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Abstract  
The elucidation of neoantigens is a critical step in predicting response to checkpoint 
blockade therapy and design of personalized cancer vaccines. We have developed an 
in silico sequence analysis method - pVACtools, to facilitate comprehensive neoantigen 
characterization. This modular workflow consists of tools for neoantigen prediction from 
somatic alterations (pVACseq and pVACfuse), prioritization and selection using a 
graphical web-based interface (pVACviz), and determining the optimal order of 
neoantigen candidates in a DNA vector-based vaccine(pVACvector). 
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Increasing interest in identifying the numbers and types of predicted neoantigens 
encoded by a cancer genome has placed an emphasis on the facility and precision of 
related computational prediction tools1.  Several such efforts have been published2,3,4. 
Typically, these tools start with a list of somatic variants (in VCF or other formats), with 
annotated protein changes, and predict the strongest MHC binding peptides (8-11-mer 
for class I MHC and 13-25-mer for class II) using one or more prediction algorithms5,6,7. 
The predicted neoantigens are then filtered or ranked based on defined metrics 
including sequencing read coverage, variant allele fraction, gene expression, and 
differential binding compared to the wild type peptide (agretopicity index score8). 
However, of the small number of such prediction tools (Supp Table 1), most lack some 
key functionality, including predicting neoantigens from gene fusions, aiding optimized 
vaccine design for DNA cassette vaccines, and including nearby germline or somatic 
alterations into the candidate neoantigens9. An intuitive graphical user interface to 
visualize and efficiently select the most promising candidates is also critical to facilitate 
involvement of clinicians and other researchers in the process of neoantigen evaluation.  
 
To address these limitations and to add facility for all end-users, we created a 
comprehensive and extensible framework for computational identification, selection, 
prioritization and visualization of neoantigens - ‘pVACtools’, that facilitates each of the 
major components of neoantigen identification. This computational framework can be 
used to identify neoantigens from a variety of somatic alterations, including gene fusions 
and insertion/deletion frameshift mutations, both of which potentially create very strong 
immunogenic neoantigens10. Further, pVACtools can facilitate both MHC class I and II 
predictions, and provides an interactive display of predicted neoantigens for review by 
the end user. 
 
The pVACtools workflow (Fig 1) is divided into flexible components that can be run 
independently. The main tools in the workflow are: (a) pVACseq: a significantly 
enhanced and reengineered version of our previous pipeline11 for identifying and 
prioritizing neoantigens from a variety of tumor-specific alterations (b) pVACfuse: a tool 
for detecting neoantigens resulting from gene fusions (c) pVACviz: a graphical user 
interface web client for process management, visualization and selection of results from 
pVACseq (d) pVACvector: a tool for optimizing design of neoantigens and nucleotide 
spacers in a DNA vector that prevents high-affinity junctional epitopes, and (e) 
pVACapi: an OpenAPI HTTP REST interface to the pVACtools suite. 
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Figure 1: Overview of pVACtools workflow: The pVACtools workflow is highly modularized and is 
divided into flexible components that can be run independently. The main tools under the workflow 
include pVACseq11 for identifying and prioritizing neoantigens from a variety of somatic alterations (red 
inset box), pVACfuse (green) for detecting neoantigens resulting from gene fusions, pVACviz (blue) for 
process management, visualization and selection of results and pVACvector (orange) for optimizing 
design of neoantigens and nucleotide spacers in a DNA vector. All of these tools interact via the pVACapi 
(purple), an OpenAPI HTTP REST interface to the pVACtools suite. 
 
