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Abstract  
Identification of neoantigens is a critical step in predicting response to checkpoint 
blockade therapy and design of personalized cancer vaccines. We have developed an 
in silico sequence analysis toolkit - pVACtools, to facilitate comprehensive neoantigen 
characterization. pVACtools supports a modular workflow consisting of tools for 
neoantigen prediction from somatic alterations (pVACseq and pVACfuse), prioritization 
and selection using a graphical web-based interface (pVACviz) and design of DNA 
vector-based vaccines (pVACvector) and synthetic long peptide vaccines. pVACtools is 
available at pvactools.org. 
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The increasing use of cancer immunotherapies has spurred interest in identifying and 
characterizing predicted neoantigens encoded by a tumor genome. The facility and 
precision of computational tools for predicting neoantigens have become increasingly 
important(1), and several such resources have been published(2–4). Typically, these 
tools start with a list of somatic variants (in VCF or other formats) with annotated protein 
changes, and predict the strongest MHC binding peptides (8-11-mer for class I MHC 
and 13-25-mer for class II) using one or more prediction algorithms(5–7). The predicted 
neoantigens are then filtered and ranked based on defined metrics including 
sequencing read coverage, variant allele fraction (VAF), gene expression, and 
differential binding compared to the wild type peptide (agretopicity index score(8)). 
However, of the small number of such prediction tools (Supp Table 1), most lack key 
functionality, including predicting neoantigens from gene fusions, aiding optimized 
vaccine design for DNA cassette vaccines, and incorporating nearby germline or 
somatic alterations into the candidate neoantigens(9). Furthermore, none of the existing 
tools offer an intuitive graphical user interface for visualizing and efficiently selecting the 
most promising candidates; a key feature for facilitating involvement of clinicians and 
other researchers in the process of neoantigen evaluation.  
 
To address these limitations, we created a comprehensive and extensible toolkit for 
computational identification, selection, prioritization and visualization of neoantigens - 
‘pVACtools’, that facilitates each of the major components of neoantigen identification. 
This computational framework can be used to identify neoantigens from a variety of 
somatic alterations, including gene fusions and insertion/deletion frameshift mutations, 
both of which potentially create strong immunogenic neoantigens(10). pVACtools can 
facilitate both MHC class I and II predictions, and provides an interactive display of 
predicted neoantigens for review by the end user. 
 
The pVACtools workflow (Figure 1) is divided into modular components that can be run 
independently. The main tools in the workflow are: (a) pVACseq: a significantly 
enhanced and reengineered version of our previous pipeline(11) for identifying and 
prioritizing neoantigens from a variety of tumor-specific alterations (b) pVACfuse: a tool 
for detecting neoantigens resulting from gene fusions (c) pVACviz: a graphical user 
interface web client for process management, visualization and selection of results from 
pVACseq (d) pVACvector: a tool for optimizing design of neoantigens and nucleotide 
spacers in a DNA vector that prevents high-affinity junctional neoantigens, and (e) 
pVACapi: an OpenAPI HTTP REST interface to the pVACtools suite. 
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Figure 1: Overview of pVACtools workflow: The pVACtools workflow is highly modularized and is 
divided into flexible components that can be run independently. The main tools under the workflow 
include pVACseq for identifying and prioritizing neoantigens from a variety of somatic alterations (red 
inset box), pVACfuse (green) for detecting neoantigens resulting from gene fusions, pVACviz (blue) for 
process management, visualization and selection of results and pVACvector (orange) for optimizing 
design of neoantigens and nucleotide spacers in a DNA vector. All of these tools interact via the pVACapi 
(purple), an OpenAPI HTTP REST interface to the pVACtools suite. 
 
