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SUMMARY 

In standard models of perceptual decision-making, noisy sensory evidence is considered 

to be the primary source of choice errors and the accumulation of evidence needed to 

overcome this noise gives rise to speed-accuracy tradeoffs. Here, we investigated how the 

history of recent choices and their outcomes interacts with these processes using a 

combination of theory and experiment. We found that the speed and accuracy of 

performance of rats on olfactory decision tasks could be best explained by a Bayesian 

model that combines reinforcement-based learning with accumulation of uncertain 

sensory evidence. This model predicted the specific pattern of trial history effects that 

were found in the data. The results suggest that learning is a critical factor contributing 

to speed-accuracy tradeoffs in decision-making and that task history effects are not 

simply biases but rather the signatures of an optimal learning strategy.  

 

INTRODUCTION 

Evidence accumulation is an important core component of perceptual decision-making that 

allows organisms to mitigate the effects of environmental uncertainty by combining information 

through time (Roitman and Shadlen, 2002; Chittka et al., 2003; Palmer, Huk and Shadlen, 2005; 

Gold and Shadlen, 2007; Ratcliff and McKoon, 2008; Bowman, Kording and Gottfried, 2012; 

Histed, Carvalho and Maunsell, 2012; Brunton, Botvinick and Brody, 2013). Simple theoretical 

models of evidence accumulation based on a random diffusion-to-bound (DDMs) have been 

successful in critical aspects of the performance of psychophysical tasks, capturing the 

dependence of accuracy (psychometric) and reaction time (chronometric) functions. Key 

elements of these models have begun to be tested both by searching for neural activity 

corresponding to model variables (Roitman and Shadlen, 2002; Hanks, Ditterich and Shadlen, 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 19, 2018. ; https://doi.org/10.1101/501858doi: bioRxiv preprint 

https://doi.org/10.1101/501858


3 
 

2006; Beck et al., 2008; Kiani, Hanks and Shadlen, 2008; Erlich et al., 2015; Hanks et al., 2015) 

and by the use of more sophisticated task design and modeling (Brunton, Botvinick and Brody, 

2013; Zariwala et al., 2013). Yet substantial ambiguity remains concerning nearly all critical 

features of this class of models, including the basic mechanisms supporting integration, how a 

bound is determined, and the origins of apparent randomness.   

One widely observed but not well-understood phenomenon is that different kinds of decisions 

appear to benefit from accumulation of evidence over different time scales. For example, 

monkeys performing integration of random dot motion (Roitman and Shadlen, 2002) and rats 

performing a click train discrimination task (Brunton, Botvinick and Brody, 2013) can integrate 

evidence for over one second.  But rats performing an odor mixture categorization task fail to 

benefit from odor sampling beyond 200-300 ms (Uchida and Mainen, 2003; Zariwala et al., 

2013). A possible explanation is that neural integration mechanisms that are specific to a given 

species and sensory modality. However, even animals performing apparently similar odor-

based decision tasks can show very different integration time windows (Abraham et al., 2004; 

Rinberg, Koulakov and Gelperin, 2006). Motivation for speed vs. accuracy, or speed-accuracy 

tradeoff (SAT) (Khan and Sobel, 2004; Palmer, Huk and Shadlen, 2005; Hanks, Ditterich and 

Shadlen, 2006), which could change the height of the decision bound, has been proposed as a 

possible explanation for differences seen across similar studies. However, manipulation of 

motivational parameters failed to increase the effective integration window in odor 

categorization, suggesting that other factors must limit decision accuracy (Zariwala et al., 2013). 

In DDMs, the chief source of uncertainty is stochasticity in incoming sensory evidence, modeled 

as Gaussian white noise around the true mean evidence rate (Ratcliff, 1978; Ratcliff and Smith, 

2004). It is this rapidly fluctuating noise that accounts for the benefits of temporal integration. 

The nature and implications of other sources of variability have also been considered in models 

(Ratcliff, 1978; Ratcliff and Smith, 2004; Ratcliff and McKoon, 2008; Mulder et al., 2012; 
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Brunton, Botvinick and Brody, 2013; Fründ, Wichmann and Macke, 2014), including variability 

in starting position (Mulder et al., 2012), variability in non-accumulation time (Ratcliff and 

Smith, 2004), and variability in threshold or bound (Ratcliff, 1978). A potentially important 

source of variability is trial-by-trial fluctuations in the mean rate of evidence accumulation. Such 

fluctuations would correspond to uncertainty in the mapping of sensory data onto evidence for 

a particular choice (Beck et al., 2008; Gold et al., 2008). This mapping could be implemented as 

the strength of weights between sensory representations into action values (Beck et al., 2008). 

A combination of weights would then represent a classification boundary between sensory 

stimuli (Majaj et al., 2015). Weight fluctuations would introduce errors that, unlike rapid 

fluctuations, could not be mitigated by temporal integration and would therefore curtail the 

benefits of evidence accumulation (Uchida, Kepecs and Mainen, 2006; Zariwala et al., 2013). 

Such “boundary” variability (not to be confused with the stopping “bound” in accumulation 

models) might affect differently particular decision tasks, being particularly important when the 

mapping from stimulus to action must be learned de novo (Uchida, Kepecs and Mainen, 2006; 

Zariwala et al., 2013). Indeed, effects of reward-history on choices have been shown 

experimentally in perceptual tasks (Rescorla and Wagner, 1972; Sutton and Barto, 1998; Busse 

et al., 2011; Scott et al., 2015).  

History effects are considered unwanted biases in psychophysical tasks because each trial is 

typically constructed to be independent of the preceding trials and stimulus-response rules are 

fixed. Here, we hypothesized that biases are in fact signatures of an optimal learning strategy 

that is adapted to natural environments, implying that they only appear “unwanted” (or 

suboptimal) in situations which those conditions do not hold (Summerfield, Behrens and 

Koechlin, 2011). Intuitively, an optimal learning agent must always use both priors (history of 

stimuli, choices and rewards) and current sensory information in proportion to their confidence 

(Pouget, Drugowitsch and Kepecs, 2016; Drugowitsch and Pouget, 2018). To test this idea 
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formally, we derived the optimal choice policy and learning algorithm for an ideal observer that 

uses accumulation of evidence and reward statistics to infer choices and updates its stimulus-

choice mapping—a Bayesian drift-diffusion model (Drugowitsch and Pouget, 2018). 

To test this model, we compared performance in two odor-guided decision tasks that were 

identical except for the nature of the stimuli. The first was an odor mixture categorization task 

(Uchida and Mainen, 2003) in which the difficulty was increased by making the stimuli closer to 

the category boundary, essentially decreasing the contrast between odor categories. We 

expected that performance in this task would be dominated by uncertainty in the stimulus-

choice mapping and therefore benefit less from sensory integration. The second was an odor 

identification task in which the difficulty was increased by lowering stimulus concentration, in 

which we expected performance would benefit more from integration. Indeed, the change in 

reaction times over a given range of accuracy differed markedly between the two tasks, despite 

being tested in the same animals with all other task variables constant. Standard diffusion-to-

bound models could fit performance on either task alone, but not both simultaneously. 

However, the optimal Bayesian-DDM model could fit both tasks simultaneously and out-

performed simpler models without learning and with alternative learning rules. Critically, the 

introduction of learning predicted a history-dependence of trial-by-trial choice biases whose 

specific pattern and magnitude were qualitatively and quantitatively matched to the data. These 

findings suggest that “errors” in many psychophysical tasks are not due to stochastic noise, but 

rather to suboptimal choices driven by optimal learning algorithms that are being tested outside 

of the conditions in which they evolved (Beck et al., 2012).  
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RESULTS 

Different speed-accuracy tradeoffs in two different olfactory decision tasks 

We trained Long Evans rats on two different versions of a two-alternative choice olfactory 

reaction time task. We refer for convenience to these as two “tasks”, but they were identical in 

all aspects except for the nature of the presented olfactory stimulus (Fig.1). In the first task, 

“odor identification”, a single pure odor was presented in any given trial and across trials we 

manipulated difficulty by diluting odors over a range of 3 log steps (1000-fold, liquid dilution) 

(Fig.2a). Thus, the absolute concentration of the odor determined the difficulty. In the second 

task, “odor categorization”, mixtures of two pure odors were presented at a fixed total 

concentration but at four different mixture ratios (Uchida and Mainen, 2003) (Fig.2b). The 

distance of the stimulus to the category boundary (50/50, iso-concentration line), determined 

the difficulty of a given trial, with lower “mixture contrasts” corresponding to more difficult 

trials. e.g., 56/44 and 44/56 stimuli correspond to 12% mixture contrast were more difficult 

than 80/20 and 20/80 stimuli, corresponding to 60% mixture contrast. Note that the easiest 

odor pairs (10-1 dilution and 100% contrast) were identical between the two tasks and that both 

tasks relied on the same partition of the sensory space but applied to different regions of that 

space. In a given session, the eight stimuli from one of the two tasks were presented in 

randomly interleaved order. To ensure that any differences in performance were due to the 

manipulated stimulus parameters, all comparisons were done using the same rats performing 

the two tasks on different days with all other task variables being held constant (Fig. S1). 

