between two sketches involves simple counting

and merging of sorted lists of integers. By contrast, a distance calculation between

two HLL sketches involves more computation, including exponentiations, divisions,

harmonic means, and — for the MLE-based methods — iterative procedures for

finding roots of functions. So the increased accuracy comes at a computational

cost. This was clearest for the most accurate method we tested, Ertl’s joint MLE

[20], which was the slowest (even compared to MinHash) for sketches sized 16K and

greater. It will be important to continue to refine and accelerate the cardinality-

estimation algorithms at the core of dashing dist.

HLL lacks another advantage of MinHash; when MinHash is used in conjunction

with a reversible hash function, it can be used not only to calculate the relevant

set cardinalities but also to report the k-mers common between the sets. This can

provide crucial hints when the eventual goal is to map a read to (or near) its point

of origin with respect to the reference, as is the goal for tools like MashMap [5].

Multiple efforts have considered how to extend MinHash to include information

about element multiplicities, essentially allowing it to sketch a multiset rather than a

set. This can improve accuracy of genomic distance measurements, especially in the

presence of repetitive DNA. Finch [27] works by capturing more sketch items than

strictly needed for the k-bottom sketch, then tallying them into a multiset. More

theoretical studies have proposed ways to store multiplicities, including BagMin-

Hash [28], and SuperMinHash [14]. In the future it will be important to seek similar

multiplicity-preserving extensions — and related extensions like tf-idf weighting

[3, 29] — for HLL as well.

As we consider how HLL can be extended to improve accuracy and handle multi-

plicities, an asset is that our current design uses only 6 out of the 8 bits that make

up each HLL register. (The LZC of our hash cannot exceed 63 and therefore fits

in 6 bits.) Thus, 25% of the structure is waiting for an appropriate use. One idea

would be to use the bits to store a kind of striped, auxiliary Bloom filter. This would

add an alternate sketch whose strength lies in estimating low-cardinality sets. Since

we showed that a Bloom filter has superior accuracy at sketch sizes that are large

enough to simulate linear counting (Figure 1), we could populate the auxiliary filter

with a well calibrated subsample of the input items and thereby recover some of

the accuracy advantage enjoyed by Bloom filters.

HLL’s accuracy even at low sketch sizes also recommends it as a tool for search

and indexing. It can be seen as performing a similar function as the Sequence Bloom

Tree [30]. Additionally, because any items which can be hashed can be inserted in a

HyperLogLog, dashing could be generalized or extended to other applications, such

as comparing text documents by their n-grams, or images by extracted features.
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Methods
HyperLogLog

The HyperLogLog sketch builds on prior work on approximate counting in

O(log2 log2(n)) space. Originally proposed by Morris [31] and analyzed by Flajo-

let [32], this method estimates a count by probabilistically incrementing a counter

for each item with exponentially decaying probability. The probability is typically

halved after each increment, in which case we are approximately tracking the log2

of the true count. While the estimator is unbiased, it has high variance. The hope is

that needing only log2 log2(n) bits to store a summary — compared to the log2(n)

needed for a simple minimum hash — will allow us to store more summaries total

and, with averaging, will yield a better overall estimate.

The HLL combines many counters of this kind into one sketch, leveraging

“stochastic averaging” [33]. Given a stream of data items, we partition them ac-

cording to the most significant bits (“prefix”) of their hash values. That is, if o

is an input item and h is the hash function, the value h(o) is partitioned so that

h(o) = p⊕ q for bit-string prefix p and suffix q. To insert the item, we use p as an

offset into an array of 8-bit “registers.” We set the register to the maximum of its

current value and the leading zero count (LZC) of the suffix q (Figure 4) + 1. Note

that the LZC of a bit string x of length q is related to log2(x):