pVACseq(11) has been re-implemented in Python3 and extended to include many new 
features since our initial report of its use. pVACseq no longer requires a custom input 
format for variants, and now uses a standard VCF file annotated with VEP(12). In our 
own neoantigen identification pipeline, this VCF is the result of merging results from 
multiple somatic variant callers and RNA expression tools (Supplementary 
Text/Example pipeline for creation of pVACtools input files). Information that is not 
natively available in the VCF output from somatic variant callers (such as coverage and 
variant allele fractions for RNA and DNA, as well as gene and transcript expression 
values) can be added to the VCF using VAtools (http://vatools.org), a suite of accessory 
routines that we created to accompany pVACtools. pVACtools queries these features 
directly from the VCF, enabling prioritization and filtering of neoantigen candidates 
based on sequence coverage and expression information. In addition, pVACseq now 
makes use of phasing information taking into account variants proximal to somatic 
variants of interest. Since proximal variants can change the peptide sequence and 
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affect neoantigen binding predictions, this is important for ensuring that the selected 
neoantigens correctly represent the individual’s genome (9). We have also expanded 
the supported mutation types for neoantigen predictions to include in-frame indels and 
frameshift mutations. These capabilities expand the potential number of targetable 
neoantigens several-fold in many tumors (10,13)(Supplementary Data).  
 
To prioritize neoantigens, pVACseq now offers support for eight different MHC Class I 
antigen prediction algorithms and four MHC Class II prediction algorithms. The tool 
does this in part by leveraging the Immune Epitope Database (IEDB)(14) and their suite 
of six different MHC class I prediction algorithms, as well as three MHC Class II 
algorithms (Methods/Neoantigen prediction). pVACseq supports local installation of 
these tools for high-throughput users, access through a docker container 
(https://hub.docker.com/r/griffithlab/pvactools), or provides ready-to-go access via the 
IEDB RESTful web interface. In addition, pVACseq now contains an extensible 
framework for supporting new neoantigen prediction algorithms that has been used to 
add support for two new non-IEDB algorithms - MHCflurry(15) and MHCnuggets(16). By 
creating a framework that integrates many tools we allow for (a) a broader ensemble 
approach than IEDB, and (b) a system that other users can leverage to develop 
improved ensemble ranking, or to integrate proprietary or not-yet-public prediction 
software. Importantly, this framework enables non-informatics-expert users to predict 
neoantigens from sequence variant data sets. 
 
Once neoantigens have been predicted, the pVACseq ranking score is used to prioritize 
them. This score takes into account gene expression, sequence read coverage, binding 
affinity predictions, and agretopicity (Methods/Ranking of Neoantigens). In addition to 
applying strict binding affinity cutoffs, the pipeline also offers support for MHC allele-
specific cutoffs(17). We also offer cleavage position predictions via optional processing 
through NetChop(18) as well as stability predictions made by NetMHCstabPan(19).  
 
Previous studies have shown that the novel protein sequences produced by gene 
fusions frequently produce neoantigen candidates(20). pVACfuse provides support for 
predicting neoantigens from such gene fusions. Fusion variants may be imported in 
annotated BEDPE format from any fusion caller. We recommend using INTEGRATE-
Neo(20) for annotation of fusion calls in BEDPE format. These variants are then 
assessed for presence of fusion neoantigens using predictions from any of the 
pVACseq-supported binding prediction algorithms. 
 
Implementing cancer vaccines in a clinical setting requires multidisciplinary teams, 
many of whom may not be informatics experts. To support this growing community of 
users, we developed pVACviz, which is a browser-based user interface that assists in 
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launching, managing, reviewing, and visualizing the results of pVACtools processes. 
Instead of interacting with the tools via terminal/shell commands, the pVACviz client 
provides a modern web-based user experience. Users complete a pVACseq (Figure 2) 
process setup form that provides helpful documentation and suggests valid values for 
inputs. The client also provides views showing ongoing processes, their logs, and 
interim data files to aid in managing and troubleshooting. After a process has 
completed, users may examine the results as a filtered data table, or as a scatterplot 
visualization - allowing them to curate results and save them as a CSV file for further 
analysis. Extensive documentation of the visualization interface can be found in the 
online documentation (https://pvactools.readthedocs.io/en/latest/pvacviz.html). 
 