We quantified performance using accuracy (fraction of correct trials) and odor sampling 

duration, a measure for reaction time (RT)  (Uchida and Mainen, 2003; Zariwala et al., 2013) 

(Fig.1, Fig. S2 for individual rats). We observed that rats performing the two tasks showed 
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marked differences in how much reaction times increased as task difficulty was increased (Fig. 

2c-f). For the identification task, reaction times increased substantially (112 ± 3 ms; mean ± 

SEM, n = 4 rats; F(3,31) = 44.04, P < 10-7; Fig. 2d), whereas for the same animals performing the 

categorization task, the change was much smaller (31 ± 3 ms; F(3,31) = 2.61, P = 0.09, ANOVA) 

(Fig. 2f), despite the fact that the accuracy range was similar.  

In order to control for the possibility that a slightly smaller range of performance accuracy for 

the categorization task accounted for differences in SAT, we re-ran this task with two sets of 

stimuli with wider ranges of mixture contrasts including harder, lower contrast stimuli. This 

yielded a range of accuracies as broad as those in the identification task (Fig. S3a). The change 

in RTs across all difficulties was 41 ± 24 ms and 50 ± 19 ms for the two datasets tested (Fig. 

S3b), slightly higher than the one observed for the original categorization dataset, yet still much 

smaller than the RT change for identification (Fig. S3c, d). Therefore, the difference observed in 

SAT for odor identification vs. mixture categorization was not due to differences in the range of 

task difficulties. 

   

Construction of a diffusion-to-bound model for olfactory decisions 

In order to explore further which variables might be constraining the rats’ behavioral 

performance, we fit the data using DDMs (DDM, Fig. 4a). In two alternative forced choice tasks, 

in which the subjects have the freedom to respond at any time within a trial, trading off the cost 

associated with accumulating evidence for slower, more accurate choices with the lower 

expected reward for faster, less accurate choices becomes paramount. With adequately tuned 

decision boundaries, DDMs are known to implement the optimal, i.e., reward-rate maximizing, 

strategy to this tradeoff in a wide range of different tasks, including the ones used in the present 

study (Bogacz et al., 2006; Drugowitsch et al., 2012; Tajima, Drugowitsch and Pouget, 2016). 
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Here we implemented a DDM composed of sensory, integration and decision layers. The sensory 

layer implements a transformation of concentrations into momentary evidence for odors A and 

B. Perceptual intensity in olfaction (Stevens, 1975; Wojcik and Sirotin, 2015), as in other 

modalities (Palmer, Huk and Shadlen, 2005; Brunton, Botvinick and Brody, 2013) can be well-

described using a power law. We therefore defined the mean strength of sensory evidence 𝜇 for 

each odor using a power law of the odor concentration (Fig. 2a-b), 

    𝜇𝑖(𝑐𝑖) = 𝑘𝑐𝑖
𝛽 ,  (1) 

where k and β are free parameters (Palmer, Huk and Shadlen, 2005). We constrained k and β to 

be identical between the two odors, which were stereoisomers with identical vapor pressures 

and similar intensities (Taniguchi, Kashiwayanagi and Kurihara, 1992; Pierce et al., 1995; 

Uchida and Mainen, 2003; Laska et al., 2004). Evidence at each time step is drawn from a 

normal distribution 𝑚𝑖(𝑡):𝑁(𝜇𝑖 , 𝜎) , where  𝜎 = 1 is the standard deviation of the variability 

corrupting the true rate, 𝜇𝑖 . The integration layer, which also consists of two units, integrates 

the noisy evidence over time independently for each odor. The last step of the model consists of 

a unit that takes the difference between the two integrated inputs. If this difference exceeds a 

given bound, θ or –θ, the model stops and makes a choice according to the bound that was hit: 

left for θ, right for –θ. Finally, we allowed for a time-dependent linear decrease in the bound 

height (“collapsing bound”), 𝜏 , mimicking an urgency signal (Churchland et al., 2011; 

Drugowitsch et al., 2012) (see Experimental Procedures for details).  

 

Diffusion-to-bound model fails to fit both tasks simultaneously 

In an attempt to explain our behavioral data with the standard DDM, we developed a series of 

different fitting procedures in order to test how well this model describes the data. These fitting 
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procedures all involved maximizing a log-likelihood function for a data set of 22,208 

(identification), 19,947 (categorization) or 42,155 (both) trials using simulations over 100,000 

trials (see Experimental Procedures). The overall quality of the fit obtained with each procedure 

is shown in Fig. S4. The first approach we considered was to test whether we could predict the 

behavioral data of one task using the fitted parameters from the other task. The free parameters 

of the standard DDM were first fitted to behavioral data of the identification task. The model 

captured the overall behavior of the rats in this task. As model performance dropped from 

93.7% to 56.4% (data: 97.0 ± 0.9% to 59.4 ± 2.7%; mean ± SEM, n = 22,126 trials/4 rats) with 

decreasing odor concentration, mean reaction times increased from 286 to 401 ms (data: 290 ± 

2 to 402 ± 3 ms) (Fig.4b, black line). This is because the evidence for lower concentrations is 

dominated by noise, making the signal to noise-ratio smaller. The model therefore takes longer 

to reach a bound while being more prone to hitting the wrong bound first.  

Next, we asked whether we could predict the rats’ psycho- and chronometric curves in the 

categorization task using the model with the parameters we had fitted to the identification task. 

As shown in Fig. 4c, the model had reaction times within the same range; the model’s reaction 

time increased from 285 to 311 ms (data: 279 ± 1 to 311 ± 2 ms; mean ± SEM, n = 19,924 

trials/4 rats). But the model strongly overestimated the animals’ accuracy at low odor contrast 

(e.g. model 93.4% vs. data 69.0 ± 1.3% at 12% mixture contrast) (Fig. 4c, black line). As a 

second procedure, we attempted to fit the model parameters to the categorization task and to 

predict the identification task (Fig. 4b-c, dashed lines). This was also unsuccessful: the model 

predicted much faster (340 ms) responses than what is seen in the data for lower 

concentrations. A third procedure, simultaneous fits, also failed in describing both tasks 

successfully (Fig. S5). The only satisfactory description of our data for this model was to 

consider both tasks independently (Fig. 4b-c).  
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Differences in SAT are not due to context dependent strategies 

Motivational variables can modulate performance and reaction time in perceptual tasks. For 

example, variables like reward rate (Drugowitsch et al., 2012) or emphasis for accuracy vs. 

speed (Palmer, Huk and Shadlen, 2005; Hanks, Ditterich and Shadlen, 2006) can have an effect 

on observed SATs, by modulating decision criteria. This could result in changes in non-stimulus 

dependent parameters such as integration threshold θ, non-decision time tND and lapse rate 

from one task to the other. Because identification and categorization tasks were run in separate 

sessions, we also considered the possibility that rats might have shifted their decision criteria 

between tasks. To address this, and to cover the stimulus space more thoroughly, we devised a 

“mixture identification” task in which we interleaved the full set of stimuli from the 

categorization and identification tasks as well as intermediate mixtures. Thus, on each trial the 

stimulus was chosen randomly from one of four mixture ratios at one of four concentrations 

(Fig. 3a). Consistent with the previous observations, RTs in this joint task were strongly 

affected by concentration but considerably less so by mixture contrast (Figs. 3b-c). A two-way 

ANOVA showed that RTs changed significantly across the different odorant concentrations 

(F(3,48) = 8.69, P < 10-3); but for a given total concentration of the odorants, this change was not 

significant across the different mixture contrasts and subjects (F(3,48) = 0.94, P = 0.42). There 

was no significant interaction of odorant concentration and mixture contrast (F(9,48) = 0.28, P 

> 0.9). For individual subjects, all 4 rats showed significant effect of odorant concentration 

(ANOVA for each rat: F1(3,15)=78.66, P1<10-6; F2(3,15)=14.66, P2<10-3; F3(3,15)=204.91, P3<10-

7; F4(3,15)=27.86, P4<10-4), while only 2 showed significant modulation of mixture contrast 

across sessions (F1(3,15)=1.14, P1=0.39; F2(3,15)=0.52, P2=0.67; F3(3,15)=9.6, P3<0.01; 

F4(3,15)=6.47, P4<0.05). Additionally, the best fitting DDM model could not explain this data-set 

successfully (Fig. S6). These results indicate that the differences in the relation between 

accuracy and reaction time for the two tasks are not due to differences in decision criteria. 
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Similar results were obtained for other variants of the integration-to-bound model, such as 

variants of the accumulator model of two-choice discrimination (Smith and Vickers, 1988) and 

the two-race competition model (Usher and McClelland, 2001) (not shown). These results 

suggest that the data are not compatible with the standard assumptions of this class of models. 