pVACseq11 has been completely implemented in Python3 and extended to include 
many new features since our initial report of its use. pVACseq no longer requires a 
custom input format for variants, and now uses a standard VCF file annotated with 
VEP12. In our own neoantigen identification pipeline, this VCF is the result of merging 
results from multiple somatic variant callers and RNA expression tools (Methods). 
Information that is not natively available in the VCF output from somatic variant callers 
(such as coverage and variant allele fractions for RNA and DNA, as well as gene and 
transcript expression values) now can be added to the VCF using vcf-annotation-tools 
(vatools.org), a suite of accessory scripts that we created to accompany pVACtools. 
pVACtools queries these features directly from the VCF, enabling prioritization and 
filtering of neoantigen candidates based on sequence coverage and expression 
information. In addition, pVACtools now makes use of phasing information provided in 
the VCF, taking into account all variants proximal to somatic variants of interest that 
alter neoantigen sequences9. Since proximal variants can change the neoantigenic 
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peptide sequence and also affect neoantigen binding predictions, this is an important 
confounding factor to ensure that the selected neoantigens correctly represent the 
individual’s genome. We have also expanded the supported mutation types for 
neoantigen predictions to include in-frame indels and frameshift mutations. These 
capabilities expand the potential number of targetable neoantigens several-fold in many 
tumors (Supplementary Data).  
 
To prioritize neoantigens, pVACseq now offers support for as many as eight different 
MHC Class I epitope prediction algorithms and four MHC Class II prediction algorithms. 
The tool does this by leveraging the Immune Epitope Database (IEDB)13 and their suite 
of six different MHC class I prediction algorithms, as well as three MHC Class II 
algorithms (Methods). pVACseq supports local installation of these tools for power-
users, or provides straightforward access by default via the IEDB RESTful web 
interface. In addition, pVACseq now contains an extensible framework for supporting 
new neoantigen prediction algorithms that has been used to add support for two new 
non-IEDB algorithms - MHCflurry14 and MHCnuggets15. By creating a framework that 
integrates many tools we allow for (a) a broader ensemble approach than IEDB, and (b) 
a system that other users can leverage to develop improved ensemble ranking, or to 
integrate proprietary or not-yet-public prediction software. Importantly, this framework 
enables non-informatics-savvy users to predict neoantigens from sequence variant data 
sets. 
 
Once neoantigens have been predicted, the pVACseq ranking score is used to prioritize 
them. This score takes into account gene expression, sequence read coverage, binding 
affinity predictions, and agretopicity (Methods). In addition to applying strict binding 
affinity cutoffs, the pipeline also offers support for MHC allele-specific cutoffs16. Taking a 
step further than most commonly used approaches, we also offer cleavage position 
predictions via optional processing through NetChop17 as well as stability predictions 
made by NetMHCstab18.  
 
Previous studies have shown that the novel protein sequences produced by gene 
fusions frequently produce neoantigen candidates19. pVACfuse provides support for 
predicting neoantigens from such gene fusions. Fusion variants may be imported in 
annotated BEDPE format from any fusion caller (we used INTEGRATE-Neo19). These 
variants are then assessed for presence of fusion neo-epitopes using predictions 
against any of the pVACseq-supported binding prediction algorithms. 
 
Implementing cancer vaccines in a clinical setting requires multidisciplinary teams, 
many of whom may not be informatics savvy. To support this growing community of 
users, we developed pVACviz, which is a browser-based user interface that assists in 
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launching, managing, reviewing, and visualizing the results of pVACtools processes. 
Instead of interacting with the tools via terminal/shell commands, the pVACviz client 
provides a modern web-based user experience. Users complete a pVACseq process 
setup form that provides helpful documentation and suggests valid values for inputs. 
The client also provides views showing ongoing processes, their logs, and interim data 
files to aid in managing and troubleshooting. After a process has completed, users may 
examine the results as a filtered data table, or as a scatterplot visualization - allowing 
them to curate results and save them as a CSV file for further analysis. 
 

 
Figure 2: pVACviz GUI client: pVACtools provides a browser-based graphic user interface, called 
pVACviz, that provides an intuitive means to launch pipeline processes, monitor their execution, and 
analyze, export, or archive their results. To launch a process, users navigate to the Start Page (A), and 
complete a form containing all of the relevant inputs and settings for a pVACseq process. Each form field 
includes help text, and provides typeahead completion where applicable. For instance, the Alleles field 
provides a typeahead dropdown menu that match available alleles. Once a process is launched, a user 
may monitor its progress on the Manage Page (B), which lists all running, stopped, and completed 
processes. The Details Page (C) shows a process’ current log, attributes, and any results files as well as 
providing buttons for stopping, restarting, exporting and archiving the process. The results of pipeline 
processes may be analyzed on the Visualize Page (D), which displays a customizable scatterplot of a 
file's rows. The X and Y axis may be set to any column in the result set, and filters may be applied to 
values in any column. Additionally, points may be selected on the scatter plot or data grid (not visible in 
this figure) for further analysis or export as CSV files. 
  