LZC(x) =

q, x = 0

q − 1− blog2(x)c x > 0

Each register ultimately stores a value related to minq∈Q log2(q) where Q is the

set of suffixes mapping to the register (Figure 5). We then combine estimates across

registers by taking their harmonic mean and applying a correction factor. The

harmonic mean dampens the effect of outlier registers. The HLL estimator has a

standard error of 1.03896√
m

[16].
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Figure 4 Relationship between maximum leading zero count (Max LZC) and set size for three
randomly-generated sets of 8-bit numbers. The Max LZC roughly estimates the log2 of the set
size, though with high variance; here, two of the three estimates are off by 2-fold.
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Figure 5 Schematic of HyperLogLog sketch. Input items are hashed and the hash value is
divided into prefix p and suffix q. p is used as an index into an array of registers. A register
contains the maximum leading zero count among all suffixes q that mapped there. This in turn
can be used to estimate the cardinality of each register. Register-level estimates are then averaged
(by harmonic mean) and corrected to obtain an overall cardinality estimate. Though hash values
shown here are 8 bits, Dashing uses a 64-bit hash. While the figure shows 8 registers, a typical
Dashing sketch will have on the order of thousands to millions of registers.
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While the HLL is conceptually distinct from MinHash sketches and Bloom filters,

it is related to both. As an intuitive example, an HLL with a single register (i.e. using

a prefix length of 0) and where the summary statistic is a simple minimum (rather

than the minimum log2) approaches a MinHash. Similarly, a Bloom filter with a

single hash function and 2x bits resembles an HLL with an x-bit hash prefix and

registers consisting of a single bit each.

Estimation methods

The original HLL cardinality estimation method [16] combines the estimates in the

registers by taking a corrected harmonic mean:

E =
αmm

2

m∑
j=1

2−Mj

Where αm is a corrective factor equal to 1
2 ln 2 = 0.72134 and Mj is the 1 + the

maximum LZC stored in register j. But the accuracy of this estimator suffers at

both low and high extremes of cardinality. This has spurred various refinements

starting with the original HLL publication [16], where linear counting is used to

improve estimates for low cardinalities and careful treatment of saturated counters

improves high-cardinality estimates.

Ertl proposed further refinements [20]. The “improved estimator” uses the as-

sumptions that (a) the hash functions produces uniformly distributed outputs, and

(b) register values are independent. This allows it to model register counts as a

Poisson random variable. Ertl shows that estimating the Poisson parameter yields

an estimate for the cardinality.

Ertl’s MLE method again uses the uniformity and Poisson assumptions of the

Improved method, but the MLE method proceeds by finding the roots — e.g. using

Newton’s method or the secant method — of the derivative of the log-likelihood

of the Poisson parameter given the register values. Ertl shows that the estimate is

lower- and upper-bounded by harmonic means of the per-register estimates (which

retrospectively validated use of harmonic mean in the original HyperLogLog esti-

mator). Ertl suggests using the secant method, which allows the root to be found

using primarily inexpensive instructions and no derivative calculations. We follow-

ing this suggestion in Dashing. Ertl also argues that the MLE generally converges

in a small number of steps, and we confirm that our implementation converges in

≤ 3 steps in every case we have tested.

Unlike the methods discussed up to here, the Joint MLE method can directly es-

timate cardinalities of set intersections and differences. It does so without using the

inclusion-exclusion principle. The JMLE method again adopts the Poisson model

but now the two sketches, A and B, are modeled as a mixture of three components,

one with elements unique to A, another with elements unique to B and a third

with elements in their intersection A∩B. The method then jointly estimates three

Poisson parameters. Inputs to the procedure include tallies for how often registers

in A are less than, equal to, or greater than their counterparts in B.

As discussed in Results, the JMLE method as implemented in Dashing is substan-

tially slower than the MLE. This is only partly because of the increased complexity
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of the numerical optimization, as there are more optimization problems and each

requires roughly twice as many iterations as for MLE. However, our profiling indi-

cates the added time is chiefly spent on tallying the <, =, > relationships between

the sketch registers. Further, the tallying cost is linear with the sketch size whereas

the optimization costs stay relatively fixed in our experiments. This highlights the

importance of efficient, SIMD-ized inner loops for comparing HLLs.

We considered but did not include Ertl’s Improved Estimator or the Hyper-

LogLog++ estimator [34] in this study as they performed worse than Ertl’s MLE

in preliminary comparisons.