 

Diffusion-to-bound model with stimulus dependent Bayesian learning fits performance 

across both tasks 

Until now we have been considering that all behavioral uncertainty comes from moment-by-

moment stochastic fluctuations in incoming sensory evidence. Although it is standard in 

psychophysical tasks to assume that previous trials’ choices and outcomes do not bias current 

responses and that each trial is independent of all others, it is well known from reward-based 

decision-making tasks that subjects’ choices are sensitive to the recent history of rewards 

(Herrnstein, 1974; Baum, 1979; Sugrue, Corrado and Newsome, 2004). Indeed, it has been 

shown that rodents exhibit trial-history dependent biases in psychophysical tasks (Busse et al., 

2011). One possible explanation for the overestimate of accuracy in the categorization task is 

that these trial-history effects impact this task preferentially (Uchida, Kepecs and Mainen, 2006; 

Zariwala et al., 2013).  Reward expectation, for instance, has been shown to influence 

performance and RTs in perceptual tasks (Lauwereyns et al., 2002; Roesch and Olson, 2004; 

Zariwala et al., 2013), implying that perception can actually be influenced by rewards. 

Taking this knowledge into consideration, we hypothesized that on-going fluctuations in the 

animals’ mapping from odors to choice directions or, equivalently, their representation of the 

categorical boundary, might limit performance. Such fluctuations might be generated by reward 

expectations and reinforcement-driven learning processes. To explore this, we decided to take a 

look at performance and choice biases (Busse et al., 2011). 
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To test this idea, we asked how rodents could use rewards to update their category “boundary”, 

i.e, the line that divides stimuli associated with right and left choices (see Fig. 2a,b). To do so, 

we assumed a volatile world that requires a continuous updating of this category boundary and 

used Bayesian decision theory to derive the near-optimal updating strategy under these 

circumstances. This strategy is close-to-optimal in the sense that it well-approximates the best 

possible category boundary estimate given all available information, and under the assumption 

that the “true” category boundary drifts stochastically across consecutive trials (see 

Experimental Procedures for details). Even though it approximates the optimal strategy, which 

is intractable, it yields behavioral performance indistinguishable from optimal (Drugowitsch 

and Pouget, 2018). The use of this strategy resulted in a diffusion-to-bound model with 

stimulus-dependent Bayesian learning (which we refer to as “Bayes-DDM”) (Fig. 5a). The 

Bayes-DDM is augmented with weights that transform the stimulus input into evidence: 

     𝑒𝑖 = 𝑤𝑖𝑠𝑖(𝑡),  (2) 

which is then combined with bias b to form a net evidence 

    𝑒(𝑡) = 𝑤1𝑠1(𝑡) + 𝑤2𝑠2(𝑡) + 𝑏.  (3) 

In this equation the weights wi and the bias b define, respectively, the slope and offset of the 

category boundary.  

After each trial we updated the stimulus weights wi using a tractable approximation to the 

intractable Bayes-optimal learning rule,  

    ∆�⃗⃗� = 𝛼𝑤(𝑠 , 𝑡)𝛴𝑤𝑠     ,  (4) 

where 𝛴𝑤 is the weight covariance matrix (also learned; see Experimental Procedures), that 

quantifies the current weight uncertainty, and  𝛼𝑤(𝑠 , 𝑡) the learning rate. This learning rule 
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introduces three new parameters that describe the learner’s assumptions about how the 

weights change and influence the learning rate α (see Experimental Procedures for details).  

 We tested the ability of Bayes-DDM to capture performance in both olfactory decision tasks.  

We fit this model through log-likelihood maximization of both tasks simultaneously (Palmer, 

Huk and Shadlen, 2005). However, as the model was adjusting its weight and bias parameters 

across consecutive trials, and was using collapsing boundaries, we could not apply the same or 

even any closed form analytical predictions (Ratcliff, 1978). Thus, we found the predicted mean 

RTs, choice probability and trial-to-trial choice biases by numerically simulating a sequence of 

100,000 trials for any combination of parameters. These were then fit to a data set of 22,208 

(identification) and 19,947 (categorization) trials by log-likelihood maximization (see 

Experimental Procedures). The inclusion of the new category boundary learning parameters in 

the DDM allowed the simultaneously fit of the two tasks (Fig. 5b-c). The Bayes-DDM showed a 

decrease of performance from 97% to 65%, accompanied by an increase of 29 ms in reaction 

time for the categorization task and a deterioration of performance from 96% to 62%, with a 93 

ms increase in reaction time for the identification task. The model showed similar results as to 

what was observed in the behavioral data (Fig. 5).  

As a further test we assessed whether the model could fit the behavioral results for all the 

intermediate concentration levels of the mixture task (Fig. 3 b-c). To do so, we fitted the model 

to the 32 stimuli from the interleaved condition (Fig. 3a).  We found that the model was indeed 

able to fit well the full set of psycho- and chono-metric functions (Fig. 5d, solid lines).  
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Bayes-DDM successfully predicts trial-by-trial conditional changes in choice bias 

The Bayes-DDM model can be considered as a hypothesis concerning the form of trial-to-trial 

biases that we expect to be sufficient to explain the data. Crucially, the specific predictions of 

this model can be tested against behavioral variables that were not directly fit. That is, we can 

check whether the form of the trial-to-trial biases in the experimental data is in fact compatible 

with the form and magnitude of the learning we introduced. 

To do so, we first quantified the impact of a previous trial by calculating the difference in the 

average choice bias conditional upon the trial being correct and a given stimulus being delivered 

(Fig.6a,b), relative to the overall average choice bias (highlighted by the red arrows in Fig. 6a) 

(see Experimental Procedures). Because ∆𝐶𝐵(𝑥) was symmetric for left/right stimuli (Fig. 6a, b; 

Fig. S7), we plot ∆𝐶𝐵(𝑥) collapsed over stimuli of equal difficulty (Fig. 6c,d; Fig. S8). Note that 

∆𝐶𝐵(𝑥) measures the fractional change in choice probability, with ∆𝐶𝐵(𝑥) > 0 indicating a 

greater likelihood of repeating a choice in the same direction as the prior trial, ∆𝐶𝐵(𝑥) < 0 

indicating a greater likelihood of making a choice in the opposite direction. We also calculated 

the equivalent updating curves conditional on the trial being incorrect and a given stimulus 

being delivered.  However, likely due to the much smaller number of error trials (rats are on 

average 85% correct for all tasks), especially for easy trials, there was a great deal more 

variability in these curves (Fig. S9).  As a result, our data did not sufficiently constrain the fits to 

these updating curves, particularly for the categorization task (Fig. S10). We therefore focused 

on the analysis of the dependence of correct trials for the two tasks. 

These analyses showed that rats have a tendency to repeat a choice in the same direction that 

was rewarded in the previous trial (“win-stay”; Fig. 6c,d). But the stimulus-dependent analysis 

revealed a qualitative difference between the identification and categorization tasks with 

respect to how the stimulus in the past trial impacted the change in bias (Fig. 6c, d). For the 
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identification task, the influence of the previous trial was largely stimulus independent (Fig. 6c, 

one-way ANOVA, F(3,12) = 2.0, P = 0.17). For the categorization task (Fig. 6d), in contrast, the 

influence of the previous trial showed a graded dependence on the stimulus, being larger for a 

difficult previous choice than for an easier one (F(3,12)=25.4, P<10-5).  