Furthermore, to support informatics groups that want to incorporate or build upon the 
pVACtools features, we developed pVACapi, which provides a HTTP REST interface to 
the pVACtools suite. Currently, it provides the API that pVACviz uses to interact with the 
pVACtools suite. Advanced users could develop their own user interfaces, or use the 
API to control multiple pVACtools installations remotely over an HTTP network. 
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Once a list of neoantigen candidates has been prioritized and selected, the pVACvector 
utility can be used to aid in the construction of DNA-based cancer vaccines. The input is 
either the output file from pVACseq or a fasta file containing peptide sequences, and 
pVACvector returns a neoantigen sequence ordering that minimizes the effects of 
junctional epitopes (which may create novel antigens) between the sequences. This is 
accomplished by using the core pVACseq services to predict the binding scores for 
each junctional peptide and by testing junctions with spacer20 amino acid sequences 
that may help to reduce reactivity. The final vaccine ordering is achieved through a 
simulated annealing procedure that returns a near-optimal solution, when one exists. 
 
pVACtools has been used to predict and prioritize neoepitopes for several neoantigen 
studies21–23  and cancer vaccine clinical trials (e.g. NCT02348320 and NCT03122106). 
We also have a large external user community (the original ‘pvacseq’ package has been 
downloaded over 37,000 times from PyPi, and the ‘pvactools’ package has been 
downloaded over 9,000 times) that has been actively evaluating and using these 
packages for their neoantigen analysis, and has also helped in the subsequent 
refinement of pVACtools through feedback. 
 
To demonstrate the utility and performance of the pVACtools package, we downloaded 
exome sequencing and RNA-Seq data from The Cancer Genome Atlas (TCGA)24 from 
100 cases each of melanoma, hepatocellular carcinoma and lung squamous cell 
carcinoma, and used patient-specific MHC Class I alleles (Supp Fig 1) to determine 
neoantigen candidates for each cancer. By extending support for additional variant 
types as well as prediction algorithms, we produced 42% more neoantigens versus the 
previous version of pVACseq11. (Supplementary Data)  
 
As reported from our demonstration analysis, a typical tumor has too many possible 
neoantigen candidates to be practical for a vaccine. There is therefore a critical need for 
a tool that takes in the input from a standard sequencing analysis pipeline and reports a 
filtered and prioritized list of neoantigens. pVACtools enables a streamlined, accurate 
and user-friendly analysis of neoantigenic peptides from NGS cancer datasets. This 
suite offers a complete and easily configurable end-to-end analysis, starting from 
somatic variants and gene fusions (pVACseq and pVACfuse respectively), through 
filtering, prioritization, and visualization of candidates (pVACviz), and determining the 
best arrangement of candidates for a DNA vector vaccine (pVACvector). Furthermore, 
by supporting additional classes of variants as well as gene fusions, we offer an 
increase in the number of predicted epitopes which is even more important in the case 
of low mutational burden tumors. Finally, by extending support for multiple binding 
prediction algorithms, we allow for a consensus approach. The need for this integrated 
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approach is made abundantly clear by the high disagreement between these algorithms 
observed in our demonstration analyses (Supplementary Data). 
 
The results from pVACtools analyses are already being used in cancer immunology 
studies, including studying the relationship between tumor mutation burden and 
neoantigen load to predict response in checkpoint blockade therapy trials and the  
design of cancer vaccines in ongoing clinical trials. We anticipate that pVACtools will 
make such analyses more robust, reproducible, and facile as these efforts continue.  
 