 
Figure 2: pVACviz GUI client: pVACtools provides a browser-based graphical user interface, called 
pVACviz, that provides an intuitive means to launch pipeline processes, monitor their execution, and 
analyze, export, or archive their results. To launch a process, users navigate to the Start Page (A), and 
complete a form containing all of the relevant inputs and settings for a pVACseq process. Each form field 
includes help text, and provides typeahead completion where applicable. For instance, the Alleles field 
provides a typeahead dropdown menu that matches available alleles. Once a process is launched, a user 
may monitor its progress on the Manage Page (B), which lists all running, stopped, and completed 
processes. The Details Page (C) shows a process’ current log, attributes, and any results files as well as 
providing controls for stopping, restarting, exporting and archiving the process. The results of pipeline 
processes may be analyzed on the Visualize Page (D), which displays a customizable scatterplot of a 
file's rows. The X and Y axis may be set to any column in the result set, and filters may be applied to 
values in any column. Additionally, points may be selected on the scatter plot or data grid (not visible in 
this figure) for further analysis or export as CSV files. 
  
Furthermore, to support informatics groups that want to incorporate or build upon the 
pVACtools features, we developed pVACapi, which provides a HTTP REST interface to 
the pVACtools suite. Currently, it provides the API that pVACviz uses to interact with the 
pVACtools suite. Advanced users could develop their own user interfaces, or use the 
API to control multiple pVACtools installations remotely over an HTTP network. 
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Once a list of neoantigen candidates has been prioritized and selected, the pVACvector 
utility can be used to aid in the construction of DNA-based cancer vaccines. The input is 
either the output file from pVACseq or a fasta file containing peptide sequences. 
pVACvector returns a neoantigen sequence ordering that minimizes the effects of 
junctional peptides (which may create novel antigens) between the sequences (Figure 
3). This is accomplished by using the core pVACseq module to predict the binding 
scores for each junctional peptide and by modifying junctions with spacer(21,22) amino 
acid sequences, or by trimming the ends of the peptides in order to reduce reactivity. 
The final vaccine ordering is achieved through a simulated annealing procedure that 
returns a near-optimal solution, when one exists (Methods/Implementation). 
 

 
Figure 3: An example pVACvector output showing the optimum arrangement of candidate 
neoantigens for a DNA-vector based vaccine design. The figure depicts a circularized DNA insert 
carrying 10 encoded neoantigenic peptide sequences to be synthesized and encoded/cloned into a DNA 
plasmid.  DNA sequences encoding each peptide are ordered (with use of spacer sequences where 
needed) to ensure there are no strong-binding junctional epitopes. Each neoantigenic peptide candidate 
is shown in Blue, Green, Red, Orange, Purple, and Brown. Spacer sequences, where added to minimize 
junctional epitope affinity, are depicted in Black, along with the binding affinity value of the junctional 
epitope. Labels represent the Gene Name and Amino Acid Change for each candidate. 
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As many prediction algorithms are CPU-intensive, pVACseq, pVACfuse, and 
pVACvector also support using multiple cores to improve runtime. Using this feature, 
calls to IEDB and other prediction algorithms are made in parallel over a user-defined 
number of processes. (Methods/Implementation). 
 
pVACtools has been used to predict and prioritize neoantigens for several 
immunotherapy studies(23–25) and cancer vaccine clinical trials (e.g. NCT02348320, 
NCT03121677, NCT03122106, NCT03092453 and NCT03532217). We also have a 
large external user community that has been actively evaluating and using these 
packages for their neoantigen analysis, and has also helped in the subsequent 
refinement of pVACtools through extensive feedback. The original ‘pvacseq’ package 
has been downloaded over 41,000 times from PyPi, and the ‘pvactools’ package has 
been downloaded over 18,000 times. 
 