The Bayes-DDM generated predictions for the shape and amplitude of history-dependent choice 

bias (updating) functions for both tasks (lines in Fig. 6c and 6d). Importantly, these functions 

were predicted rather than directly fit, since the only data used for the fits were the trial-

averaged accuracy and RT curves. An important feature of the Bayes-DDM is that it depends on 

both the accumulated inputs 𝑠  and decision time 𝑡, reflecting a form of decision confidence 

(Drugowitsch and Pouget, 2018; see Experimental Procedures). In tasks like ours, with a 

varying difficulty, harder trials are associated with later choices and come with a lower decision 

confidence (Kiani and Shadlen, 2009). On correct trials, the learning rate is smaller when the 

animal’s confidence is high. This makes sense: if the animal is correct and highly confident, there 

is little reason to adjust the weights. However, continual bias learning washes out the 

confidence - reaction time relationship, such that neither data no the Bayes-DDM model feature 

a strong modulation of learning by reaction time (Fig. S11). 

Remarkably, for both tasks the predictions of the Bayes DDM model closely matched the data. 

For the categorization task, as expected, the model captured the strong dependence of the 

updating curve on stimulus difficulty (Fig. 6d). This is due to the fact that for easy stimuli, the 

predicted probability of a rewarded trial (i.e. the value of the evidence at stopping time) is 

nearly equal to 1 and there is little surprise (i.e. high confidence) and little learning. For the 

identification task the model was also able to capture the relative lack of stimulus dependence 

of the updating curve (Fig. 6c). This is explained by the fact that in the identification task the 

signal-to-noise ratio is low for the most difficult trials, implying that the sensory component of 
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Eq. 3 will be low. Thus, there is a larger contribution of the stimulus-independent updating term 

(the bias - b) in updating choice bias (see Experimental Procedures).  

Comparison with other learning rules 

The optimal Bayes DDM learning rule takes a complex form involving multiples terms who 

respective roles are not immediately clear. In order to gain some insight into why this rule 

captures the animals’ behavior, and whether confidence plays a role, we fitted several variations 

of our model and used Bayesian model comparison to determine which one best accounted for 

our data.  

We first fitted a model without learning but in which the weights are drawn on every trial from 

a multivariate Gaussian distribution whose mean is set to the optimal weights (1/√2, −1/√2 

and 0) and whose variance is a free parameter. Interestingly, this model could fit the 

psychometric and chronometric curves in both tasks with a single DDM. However, the model 

failed to show sequential effects in either task, as one would expect since the weights are 

redrawn independently on every trial (Fig. S12). Bayesian model comparison confirmed that 

this model performs considerably worse than the one using the optimal learning rule (Fig. 7). 

Next, we tried a model with a limited form of learning in which the optimal Bayes DDM learning 

rule is applied only to the bias while the sensory weights are set to their optimal values. It has 

indeed been recently argued that sequential effects can be captured by variations in the bias 

(Busse et al., 2011). This model has a BIC score comparable to the optimal model (Fig. 7) and 

captures the flat profile of the sequential effects in the identification task, thus suggesting that 

sequential effects in this task are due to fluctuations in the bias. However, this model fails to 

account for the profile of sequential effect in the categorization task (Fig. S13). While the data 

shows sequential effects inversely proportional to the difficulty of the previous trial, the model 

predicts a flat profile, similar to what we observed for the identification task (Fig. S13g).  
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Conversely, we fitted a model in which the sensory weights, but not the bias, are adjusted on 

every trial according to the optimal learning rule. This model fits to the psychometric and 

chronometric curves reasonably well in both tasks (Fig. S14). However, in contrast to the 

previous model, this one captures the sequential effects in the categorization task but not in the 

identification task (Fig. S14d). Moreover, the BIC score for this model is far worse than for the 

optimal model. These last two models combined reveal that the learning-induced fluctuations in 

the bias is what allows the optimal model to capture the sequential effects in the identification 

task, while the learning-induced fluctuations in the weights play a critical role in capturing the 

sequential effects in the categorization task.  

Finally, we explored a possible implementation of the Bayes-DDM rule by considering a simple 

delta rule that is modulated by decision confidence. We aimed to develop a last heuristic model:  

a neural network that mimics our Bayes-DDM.   For this purpose, we combined a standard DDM 

with a delta rule of the form: 

𝛥�⃗⃗� = 𝛼 (𝜆 −
𝜃𝑡=𝑇

𝜃𝑡=0
)𝑠   (5) 

𝛥𝑏 = 𝛼𝑏(𝜆 −
𝑏

𝜃𝑡=0
)  (6) 

where 𝜃𝑡=0 is the value of bound at the beginning of the trial while 𝜃𝑡=𝑇 is the value of the bound 

at the time of the decision, T, 𝜆 is the correct choice (1 or -1),  and 𝛼 and 𝛼𝑏 are the weight and 

bias learning rates . The modulation of learning by confidence is due to the term 
𝜃𝑡=𝑇

𝜃𝑡=0
. The 

collapsing bound causes this ratio to decrease with the time elapsed since the beginning of the 

trial. Critically, elapsed time is inversely proportional to confidence in DDM when the difficulty 

of the task is unknown and varied from trial to trial (Kiani and Shadlen, 2009; Drugowitsch et 

al., 2012),  as is the case in our tasks. Therefore, the error term in this learning rule is decreasing 

as confidence decreases over time, which is to say the model learns less when it is less 
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confident, which makes intuitive sense. Ultimately, however, this rule is only an approximation 

to the optimal rule.  Nonetheless, Bayesian model comparison revealed that this learning rule 

accounts for our experimental data about as well as the full optimal learning rule, thus 

indicating that the rat’s behavior is consistent with a confidence weighted learning rule (Fig 7, 

Fig. S16, RL-DDM).  

The results of Bayesian model comparisons are often sensitive to the way extra parameters are 

being penalized. Importantly, we found this not to be the case in our data as the ranking of the 

models remains the same whether we use AIC, AICc or BIC. Moreover, our conclusions hold 

whether we fitted individual animals separately, or fitted all the data at once as if it was 

obtained from a single ‘meta-rat’ (Fig. 6, Fig. 7 and Fig. S4). 

 

Fluctuations in category boundary degrade odor categorization performance more than 

identification 

Finally, we sought to use the Bayes-DDM model to gain insight into how category boundary 

learning works in conjunction with integration-to-bound to explain the difference between 

identification and categorization task performance. To do so, we analyzed the dynamics of the 

weights in relationship to sensory evidence (Fig. 8). For each simulated trial, we considered the 

accumulated evidence for each side and divided it by the total integration time; we termed this 

the “inferred drift rate” of a trial (see Experimental Procedures). First, we plotted the simulated 

trials for the standard DDM that was fit to the identification task (Fig. 8a-b). Remember that 

this version of the model generated overly high accuracy in categorizing mixtures (solid black 

lines from Fig. 4). Here, each dot is a simulated trial and the scatter of dots around each 

stimulus reflects the impact of stochastic noise in the DDM. In this representation, the ideal 

category boundary is a line with slope equal to 1 with all stimuli below this line categorized as 
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“left” choices and all stimuli above this line as “right” choices. In Figure 8c, d, we plot one of the 

most difficult stimuli for each task (correct choices in blue and errors in red). For the ideal 

category boundary, it can be seen that performance on the categorization task is expected to be 

much higher than for the identification task.  

In Figure 8e, f we show the effect of learning, which introduces variability in the category 

boundary in the Bayes-DDM (grey area indicates 1 standard deviation from the mean). The plot 

shows that for the identification task, learning-induced boundary fluctuations changed the 

classification of very few trials while, in the categorization task, many were affected (grayed 

points unchanged, red/blue points changed).  

The difference in effects can be understood by considering that in the Bayes-DDM stimulus 

weights have a multiplicative effect on evidence strength. Thus, stimulus weight fluctuations 

correspond to rotations around the origin; the effects are larger for larger stimulus values. 