Additional information 
 
Online Methods:  
TCGA data pre-processing 
Aligned tumor and normal BAMs from BWA25 (version 0.7.12-r1039) as well as somatic 
variant calls from VarScan226,27 (in VCF format) were downloaded from the Genomic 
Data Commons (GDC, https://gdc.cancer.gov/ ). Since the GDC does not provide 
germline variant calls for TCGA data, we used GATK’s28 HaplotypeCaller to perform 
germline variant calling using default parameters. These calls were refined using 
VariantRecalibrator in accordance with GATK Best Practices29. Somatic and germline 
missense variant calls from each sample were then combined using GATK’s 
CombineVariants, and the variants were subsequently phased using GATK’s 
ReadBackedPhasing algorithm. 
 
Phased Somatic VCF files were annotated with RNA depth and expression information 
using VCF annotation tools (vatools.org). We restricted our analysis to only consider 
‘PASS’ variants in these VCFs as these are higher confidence than the raw set, and the 
variants were annotated using the “--pick” option in VEP. 
 
Existing in silico HLA typing information was obtained from The Cancer Immunome 
Atlas (TCIA) database30. 
 
Neoantigen prediction 
The VEP-annotated VCF files were then run through pVACseq using all eight Class I 
prediction algorithms and for epitope lengths 8-11. The current MHC Class I algorithms 
supported by pVACseq are NetMHCpan31, NetMHC6,31, NetMHCcons32, PickPocket33, 
SMM34, SMMPMBEC35, MHCflurry14 and MHCnuggets15. The four MHC Class II 
algorithms that are supported are NetMHCIIpan, SMMalign, NNalign, and MHCnuggets. 
For the demonstration analysis, we limited our prediction to only MHC Class I alleles 
due to availability of HLA typing information from TCIA, though predictions of Class II 
can be just as easily generated using pVACtools. 
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Ranking of Neoantigens 
To help prioritize neoantigens, a ranking score is assigned where each of the following 
four criteria are assigned a rank-ordered value (where the worst = 1): 
   
B = binding affinity 
F = Fold Change between MT and WT alleles 
M = mutant allele expression, calculated as (Gene expression * Mutant allele RNA 
Variant allele fraction) 
D = DNA Variant allele fraction 
 
A final ranking is based on a score obtained from combining these values:  
Priority Score = B+F+(M*2)+(D/2). This score is not meant to be the final word on 
peptide suitability for vaccines, but was designed to be a useful metric. 
 
Pipeline for creation of pVACtools input files 
pVACtools is designed to support a standard VCF variant file format and thus, should 
be compatible with many existing variant calling pipelines. However, as a reference, we 
provide the following description of our current somatic and expression analysis pipeline 
(manuscript in preparation) which has been implemented using docker, CWL36, and 
Cromwell37. The pipeline consists of workflows for alignment of exome/DNA- and RNA-
Seq data, somatic and germline variant detection, RNA-Seq expression estimation as 
well as optional HLA typing. 
 
This pipeline starts with raw patient tumor exome or cDNA capture38 and RNA-seq data 
and produces annotated VCFs for neoantigen identification and prioritization with 
pVACtools. Our pipeline consists of three main components: DNA alignment, variant 
detection and annotation, as well as RNA-seq data processing. More specifically, we 
use BWA-MEM25 for aligning the patient’s tumor and normal exome data. The output 
BAM then undergoes merging (Samtools39 Merge), query name sort (Picard SortSam), 
duplicate marking (Picard MarkDuplicates), position sorting followed by base quality 
recalibration (GATK BaseRecalibrator). GATK’s HaplotypeCaller28 is used for germline 
variant calling and the output variants are annotated using VEP12 and filtered for coding 
sequence variants.  
 