To demonstrate the utility and performance of the pVACtools package, we downloaded 
exome sequencing and RNA-Seq data from The Cancer Genome Atlas (TCGA)(26) 
from 100 cases each of melanoma, hepatocellular carcinoma and lung squamous cell 
carcinoma, and used patient-specific MHC Class I alleles (Supp Fig 1) to determine 
neoantigen candidates for each tumor. By extending support for additional variant types 
(Supp Fig 2) as well as prediction algorithms, we produced 42% more predicted 
neoantigens compared to the previous version of pVACseq(11) (Supplementary 
Text/Analysis of TCGA data using pVACtools).  
 
Comparison of epitope prediction software 
Since we offer support for as many as eight different epitope prediction tools, we 
assessed agreement in binding affinity predictions (IC50) between these algorithms 
from a random subset of 100,000 neoantigen peptides from the TCGA analysis (Figure 
4). The highest correlation was observed between the two stabilization matrix method 
(SMM)-based algorithms - SMM and SMMPMBEC. The next best correlation was 
observed between NetMHC and MHCflurry, possibly due to both being allele-specific 
predictors employing neural network based models. Overall the correlation between 
prediction algorithms is low (mean correlation of 0.388 and range of 0.18-0.89 between 
all pairwise comparisons of algorithms). 
 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 29, 2019. ; https://doi.org/10.1101/501817doi: bioRxiv preprint 

https://doi.org/10.1101/501817
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 
Figure 4: Correlation between prediction algorithms: Spearman Correlation between prediction 
values from all 8 class I prediction algorithms generated from a random subsample of 100,000 peptides.  
 
We also evaluated if there were any biases among the algorithms to predict strong (i.e. 
binding affinity < = 500nM) or weak binding epitopes (Figure 5 and Supp Fig 3). We 
found that MHCnuggets predicts the highest number of strong-binding candidates 
alone. Of the total number of strong binding candidates predicted, 64.7% of these 
candidates were predicted by a single algorithm (any one of the eight algorithms), 
35.2% were predicted as strong-binders by two to seven algorithms, and only 1.8% of 
the strong-binding candidates were predicted as strong binders by the combination of all 
eight algorithms.  In fact, as shown in Figure 6, even if one (or more) algorithms predict 
a peptide to be a strong binder, often another algorithm not only doesn't agree but 
disagrees by a large margin, in some cases predicting that same peptide as a very 
weak binder. This remarkable lack of agreement underscores the potential value of an 
ensemble approach that considers multiple algorithms. 
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Figure 5: Intersection of peptide sequences predicted by different algorithms are shown using 
upset plots. The y-axis shows the number of overlapping unique neoantigenic peptides predicted for 
each combination of algorithm depicted on the x-axis. Each collection of connected circles shows the set 
contained in an exclusive intersection (i.e. the identity of each algorithm), while the light gray circles 
represent the algorithm(s) that do not participate in this exclusive intersection. (a) Upset plot for the top 20 
algorithm combinations ranked by the number of peptides predicted to be a good binder (mutant IC50 
score < 500 nM). The combination of all eight algorithms (highlighted orange) ranks the 8th highest; (b) 
Upset plot for algorithm combinations where at least six algorithms agree on predicting a peptide to be a 
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good binder (MT IC50 score < 500 nM). The combination of all eight algorithms (highlighted orange) 
ranks the highest. 
 
 

  
Figure 6: Overall distribution of binding affinity scores (nM) for 126,648 peptides (out of total 
predicted 14,599,993 peptides) where at least one of the algorithms predicts a strong binder. To 
define the set of peptides that are strong binders according to at least one algorithm, HLA allele subtype-
specific thresholds were applied when available, otherwise the default cutoff binding affinity of 500 nM 
was used. The peptides were further filtered using the default coverage based filters. Peptides with 
predicted MT IC50 scores lower than their respective cutoff scores are highlighted in orange. The median 
MT IC50 scores of each algorithm’s prediction are indicated for reference (purple line). 
 