Therefore, the difficult mixture stimuli of the categorization task, which have higher 

concentrations, are much more susceptible to these fluctuations. In the identification task, on 

the other hand, because stimuli are low concentration and around the origin these changes in 

the slope of the categorization boundary have little to no effect (Fig. 8e). Conversely, we also 

analyzed the effects of bias in both tasks. In this stimulus representation, changes in 𝑏 affect the 

intercept of the bound (See Experimental Procedures). However, for bias the effect is similar in 

both tasks, suggesting that most new errors for mixture categorization originate from 

fluctuations in the slope of the category bound (Fig. S17). 
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DISCUSSION 

Our results demonstrate that rats show different speed-accuracy tradeoffs depending on the 

task at hand. When challenged to identify odors at low concentrations, rats show a significant 

increase of reaction time that is accompanied by performance degradation (Fig. 2c,d). In 

contrast, when the challenge is to categorize mixtures of two odors in different proportions, rats 

show only a small increase in reaction time (Fig. 2e,f). We used a standard drift-diffusion model 

(DDM) to show that this task difference cannot be explained by stimulus noise (Fig. 4) even 

with the addition of reward-dependent choice biases (Fig. S13). We therefore introduced a 

Bayesian learning process, the kind theorized to drive stimulus-response learning (Bayes-DDM) 

optimally in dynamic environments, that is, environments in which the optimal weights evolve 

over time (Drugowitsch and Pouget, 2018). With the combination of these three factors – 

stimulus noise, reward bias and categorical boundary learning – the Bayes-DDM model not only 

fit the average performance data (Fig. 6b-e), but also predicted the choice biases on the recent 

history of stimuli, choices and rewards (Fig. 6f,g). Furthermore, the Bayes-DDM model was able 

to fit the performance over an interpolated stimulus space combining both tasks in the same 

sessions (Fig. 6d), ruling out differences in strategies between the two tasks and arguing that 

rats used the same decision-making system while detecting and categorizing odors. 

We found that odor categorization performance is more susceptible to category boundary 

fluctuations than odor identification (Fig. 8). This is due to high stimulus input that always 

exists in this task, and thus the multiplication in Equation 4 implies amplification in weight 

update when sensory evidence is large. Our model is in agreement with previous observations 

for the categorization task (Uchida and Mainen, 2003; Zariwala et al., 2013). In particular, the 

much smaller tradeoff between accuracy and reaction times observed in this task is not due to a 

lack of quality of stimulus input. In fact, our model indicates that signal-to-noise ratio is 

extremely high for the categorization task (Fig. 8d). This suggests that high performance can be 
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achieved with short integration time even for mixtures near 50-50%, particularly compared to 

the identification task, in which signal-to-noise ratio is highly reduced. Additional Bayes- and 

RL-DDM simulations do in fact show that performance remains relatively unaltered in mixture 

categorization with an increase of integration threshold, contrasting with what would be 

predicted for odor identification (Fig. S18). This agrees with the observation that one sniff is 

enough for maximum performance in mixture categorization (Uchida and Mainen, 2003). 

Weight fluctuations, which impair performance in a trial-by-trial basis, cannot be filtered out 

within the integration process. On the other hand, the identification task is highly driven by 

stimulus noise, which is reflected within the diffusion process, and thus favored by integration 

in order to make better decisions. We thus conclude that the observation of different speed-

accuracy tradeoffs is due to different computational requirements in the two tasks. 

We have demonstrated that the simple scenario of detecting a noisy stimulus is insufficient to 

capture all the details occurring in a two-forced choice task. Two other effects have to be 

incorporated in order to explain the differences observed here. First, the effect of reward bias, 

as previously described (Busse et al., 2011; Scott et al., 2015) and second, a novel result of on-

going stimulus-dependent learning (Fig. 6). These results show that, given the right conditions, 

learning can be detrimental for the rats’ performance while categorizing stimuli. Nevertheless, 

these trial-by-trial dependencies might not be observed in all tasks. In the case of visual 

discrimination of random dots coherence (Roitman and Shadlen, 2002; Palmer, Huk and 

Shadlen, 2005) or auditory discrimination of clicks (Brunton, Botvinick and Brody, 2013), for 

example, the stimuli are lateralized in accordance with the correct decision direction and the 

decision boundary is set at a natural neutral point, the midline. We hypothesize that these tasks 

will show reduced updating effects, as the midline boundary represents a strong prior that the 

subjects have experienced extensively, contrasting with the 50/50 odor mixture separation 

boundary which is an arbitrary mapping to left/right responses that must be learned. 
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We have shown ongoing learning compromises the rats’ ability to categorize odors. We have 

ensured that ongoing learning is not due to incomplete learning as the rats present stable 

performance over the analyzed data (Suppl. Figs. 19, 20). This suggests some other interfering 

factor or some deliberate strategy of the rats. One possible interpretation is that the rats’ 

performance is limited by their inability to remember over a very long trial history. An ideal 

decision maker would learn to set the perfect decision boundary by averaging over all the trials 

that it has been exposed to. Imperfect memory would imply that the most recent trials will have 

a larger effect in deciding what to do with a given stimuli (conditional on ongoing learning 

occurring, 𝛼 ≠ 0, i.e. that the most recent trial is still affecting performance). An alternative 

interpretation is that the memory is not imperfect but that the animal is constantly learning. 

The learning could be due to changes in the response of the sensory epithelium or uncontrolled 

trial to trial variations in the stimulus or experimental trig. Alternatively, the animal might learn 

because it wrongly assumes that the rules of the task change over time, even though this is not 

the case.  The psychophysics-like experimental paradigm is indeed highly artificial in the sense 

that outcomes and states are crystallized. It is unlikely that this would be the case in a more 

naturalistic environment, where, due to environmental dynamics, odors could signal different 

outcomes, rewards and states over time. A normal, ever-changing environment would imply 

adaptability and never-ending learning as the optimal strategy. This strategy becomes 

suboptimal in a static environment, but this may be a small price to pay compare to the cost of 

stopping learning erroneously when the world is actually dynamic. These results are consistent 

with a recent proposal that suboptimal inference, as opposed to internal noise, is a major source 

of behavioral variability (Beck et al., 2012). In this case, the apparent suboptimal inference is 

the result of assuming that the world is dynamic when, in fact, it is static.  
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EXPERIMENTAL PROCEDURES 

Animal subjects 

Four Long Evans rats (200-250 g at the start of training) were trained and tested in accordance 

with European Union Directive 86/609/EEC and approved by Direcção-Geral de Veterinária 

(DGV) of Portugal. Rats were pair-housed and maintained on a normal 12 hr light/dark cycle 

and tested during the daylight period. Rats were allowed free access to food but were water-

restricted. Water was available during the behavioral session and for 20 minutes after the 

session at a random time as well as on non-training days. Water availability was adjusted to 

ensure animals maintained no less than 85% of ad libitum weight at any time. 

 

Testing apparatus and odor stimuli 

The behavioral apparatus for the task was designed by Z.F.M. in collaboration with M. Recchia 

(Island Motion Corporation, Tappan, NY). The behavioral control system (BControl) was 

developed by Z.F.M, C. Brody (Princeton University) in collaboration with A. Zador (Cold Spring 

Harbor Laboratory). The behavioral setup consisted of a box (27 x 36 cm) with a panel 

containing three conical ports (2.5 cm diameter, 1 cm depth). Each port was equipped with an 

infrared photodiode/phototransistor pair that registered a digital signal when the rat’s snout 

was introduced into the port (“nose poke”), allowing us to determine the position of the animal 

during the task with high temporal precision. Odors were delivered from the center port and 

water from the left and right ports. Odor delivery was controlled by a custom made 

olfactometer designed by Z.F.M in collaboration with M. Recchia (Island Motion Corporation, 

Tappan, NY). During training and testing the rats alternated between two different boxes. 

The test odors were S-(+) and R-(-) stereoisomers of 2-octanol, chosen because they have 

identical vapor pressures and similar intensities. In the odor identification task, difficulty was 

manipulated by using different concentrations of pure odors, ranging from 10-4 to 10-1 (v/v). 
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The different concentrations were produced by serial liquid dilution using an odorless carrier, 

propylene glycol (1,2-propanediol). In the odor mixture categorization task, we used binary 

mixtures of these two odorants at different ratios, with the sum held constant: 0/100, 20/80, 

32/68, 44/56 and their complements (100/0, etc.). Difficulty was determined by the distance of 

the mixtures to the category boundary (50/50), denoted as “mixture contrast” (e.g., 80/20 and 

20/80 stimuli correspond to 60% mixture contrast). Choices were rewarded at the left choice 

port for odorant A (identification task) or for mixtures A/B > 50/50 (categorization task) and at 

the right choice port for odorant B (identification task) or for mixtures A/B < 50/50 

(categorization task). In both tasks, the set of eight stimuli were randomly interleaved within 

the session. During testing, the probability of each stimulus being selected was the same. 