For somatic variant calling, our pipeline combines the output of four variant detection 
algorithms- Mutect240, Strelka41, Varscan26,27 and Pindel42. The combined variants are 
normalized using GATK’s LeftAlignAndTrimVariants where the indels are left-aligned 
and common bases are trimmed. Vt43 is used to split multi-allelic variants. Several filters 
such as gnomAD allele frequency, percentage of mapq0 reads, as well as pass-only 
variants are applied prior to annotation of the VCF using VEP. We use a combination of 
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custom and standard plugins for VEP annotation (parameters: --format VCF --plugin 
Downstream --plugin Wildtype --symbol --term SO --transcript_version --tsl --
coding_only --flag_pick --hgvs).  Variant coverage is assessed using bam-readcount 
(https://github.com/genome/bam-readcount) for both the tumor and normal DNA exome 
data and is also annotated into the VCF output using VCF-annotation-tools(vatools.org).  
 
Our pipeline also generates a phased-VCF file by combining both the somatic and 
germline variants and running the sorted combined variants through GATK 
ReadBackedPhasing.  
 
For RNA-seq data, the pipeline first trims the adapter sequence using flexbar44 and 
aligns the patient’s tumor RNA-seq data using HISAT245. Two different methods, 
Stringtie46 and Kallisto47, are employed for evaluating both the transcript and gene 
expression values. Additionally, coverage support for variants in RNA-seq data can also 
be assessed through bam-readcount. This information is added to the VCF using VCF-
annotation-tools and serves as an input for neoantigen prioritization using pVACtools. 
 
Optionally, our pipeline can also run HLA-typing in silico using OptiType48 when clinical 
HLA typing is not available.  
 
Implementation 
pVACtools is written in Python3. The individual tools are implemented as separate 
command line entry points that can be run using the `pvacseq`, `pvacfuse`, 
`pvacvector`, `pvacapi`, and `pvacviz` commands to run the respective tool. 
pVACapi is required to run pVACviz so both the `pvacapi` and `pvacviz` command need 
to be executed in separate terminals. For pVACseq, the PyVCF package is used for 
parsing the input VCF files. The mhcflurry and mhcnuggets packages are used to 
run the MHCflurry and MHCnuggets prediction algorithms, respectively. The pandas 
package is used for data management while filtering and ranking the neoantigen 
candidates in pVACseq and pVACfuse. The simanneal package is used for the 
simulated annealing procedure when running pVACvector. pVACapi is implemented 
using Flask and Bokeh. The pVACviz client is written in TypeScript using the Angular 
web application framework, the Clarity UI component library, and the ngrx library for 
managing application state. The test suite is implemented using the Python unittest 
framework and GitHub integration tests are run using travis-ci (travis-ci.org). Code 
changes are integrated using GitHub pull requests 
(https://github.com/griffithlab/pVACtools/pulls). Feature additions, user requests, and 
bug reports are managed using the GitHub issue tracking 
(https://github.com/griffithlab/pVACtools/issues). User documentation is written using 
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the reStructuredText markup language and the Sphinx documentation framework 
(sphinx-doc.org). Documentation is hosted on Read The Docs (readthedocs.org).  
 
Data availability 
Data from 100 cases each of melanoma, hepatocellular carcinoma and lung squamous 
cell carcinoma were obtained from TCGA and downloaded via the Genomics Data 
Commons (GDC). This data can be accessed under dbGaP study accession 
phs000178. Data for demonstration and analysis of fusion neoantigens was 
downloaded from the Github repo for Integrate 
(https://github.com/ChrisMaherLab/INTEGRATE-Vis/tree/master/example). 
 
Software availability: 
The pVACtools codebase is hosted publicly on GitHub at 
https://github.com/griffithlab/pVACtools and https://github.com/griffithlab/BGA-interface-
projects (pVACviz). User documentation is available at pvactools.org. This project is 
licensed under the Non-Profit Open Software License version 3.0 (NPOSL-3.0, 
https://opensource.org/licenses/NPOSL-3.0). pVACtools has been packaged and 
uploaded to PyPi under the “pvactools” package name and can be installed on Linux 
systems by running the `pip install pvactools[API]` command. Installation requires a 
Python 3.5 environment which can be emulated by using Conda. Versioned Docker 
images are available on DockerHub (https://hub.docker.com/r/griffithlab/pvactools/). 
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