Next we determined if the number of human HLA alleles supported by these eight 
algorithms differed. As shown (Supp Fig 4), MHCnuggets supports the highest number 
of human HLA alleles. 
 
As reported from our demonstration analysis, a typical tumor has too many possible 
neoantigen candidates to be practical for a vaccine. There is therefore a critical need for 
a tool that takes in the input from a tumor sequencing analysis pipeline and reports a 
filtered and prioritized list of neoantigens. pVACtools enables a streamlined, accurate 
and user-friendly analysis of neoantigenic peptides from NGS cancer datasets. This 
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suite offers a complete and easily configurable end-to-end analysis, starting from 
somatic variants and gene fusions (pVACseq and pVACfuse respectively), through 
filtering, prioritization, and visualization of candidates (pVACviz), and determining the 
best arrangement of candidates for a DNA vector vaccine (pVACvector). Furthermore, 
by supporting additional classes of variants as well as gene fusions, we offer an 
increase in the number of predicted neoantigens which may be critical for low 
mutational burden tumors. Finally, by extending support for multiple binding prediction 
algorithms, we allow for a consensus approach. The need for this integrated approach 
is made abundantly clear by the high disagreement between these algorithms observed 
in our demonstration analyses. 
 
The results from pVACtools analyses are already being used in dozens of cancer 
immunology studies, including studying the relationship between tumor mutation burden 
and neoantigen load to predict response in checkpoint blockade therapy trials and the 
design of cancer vaccines in ongoing clinical trials. We anticipate that pVACtools will 
make such analyses more robust, reproducible, and facile as these efforts continue.  
 
Methods 
TCGA data pre-processing 
Aligned (build GRCh38) tumor and normal BAMs from BWA(27) (version 0.7.12-r1039) 
as well as somatic variant calls from VarScan2(28,29)(in VCF format) were downloaded 
from the Genomic Data Commons (GDC, https://gdc.cancer.gov/). Since the GDC does 
not provide germline variant calls for TCGA data, we used GATK’s(30) HaplotypeCaller 
to perform germline variant calling using default parameters. These calls were refined 
using VariantRecalibrator in accordance with GATK Best Practices(31). Somatic and 
germline missense variant calls from each sample were then combined using GATK’s 
CombineVariants, and the variants were subsequently phased using GATK’s 
ReadBackedPhasing algorithm. 
 
Phased Somatic VCF files were annotated with RNA depth and expression information 
using VAtools (http://vatools.org). We restricted our analysis to only consider ‘PASS’ 
variants in these VCFs as these are higher confidence than the raw set, and the 
variants were annotated using the “--pick” option in VEP (Ensembl version 88). 
 
Existing in silico HLA typing information was obtained from The Cancer Immunome 
Atlas (TCIA) database(32). 
 
Neoantigen prediction 
The VEP-annotated VCF files were then analyzed with pVACseq using all eight Class I 
prediction algorithms for neoantigen peptide lengths 8-11. The current MHC Class I 
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algorithms supported by pVACseq are NetMHCpan(33), NetMHC(7,33), 
NetMHCcons(34), PickPocket(35), SMM(36), SMMPMBEC(37), MHCflurry(15) and 
MHCnuggets(16). The four MHC Class II algorithms that are supported are 
NetMHCIIpan, SMMalign, NNalign, and MHCnuggets. For the demonstration analysis, 
we limited our prediction to only MHC Class I alleles due to availability of HLA typing 
information from TCIA, though binding predictions for Class II alleles can also be 
generated using pVACtools. 
 