For the experiment in Figs. 2, 4, 5 and 6, only mixtures with a total odor concentration of 10-1 

were used. For the experiment in Fig. 2, we used the same mixture contrasts with total 

concentrations ranging from 10-1 to 10-4 prepared using the diluted odorants used for the 

identification task. In each session, four different mixture pairs were pseudo-randomly selected 

from the total set of 32 stimuli (8 contrasts at 4 different total concentrations). Thus, for this 

task, a full data set comprised 4 individual sessions.  

For all the different experiments, four of the eight stimuli presented in each session were 

rewarded on the left (odorant A, for detection; A/B > 50/50, for categorization) and the other 

four were rewarded on the right (odorant B, for detection; A/B < 50/50, for categorization). 

Each stimulus was presented with equal probability and corresponded to a different filter in the 

manifold. 

For the experiments in Fig. S2 we used two different sets of mixture ratios: 0/100, 17/83, 

33.5/66.5, 50/50 in one experiment and 0/100, 39/61, 47.5/52.5, 49.5/50.5 in the second 

experiment. In the experiment using 50/50 mixture ratios we used two filters both with the 

mixture 50/50, one corresponding to the left-rewarded stimulus and the other one to the right-
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rewarded stimulus. Thus, for the 50/50 mixtures, rats were rewarded randomly, with equal 

probability for both sides. 

 

 

Reaction time paradigm 

The timing of task events is illustrated in Fig. 1. Rats initiated a trial by entering the central 

odor-sampling port, which triggered the delivery of an odor with delay (dodor) drawn from a 

uniform distribution with a range of [0.3, 0.6] s. The odor was available for up to 1 s after odor 

onset. Rats could exit from the odor port at any time after odor valve opening and make a 

movement to either of the two reward ports. Trials in which the rat left the odor sampling port 

before odor valve opening (~4% of trials) or before a minimum odor sampling time of 100 ms 

had elapsed (~1% of trials) were considered invalid. Odor delivery was terminated as soon as 

the rat exited the odor port. Reaction time (the Odor sampling duration) was calculated as the 

difference between odor valve actuation until odor port exit (Fig. 1) minus the delay from valve 

opening to odor reaching the nose. This delay was measured with a photo ionization detector 

(mini-PID, Aurora Scientific, Inc) and had a value of 53 ms. 

Reward was available for correct choices for up to 4 s after the rat left the odor sampling port. 

Trials in which the rat failed to respond to one of the two choice ports within the reward 

availability period (~1% of trials) were also considered invalid. For correct trials, water was 

delivered from gravity-fed reservoirs regulated by solenoid valves after the rat entered the 

choice port, with a delay (dwater) drawn from a uniform distribution with a range of [0.1, 0.3] s. 

Reward was available for correct choices for up to 4 s after the rat left the odor sampling port. 

Trials in which the rat failed to respond to one of the two choice ports within the reward 

availability period (0.5% of trials) were also considered invalid. Reward amount (wrew), 

determined by valve opening duration, was set to 0.024 ml and calibrated regularly. A new trial 

was initiated when the rat entered odor port, as long as a minimum interval (dinter-trial), of 4 s 
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from water delivery, had elapsed. Error choices resulted in water omission and a “time-out” 

penalty of 4 s added to dinter-trial. Behavioral accuracy was defined as the number of correct 

choices over the total number of correct and incorrect choices. Invalid trials (in total 5.8 ± 0.8% 

of trials, mean ± SEM, n = 4 rats) were not included in the calculation of performance accuracy 

or reaction times (odor sampling duration or movement time). 

 

Training and testing 

Rats were trained and tested on three different tasks: (1) a two-alternative choice odor 

identification task; (2) a two-alternative choice odor mixture categorization task (Uchida and 

Mainen, 2003); and (3) a two-alternative choice “odor mixture identification” task. The same 

rats performed all three tasks and all other task variables were held constant.  

The training sequence consisted of: (I) handling (2 sessions); (II) water port training (1 

session); (III) odor port training, in which a nose poke at the odor sampling port was required 

before water was available at the choice port. The required center poke duration was increased 

from 0 to 300 ms (4 – 8 sessions); (IV) introduction of test odors at a concentration of 10-1, 

rewarded at left and right choice ports according to the identity of the odor presented (1 – 5 

sessions); (V) introduction of increasingly lower concentrations (more difficult stimuli) (5 – 10 

sessions); (VI) training on odor identification task (10 – 20 sessions); (VII) testing on odor 

identification task (14 – 16 sessions); (VIII) training on mixture categorization task (10 – 20 

sessions); (IX)  testing on mixture categorization task (14 – 15 sessions); (X)  testing on mixture 

identification task (12 – 27 sessions) (Fig. S1).   

During training, in phases V-VII, we used adaptive algorithms to adjust the difficulty and to 

minimize bias of the animals. We computed an online estimate of bias: 

𝑏𝑡 = (1 − 𝜏)𝐶𝑡 + 𝜏𝑏𝑡−1   (7) 

where bt is the estimated bias in the current trial, bt-1 is the estimated bias in the previous trial,  

Ct is the choice of the current trial (0 if right, 1 if left) and τ is the decay rate (τ = 0.05 in our 
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experiments). The probability of being presented with a right-side rewarded odor p was 

adjusted to counteract the measured bias using: 

𝑝𝑅 = 1 −
1

1+𝑒
(𝑏𝑡−𝑏0)

𝛾

    (8) 

where b0 is the target bias (set to 0.5), and γ (set to 0.25) describes the degree of non-linearity.  

Analogously, the probability of a given stimulus difficulty was dependent on the performance of 

the animal, i.e., the relative probability of difficult stimuli was set to increase with performance. 

Performance was calculated in an analogous way as (1) at the current trial but ct became rt - the 

outcome of the current trial (0 if error, 1 if correct). A difficulty parameter, δ, was adjusted as a 

function of the performance,  

𝛿𝑡+1 = −1 +
2

1+𝑒
(𝑝𝑡−𝑝0)

𝛾

    (9) 

where p0 is the target performance (set to 0.95). The probability of each stimulus difficulty, 𝜑, 

was drawn from a geometric cumulative distribution function (GEOCDF, Matlab) 

𝜑𝑡+1 =
1−𝐺𝐸𝑂𝐶𝐷𝐹(𝑖,|𝛿𝑡+1|)

∑𝑁
𝑗=1 1−𝐺𝐸𝑂𝐷𝐶𝐹(𝑗,|𝛿𝑡+1|)

   (10) 

where N  is the number of stimulus difficulties in the session, and takes a value from 2 to 4 

(when  N=1, i.e. only one stimulus difficulty, this algorithm is not needed);  i corresponds to the 

stimulus difficulty and is an integer from 1 to 4 (when 𝛿  > 0, the value 1 corresponds to the 

easiest stimuli and 4 to the most difficult one, and vice-versa when  𝛿 < 0). In this way, when |𝛿| 

is close to 0, corresponding to an average performance close to 0.95, the distribution of stimuli 

was close to uniform (i.e. all difficulties are equally likely to be presented). When performance is 

greater, then the relative probability of difficult trials increased; conversely, when the 

performance is lower, the relative probability of difficult trials decreased. Training phases VI 

and VIII were interrupted for both tasks when number of stimulus difficulties N=4 and difficulty 

parameter δ stabilized on a session-by-session basis. 
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Each rat performed one session of 90-120 minutes per day (250–400 trials), 5 days per week 

for a period of ~120 weeks. During testing, the adapting algorithms were turned off and each 

task was tested independently. The data set was collected only after performance was stable 

(Fig. S19) during periods in which the animals showed stable accuracy and left/right bias on 

both tasks (Figs. S19, S20). Throughout the test period, there was variability in accuracy and 

bias across sessions, but there was no correlation between these performance metrics and 

session number (accuracy: Spearman’s rank correlation ρ=-0.066, P=0.61 for identification, 

ρ=0.16, P=0.24 for categorization; bias: ρ=0.104, P=0.27 for both tasks, identification: ρ=0.093, 

P=0.48, categorization: ρ=0.123, P=0.37). 

 

Session bias and choice bias 

We fit all psychometric curves by considering the cumulative Gaussian distribution and a lapse 

rate 𝑙𝑟 and minimizing least the least square difference through fminsearch (Matlab).  In this 

way we were able to describe the psychometric curve with two additional parameters, slope 

(variance) and threshold (mean)(Stevens, 1975; Busse et al., 2011): 

𝜓(𝑙𝑟, 𝜇, 𝜎) = 𝑙𝑟 + (1 − 𝑙𝑟)𝐹(𝑥|𝜇, 𝜎)   (11) 

where 𝐹(𝑥|𝜇, 𝜎) is a cumulative Gaussian. We defined choice bias as the difference between the 

values of 𝜓 and chance (0.5) at exactly the middle of the stimulus space (x=0 for the 

identification task, x=50% for the categorization task). We quantified this for sessions (Fig. S20) 

and all trials (Fig. 6c-d). 