Optimizing Hardware Utilization

We designed Dashing to take advantage of (a) highly parallel general-purpose pro-

cessors supporting dozens of simultaneous threads, as well as (b) inherent data

parallelism within the HLL, allowing use of efficient SIMD instructions. Since dis-

tance calculations are functions of union and intersection cardinalities, and since

the most common method (besides JMLE) for estimating intersection cardinality

uses the inclusion-exclusion principle (|A∩B| = |A|+ |B|−|A∪B|.), union cardinal-

ities tend to be the key to overall efficiency. For two HyperLogLog sketches having

the same size and hash function, a sketch of their union is simply the element-

wise maximum of their registers. Thus, the important inner loops of the cardinality

estimation methods involve such elementwise maximums.

Modern general-purpose processors support single-instruction multiple data

(SIMD) instructions that can perform arithmetic and bitwise operations on vec-

tors that are substantially wider (up to 512 bits) than a typical machine word (64

bits). Thus, substantial speedups can be attained by converting important loops

can be made to use only or mostly SIMD instructions. The more operands that can

be packed into the SIMD words, the greater the benefit, as was observed recently in

bioinformatics tools that can operate on 64 8-bit values packed into a 512-bit word

using Intel’s AVX-512BW instruction set [22]. Therefore, we use 8-bit registers,

even though we could hold all values in [0, q − p+ 1] with 6 bits when p > 1.

Besides these vectorized comparisons, tallying the frequencies the leading zero

counts is the other chief computational cost. We mitigated this with manual loop

unrolling, which reduced the cost by approximately 30%.

Parallelization

Use of simultaneous threads of execution was added using OpenMP v4.5. The

dashing sketch function is parallelized across input files, with distinct threads

reading, sketching, and writing sketches for distinct inputs simultaneously. The

dashing dist function is parallelized such that distinct threads work on distinct

rows of the upper-triangular all-pairs matrix simultaneously.

To minimize global locks on memory allocation, each thread is provided its own

memory buffers. The all-pairs distance calculation uses multiple output buffers and

asynchronous I/O to avoid needless blocking and contention on the output lock.

Another concern is load balance; having many threads is only useful if we can

avoid having any “straggler” threads that run long after the others have finished.

We eliminated one such source of stragglers by ordering the inputs to be sketched
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from large to small. Choosing the largest genome first minimizes the chance that the

thread with the largest genome will still be working when the others are finishing.

Since input sequences are buffered in memory, this also causes each thread to reach

its peak memory footprint more quickly, allowing overly memory-intensive jobs to

fail immediately rather than after a long delay.

Sketching sequencing data

While Dashing supports both FASTA and FASTQ inputs, input data from sequenc-

ing experiments require special consideration due to the presence of sequencing er-

rors. Following the strategy of Mash [1], Dashing uses an auxiliary data structure

at sketching time to attempt o filter out k-mers that occur very infrequently, and

which are therefore likely to contain errors. Dashing does this in a single pass. Each

k-mer in a sequencing experiment is added to a Count-min Sketch [35], and only if

the estimated count for that k-mer is sufficiently high is it added to the HLL. The

advantage of a Count-Min sketch is accurate counting estimates in sublinear space.

Hash function

We compared clhash, Murmur3’s finalizer, and the Wang hash across a set of syn-

thetic Jaccard index estimates, and found that Wang’s had the lowest error (8.20e-3)

and bias (-2.14e-4), compared to 8.27e-3 and 2.30e-4 for Murmur3 and 8.21e-3 and

-2.66e-4 for clhash. In addition to providing the best results, the Wang hash was also

much faster than clhash, which is meant for string inputs rather than specialized

for 64-bit integers.
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Data and software availability
• Dashing source code is available under the open source GPLv3 license at

https://github.com/dnbaker/dashing.

• The particular version of Dashing evaluated here is tagged at

https://github.com/dnbaker/dashing/releases/tag/v0.1.1.

• Scripts and code used to perform the experiments described in this study are available under the open

source GPLv3 license at https://github.com/langmead-lab/dashing-experiments.

• The particular version of the scripts and code used to perform the experiments described in this study is

tagged at: https://github.com/langmead-lab/dashing-experiments/releases/tag/v0.1.

• Accessions of genomes compared in the “Accuracy for complete genomes” subsection of the “Results”

section are listed at: https:

//github.com/langmead-lab/dashing-experiments/blob/master/accuracy/genomes_for_exp.txt.