Ranking of Neoantigens 
To help prioritize neoantigens, a ranking score is assigned to all neoantigens that pass 
initial filters where each of the following four criteria are assigned a rank-ordered value 
(where the worst = 1): 
 
B = binding affinity 
F = Fold Change between MT and WT alleles 
M = mutant allele expression, calculated as (Gene expression * Mutant allele RNA 
Variant allele fraction) 
D = DNA Variant allele fraction 
 
A final ranking is based on a score obtained from combining these values:  
Priority Score = B+F+(M*2)+(D/2). This score is not meant to be a definitive metric of 
peptide suitability for vaccines, but was designed to be a useful first step in the peptide 
selection process.. Moreover, since the score is based on rank-ordered values, each 
neoantigen’s score is relative to the scores of the other neoantigens it is evaluated 
against and can not be used to compare neoantigens between different pVACseq runs. 
 
Implementation 
pVACtools is written in Python3. The individual tools are implemented as separate 
command line entry points that can be run using the `pvacseq`, `pvacfuse`, 
`pvacvector`, `pvacapi`, and `pvacviz` commands to run the respective tool. 
pVACapi is required to run pVACviz so both the `pvacapi` and `pvacviz` commands 
need to be executed in separate terminals.  
 
The test suite is implemented using the Python unittest framework and GitHub 
integration tests are run using travis-ci (travis-ci.org). Code changes are integrated 
using GitHub pull requests (https://github.com/griffithlab/pVACtools/pulls). Feature 
additions, user requests, and bug reports are managed using the GitHub issue tracking 
(https://github.com/griffithlab/pVACtools/issues). User documentation is written using 
the reStructuredText markup language and the Sphinx documentation framework 
(sphinx-doc.org). Documentation is hosted on Read The Docs (readthedocs.org).  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 29, 2019. ; https://doi.org/10.1101/501817doi: bioRxiv preprint 

https://doi.org/10.1101/501817
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 
The pymp-pypi package was used to add support for parallel processing. The number 
of processes is controlled by the --n-threads parameter.  
 
pVACseq 
For pVACseq, the pyvcf package is first used for parsing the input VCF file and 
extracting information about the supported missense, inframe indel, and frameshift 
mutations into TSV format.  
 
This output is then used to determine the wildtype peptide sequence by extracting a 
region around the somatic mutation according to the --peptide-sequence-length 
specified by the user. The mutation’s amino acid change is incorporated in this peptide 
sequence to determine the mutant peptide sequence. For frameshift mutations, the new 
downstream protein sequence calculated by VEP is reported from the mutation position 
onward. The number of downstream amino acids to include is controlled by the --
downstream-sequence-length parameter. If a phased VCF with proximal variants 
is provided, proximal missense mutations that are in phase with the somatic variant of 
interest are incorporated into the mutant and wildtype peptide sequences as 
appropriate. The mutant and wildtype sequences are stored in a FASTA file. The 
FASTA file is then submitted to the individual prediction algorithms for binding affinity 
predictions. For algorithms included in IEDB, we either use the IEDB API or a 
standalone installation, if an installation path is provided by the user (--iedb-
install-directory). The mhcflurry and mhcnuggets packages are used to run 
the MHCflurry(15) and MHCnuggets(16) prediction algorithms, respectively.  
 
The predicted mutant antigens are then parsed into a TSV report format and for each 
mutant antigen the closest wildtype antigen is determined and reported. Predictions for 
each mutant antigen/neoantigen from multiple algorithms are aggregated into the “best” 
(lowest) and median binding scores. The resulting TSV is processed through multiple 
filtering steps (Supplementary Text/Comparison of filtering criteria): (1) Binding 
filter: this filter selects the strongest binding candidates based on the mutant binding 
score and the fold change (WT score / MT score). Depending on the --top-score-
metric parameter setting, this filter is either applied to the median score across all 
chosen prediction algorithms(default) or the best score amongst the chosen prediction 
algorithms. (2) Coverage filter: this filter accepts VAF and coverage information from the 
tumor DNA, tumor RNA, and normal DNA, if these values are available in the input 
VCF. (3) Transcript-support-level (TSL) filter: this filter evaluates each transcript’s 
support level if this information was provided by VEP in the VCF. (4) Top-score filter: the 
filter picks the top mutant peptide for each variant, using the binding affinity as the 
determining factor. This filter is implemented to only select the best candidate from 
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amongst multiple candidates that could result from a single variant due to different 
peptide lengths, variant registers, transcript sequences, and HLA alleles. The result of 
these filterings steps is reported in a filtered report TSV. The remaining neoantigens are 
then annotated with cleavage site and stability predictions by NetChop and 
NetMHCStabPan, respectively, and a relative ranking score (Methods/Ranking of 
Neoantigens) is assigned. The rank ordered final output is reported in a condensed file. 
The pandas package is used for data management while filtering and ranking the 
neoantigen candidates.  
 