We defined the threshold of such psychometric curve as the indifference point (𝐼 = 𝜇), which 

indicates the stimulus difficulty at which the rat has an equal chance of choosing left or right 

(Fig. 6a-b, solid black line). In order to look at the effect of a reward and its interaction with 

stimulus difficulty on choice bias, we conditioned our analyzed psychometric function to trials 
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that followed a correct choice with a given stimulus 𝑥𝑇−1 (in which T-1 represents the preceding 

trial). 

𝜓(𝜇𝑇 , 𝜎𝑇 , 𝑥𝑇−1 ) = 𝑙𝑟 + (1 − 𝑙𝑟)𝐹(𝜇𝑇 , 𝜎𝑇)   (12) 

With this analysis we described conditional psychometric curves that differ depending on the 

outcome and difficulty of the average preceding trial (Fig. 6a-b).  

Considering the original curve, we quantified the change in choice bias after a given stimulus as 

the displacement at the indifference point between the two curves (Fig. 6c-d, Figs. S7 and S8): 

∆𝐶𝐵(𝑥𝑇−1) = 𝜓(𝜇𝑇 , 𝜎𝑇 , 𝑥𝑇−1 ) − 𝜓(𝐼, 𝜎) = 𝜓(𝜇𝑇 , 𝜎𝑇 , 𝑥𝑇−1 ) − 0.5   (13) 

For trials following an error we calculated this change as the displacement at the indifference 

point between the current curve and two trials back (Figs. S9 and S10). This was done in order 

to avoid capturing bouts of incorrect trials that might contaminate this analysis. 

 

Model 

Drift-diffusion model for decision-making 

For a given stimulus with concentrations cA and cB we define the accumulated evidence at time t, 

𝑒(𝑡). The diffusion process has the following properties: at time t=0 the accumulated combined 

evidence is zero, 𝑒(0) = 0; and the momentary evidence mi is a random variable that is 

independent at each time step. We discretize time in steps of 0.1ms and run numerical 

simulations of multiple runs/trials. For each new time step t=nΔt we generate a new momentary 

evidence draw: 

𝑚𝑖(𝑡) = 𝑚𝑖(𝑛∆𝑡) = 𝑁(𝑘𝑐𝑖
𝛽
, 𝜎)   (14) 

that is, through a normally distributed random generator with a mean of 𝑘𝑐𝑖
𝛽

, in which we 

define k as the sensitive parameter, and β as the exponent parameter. σ defines the amount of 
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noise in the generation of momentary evidences. We set σ to 1, making 𝑘𝑐𝑖
𝛽

 equivalent to the 

signal to noise ratio for a particular stimuli and respective combination of concentrations (cA, 

cB). Integrated evidences (s1, s2) are simply the integration of the momentary evidences over 

time 

𝑠𝑖(𝑡) = ∫ 𝑚𝑖(𝜏)
𝑡

𝜏=0
𝑑𝜏    (15) 

We translate this in our discretized version as a cumulative sum at all time steps, effectively 

being: 

𝑠𝑖(𝑛∆𝑡) = ∑ 𝑚𝑖(𝑗∆𝑡)𝑛
𝑗=0     (16) 

We then define the decision variable accumulated evidence as: 

𝑒(𝑡) = 𝑤1𝑠1(𝑡) + 𝑤2𝑠2(𝑡) + 𝑏   (17) 

or in it’s discretized version: 

𝑒(𝑛∆𝑡) = 𝑤1𝑠1(𝑛∆𝑡) + 𝑤2 𝑠2(𝑛∆𝑡) + 𝑏         (18) 

where 𝑤1 and 𝑤2 are model-dependent combination weights on the accumulated evidence, and 

𝑏is an a-priori decision bias (𝑤1 = 1/√2;𝑤2 = −1/√2; 𝑏 = 0 for optimal decisions; √2 scaling 

ensures ||�⃗⃗� || = 1). Together, these parameters define slope and offset of the category boundary, 

which determines the mapping between accumulated evidence and associated choices.  We also 

define the (accumulation) decision bound 𝜃(𝑡) and make it in most models collapsing over time 

through either a linear or an exponential decay. Thus, at timestep nΔt the bound is either 

𝜃(𝑡) = 𝜃(𝑛𝛥𝑡) = 𝜃𝑡=0 + 𝜃𝑠𝑙𝑜𝑛𝛥𝑡   (19) 

where we define 𝜃𝑡=0 as the bound height at the starting point of integration 𝑡 = 0 and 𝜃𝑠𝑙𝑜 ≤ 0 

as its slope, or 

𝜃(𝑡) = 𝜃(𝑛∆𝑡) = 𝜃𝑡=0𝑒
−𝑛∆𝑡/𝜏   (20) 

where 𝜏 ≥ 0 is the bound height’s mean lifetime. The collapse parameters 𝜃𝑠𝑙𝑜 and 𝜏 define the 

level of urgency in a decision, the smaller it becomes, the more urgent a given decision will 

become, given rise to more errors (Churchland et al., 2011; Drugowitsch et al., 2012). For 
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models with non-collapsing boundaries we used 𝜃(𝑡) = 𝜃𝑡=0, independent of time. For models 

with collapsing boundaries, they collapsed linearly, except for RL-DDM, where they collapse 

exponentially. 

Decisions are triggered once the accumulated evidence, 𝑒(𝑡), crosses one of the two decision 

boundaries {𝜃(𝑡), −𝜃(𝑡)}. To simulate these decisions, we first simulated a one-dimensional 

diffusion model that directly uses 𝑒(𝑡) as the diffusing “particle”, and from this reconstructed 

the higher-dimensional accumulated momentary evidences 𝑠 (𝑡) = (𝑠1(𝑡), 𝑠2(𝑡))
𝑇 . For the one-

dimensional simulation we used a momentary Gaussian evidence with drift 𝑤1𝑘𝑐1
𝛽 +

𝑤2𝑘𝑐2
𝛽and diffusion variance 𝑤1

2 + 𝑤2
2 (both per unit time step), corresponding to the 

moments of 𝑒(𝑡) − 𝑏. We reintroduce the bias 𝑏  by shifting the boundaries to {𝜃(𝑡) −

𝑏, −𝜃(𝑡) − 𝑏}. For non-collapsing boundaries we simulated accumulation boundary crossings 

using a recently developed, fast, and unbiased method (Drugowitsch, 2016). For collapsing 

boundaries, we simulated these boundary crossing by Euler integration in 𝛥𝑡 = 0.001𝑠 time-

steps, and set the final 𝑒(𝑡) to lie on the crossed boundary to avoid overshooting that might 

arise due to time discretization. In both cases, we defined the decision time 𝑡𝑑 as the time when 

crossing occurred, and the choice in trial k by 

𝐶𝑘 = 𝑐ℎ𝑜𝑖𝑐𝑒 = {𝑙𝑒𝑓𝑡, 𝑒(𝑡𝑑) > 0 𝑟𝑖𝑔ℎ𝑡, 𝑒(𝑡𝑑) < 0}    (21) 

To recover the higher-dimensional accumulated momentary evidences at decision-time, 𝑠 (𝑡𝑑), 

we sampled those from the two-dimensional Gaussian 𝑠 (𝑡𝑑)|𝑒(𝑡𝑑), 𝑡𝑑 ∼ 𝑁((𝑐1
𝛽 , 𝑐2

𝛽)𝑇 𝑘 𝑡, 𝑰 𝑡) 

(i.e., unbounded diffusion), subject to the linear decision boundary constraint �⃗⃗� 𝑇𝑠 (𝑡𝑑) + 𝑏 =

𝑒(𝑡𝑑), using the method described in Simpson, Turner and Pettitt, 2008. 

 

In order to capture <100% accuracy in easy trials and systematic and consistent choice biases, 

we introduced an additional “lapse” component with lapse rate 𝑙𝑟 and lapse bias 𝑙𝑏 to the model. 