• Accessions of genomes compared in the “Computational efficiency” subsection of the “Results” section are

listed at:

https://github.com/langmead-lab/dashing-experiments/blob/master/timing/filenames.txt.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/501726doi: bioRxiv preprint 

https://github.com/dnbaker/dashing
https://github.com/dnbaker/dashing/releases/tag/v0.1.1
https://github.com/langmead-lab/dashing-experiments
https://github.com/langmead-lab/dashing-experiments/releases/tag/v0.1
https://github.com/langmead-lab/dashing-experiments/blob/master/accuracy/genomes_for_exp.txt 
https://github.com/langmead-lab/dashing-experiments/blob/master/accuracy/genomes_for_exp.txt 
https://github.com/langmead-lab/dashing-experiments/blob/master/timing/filenames.txt
https://doi.org/10.1101/501726
http://creativecommons.org/licenses/by/4.0/


Baker and Langmead Page 17 of 18

References
1. Ondov, B.D., Treangen, T.J., Melsted, P., Mallonee, A.B., Bergman, N.H., Koren, S., Phillippy, A.M.: Mash:

fast genome and metagenome distance estimation using MinHash. Genome Biol. 17(1), 132 (2016)

2. Schaeffer, L., Pimentel, H., Bray, N., Melsted, P., Pachter, L.: Pseudoalignment for metagenomic read

assignment. Bioinformatics 33(14), 2082–2088 (2017)

3. Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., Phillippy, A.M.: Canu: scalable and accurate

long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27(5), 722–736 (2017)

4. Berlin, K., Koren, S., Chin, C.S., Drake, J.P., Landolin, J.M., Phillippy, A.M.: Assembling large genomes with

single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 33(6), 623–630 (2015)

5. Jain, C., Koren, S., Dilthey, A., Phillippy, A.M., Aluru, S.: A fast adaptive algorithm for computing

whole-genome homology maps. Bioinformatics 34(17), 748–756 (2018)

6. Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., Aluru, S.: High throughput ANI analysis of

90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9(1), 5114 (2018)

7. Broder, A.Z.: On the resemblance and containment of documents. In: Compression and Complexity of

Sequences 1997. Proceedings, pp. 21–29 (1997). IEEE

8. Wood, D.E., Salzberg, S.L.: Kraken: ultrafast metagenomic sequence classification using exact alignments.

Genome Biol. 15(3), 46 (2014)

9. Li, H.: Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics

32(14), 2103–2110 (2016)

10. Buhler, J.: Efficient large-scale sequence comparison by locality-sensitive hashing. Bioinformatics 17(5),

419–428 (2001)

11. Luo, Y., Yu, Y.W., Zeng, J., Berger, B., Peng, J.: Metagenomic binning through low-density hashing.

Bioinformatics (2018)

12. Zhao, X.: Bindash, software for fast genome distance estimation on a typical personal laptop. Bioinformatics,

651 (2018)

13. Yu, Y.W., Weber, G.: Hyperminhash: Jaccard index sketching in loglog space. CoRR abs/1710.08436 (2017).

1710.08436

14. Ertl, O.: Superminhash - A new minwise hashing algorithm for jaccard similarity estimation. CoRR

abs/1706.05698 (2017). 1706.05698

15. Koslicki, D., Zabeti, H.: Improving min hash via the containment index with applications to metagenomic

analysis (2017). doi:10.1101/184150
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Additional Files
Full results for sketch Accuracy

Experimental comparison of MinHash, Bloom, Bloom+, and HyperLogLog for Jaccard-coefficient estimation on

synthetic data in tabular format.

Full results for accuracy for complete genomes

Jaccard coefficient estimation accuracy across a range of true Jaccard values for BinDash, Mash and 3

HyperLogLog estimation algorithms in tabular format. Experiments were repeated for all combinations of

k ∈ {16, 21, 31} and log2 sketch size ∈ {10, 11, 12, 13, 14, 15}.

Full results for computational efficiency

Space and time efficiency benchmark for all pairwise comparisons between 87,113 genomes for k ∈ {16, 21, 31}
and log2 sketch size ∈ {10, 14, 16} between BinDash, Mash, and 3 HyperLogLog estimation algorithms in tabular

format.
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