pVACvector 
When running pVACvector with a pVACseq output file, the original input VCF must also 
be provided (--input-vcf parameter). The VCF is used to extract a larger peptide 
sequence around the target neoantigen (length determined by the --input-n-mer 
parameter). Alternatively, a list of target peptide sequences can be provided in a fasta 
file. The set of peptide sequences are then combined in all possible pairs, and a 
ordering of peptides for the vector is produced as follows:  
 
To determine the optimal order of peptide-spacer-peptide combinations, binding 
predictions are made for all peptide registers overlapping the junction. A directed graph 
is then constructed, with nodes defined as target peptides, and edges representing 
junctions. The score of each edge is defined as the lowest binding score of its junctional 
peptides (a conservative metric). Edges with scores below the threshold are removed, 
and if heuristics indicate that a valid graph may exist, a simulated annealing procedure 
is used to identify a path through the nodes that maximizes junction scores (preserving 
the weakest overall predicted binding for junctional epitopes). If no valid ordering is 
found, additional “spacer” amino acids are added to each junction, binding affinities are 
re-calculated, and a new graph is constructed and tested, setting edge weights equal to 
that of the best performing (highest binding score) peptide-junction-spacer combination.   
 
The spacers used for pVACvector are set by the user with the --spacers parameter. 
This parameter defaults to 
None,AAY,HHHH,GGS,GPGPG,HHAA,AAL,HH,HHC,HHH,HHHD,HHL,HHHC, where 
None is the placeholder for testing junctions without a spacer sequence. Spacers are 
tested iteratively, starting with the first spacer in the list, and adding subsequent spacers 
if no valid path is found.  
 
If no result is found after testing with the full set of spacers, the ends of “problematic” 
peptides, where all junctions contain at least one well-binding epitope, will be clipped by 
removing one amino acid at a time, then repeating the above binding and graph-building 
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process. This clipping may be repeated up to the number of times specified in the  --
max-clip-length parameter. 
 
pVACapi and pVACviz 
pVACapi is implemented using the Python libraries Flask and Bokeh. The pVACviz 
client is written in TypeScript using the Angular web application framework, the Clarity 
UI component library, and the ngrx library for managing application state. 
 
Data availability 
Data from 100 cases each of melanoma, hepatocellular carcinoma and lung squamous 
cell carcinoma were obtained from TCGA and downloaded via the Genomics Data 
Commons (GDC). This data can be accessed under dbGaP study accession 
phs000178. Data for demonstration and analysis of fusion neoantigens was 
downloaded from the Github repo for Integrate 
(https://github.com/ChrisMaherLab/INTEGRATE-Vis/tree/master/example). 
 
Software availability 
The pVACtools codebase is hosted publicly on GitHub at 
https://github.com/griffithlab/pVACtools and https://github.com/griffithlab/BGA-interface-
projects (pVACviz). User documentation is available at pvactools.org. This project is 
licensed under the Non-Profit Open Software License version 3.0 (NPOSL-3.0, 
https://opensource.org/licenses/NPOSL-3.0). pVACtools has been packaged and 
uploaded to PyPi under the “pvactools” package name and can be installed on Linux 
systems by running the `pip install pvactools` command. Installation requires a Python 
3.5 environment which can be emulated by using Conda. Versioned Docker images are 
available on DockerHub (https://hub.docker.com/r/griffithlab/pvactools/). 
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