The lapse rate 𝑙𝑟 determined the probability with which the choice is not determined by the 

diffusion model, but is instead drawn from a Bernoulli distribution that chooses “right” with 
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probability 𝑙𝑏 and “left” with probability 1 − 𝑙𝑏. Model fits revealed small lapse rates, and lapse 

biases close to 0.05 (Suppl. Table 1 and 2). These lapse rates are typically needed for this type 

of models and have been hypothesized in the past to be due to effects of attention and/or 

exploration (Wichmann and Hill, 2001). 

 

Lastly, the reaction time for a particular trial was simulated by adding a normally distributed 

non-decision time variable with mean tND and standard deviation 0.1 𝑡𝑑to the decision-time 

arising from the diffusion model simulations (Palmer, Huk and Shadlen, 2005), 

𝑡𝑟 = 𝑡𝑑 + 𝑡𝑁𝐷 + 𝜂𝑁𝐷,   (22) 

where 𝜂𝑁𝐷|𝑡𝑑 ∼ 𝑁(0, (0.1 𝑡𝑑)
2) models the stochasticity of the non-decision time. Without 

weight and bias learning (that is, when fixing 𝑤1 = 1/√2;𝑤2 = −1/√2; 𝑏 = 0), the base model 

with a non-collapsing has the following six parameters: sensitivity (k), exponent (β), non-

decision time mean (tND), initial bound height (θt=0), lapse rate (lr), and lapse bias (𝑙𝑏). A 

collapsing bound introduces one additional parameter, which is the boundary slope (𝜃𝑠𝑙𝑜) for 

linearly collapsing boundaries, or the boundary mean lifetime (𝜏) for exponentially collapsing 

boundaries.  

 

Drift-diffusion model with Bayesian reward bias and stimulus learning - Bayes-DDM 

The following provides an overview of the Bayesian model that learns stimulus combination 

weights, reward biases, or both. A complete description of the model and its derivation can be 

found in (Drugowitsch and Pouget, 2018). We first focus on weight learning, and then describe 

how to apply the same principles to bias learning. The model assumes that there are true, latent 

combination weights �⃗⃗� ∗ that the decision-maker can’t directly observe, but aims to infer based 

on feedback on the correctness of his/her choices. To ensure continual learning, these latent 

weights are assumed to slowly change across consecutive trials 𝑘 and 𝑘 + 1 according to a first-

order autoregressive process, 
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�⃗⃗� ∗(𝑘+1)|�⃗⃗� ∗(𝑘) ∼ 𝑁(𝛾𝑘�⃗⃗� 
∗(𝑘), 𝜎𝑤

2𝑰) ,  (23) 

with weight “leak” 0 ≤ 𝛾𝑘 < 1, ensuring that weights remain bounded, and weight diffusion 

variance 𝜎𝑤
2, ensuring a continual, stochastic weight change. This process has zero steady-state 

mean and a steady-state variance of 𝜎𝑤
2/(1 − 𝛾𝑤

2) for each of the true weight components, 

which we used as the decision-maker’s prior 𝑝(�⃗⃗� ) over the inferred weight vector �⃗⃗� . 

For each sequence of trials that we simulated, the decision-maker starts with this prior in the 

first trial and updates its belief about the weight vector in each subsequent trial in two steps. 

We will describe these two steps on hand of making a choice in trial 𝑘, receiving feedback about 

this choice, updating one’s belief, and then moving on to the next trial 𝑘 + 1. Before the first step 

in trial 𝑘, the decision-maker holds the “prior” belief 𝑝(�⃗⃗� (𝑘)|𝑎𝑙𝑙 𝑝𝑎𝑠𝑡 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) = 𝑝(�⃗⃗� (𝑘)) 

that is implicitly conditional on all feedback received in previous trials 1,⋯ , 𝑘 − 1. The decision-

maker then observes some sensory evidence, accumulates this evidence, commits to choice 𝐶𝑘 

with decision time 𝑡𝑘 and accumulated momentary evidences 𝑠 (𝑡𝑑). After this, the correct choice 

𝐶𝑘
∗ ∈ {−1,1} (-1 for “left”, 1 for “right) is revealed, which, in our 2-AFC setup is the same as 

telling the decision-maker if choice 𝐶𝑘 was correct or incorrect. The Bayes-optimal way to 

update one’s belief about the true weights upon receiving this feedback is given by Bayes’ rule, 

𝑝(�⃗⃗� (𝑘)|𝐶𝑘
∗, 𝑠 (𝑡𝑑), 𝑡𝑑) ∝ 𝑝(𝐶𝑘

∗|�⃗⃗� (𝑘), 𝑠 (𝑡𝑑), 𝑡𝑑)𝑝(�⃗⃗� (𝑘)).  (24)  

Unfortunately, the functional form of the likelihood 𝑝(𝐶𝑘
∗|�⃗⃗� (𝑘), 𝑠 (𝑡𝑑), 𝑡𝑑) does not permit 

efficient sequential updating of this belief, but we have shown elsewhere (Drugowitsch and 

Pouget, 2018) that we can approximate the above without considerable performance loss by 

assuming that the posterior (and, by induction, also the prior) is Gaussian. Using prior 

parameters 𝑝(�⃗⃗� (𝑘)) = 𝑁 (�⃗⃗� (𝑘)|𝜇 𝑤
(𝑘)

, 𝛴𝑤
(𝑘)) and posterior parameters  𝑝(�⃗⃗� (𝑘)|𝐶𝑘

∗, 𝑠 (𝑡𝑑), 𝑡𝑑) =

𝑁 (�⃗⃗� (𝑘)|𝜇 +𝑤

(𝑘)
, 𝛴′𝑤

(𝑘)
) yields the update equations 

𝜇 +𝑤

(𝑘)
= 𝜇 𝑤

(𝑘)
+ 𝛼𝑤(𝑠 (𝑡𝑑), 𝑡𝑑)𝐶𝑘

∗𝛴𝑤
(𝑘)𝑠 (𝑡𝑑),    (25) 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 19, 2018. ; https://doi.org/10.1101/501858doi: bioRxiv preprint 

https://doi.org/10.1101/501858


34 
 

𝛴′𝑤
(𝑘)

= 𝛴𝑤
(𝑘) + 𝛼𝑐𝑜𝑣(𝑠 (𝑡𝑑), 𝑡𝑑) ((𝛴𝑤

(𝑘)−1
+ �̃��̃�𝑇)

−1
− 𝛴𝑤

(𝑘)),  (26) 

with learning rates 

𝛼𝑤(𝑠 (𝑡𝑑), 𝑡𝑑) =
𝑁(𝑔|0,1)

𝛷(𝑔)√1+�̃�𝑇𝛴𝑤
(𝑘)�̃�

,       (27) 

𝛼𝑐𝑜𝑣(𝑠 (𝑡𝑑), 𝑡𝑑) = 𝛼𝑤(𝑠 (𝑡𝑑), 𝑡𝑑)2 + 𝛼𝑤(𝑠 (𝑡𝑑), 𝑡𝑑) 𝑔,    (28) 

𝑔 =
𝐶𝑘

∗�⃗⃗� 𝑤
(𝑘)𝑇

�̃�

√1+�̃�𝑇𝛴𝑤
(𝑘)�̃�

,        (29) 

�̃� =
𝑠 (𝑡𝑑)

√𝑡𝑑+𝜎𝑒
−2

,        (30) 

where 𝛷(⋅) is the cumulative function of a standard Gaussian, and where 𝜎𝑒
2 is a variance that 

describes the distribution of decision difficulties (e.g., odor intensities) across trials, and which 

we assume to be known by the decision-maker. In the above, 𝑔 turns out to be a quantity that is 

closely related to the decision confidence in trial 𝑘. Furthermore, both learning rates, 𝛼𝑤 and 

𝛼𝑐𝑜𝑣 are strongly modulated by this confidence, as follows: they are small for high-confidence 

correct decisions, moderate for low-confidence decisions irrespective of correctness, and high 

for high-confidence incorrect choices. A detailed derivation, together with more exploration of 

how learning depends on confidence is provided in Drugowitsch and Pouget, 2018. 

Once the posterior parameters have been computed, the second step follows. This step takes 

into account that the true weights change across consecutive trials, and is Bayes-optimally 

captured by the following parameter updates: 

𝜇 𝑤
(𝑘+1)

= 𝛾𝑘𝜇 
+

𝑤
(𝑘)

,   (31) 

𝛴𝑤
(𝑘+1) = 𝛾𝑘

2𝛴′𝑤
(𝑘)

+ 𝜎𝑤
2𝐼.  (32) 

These parameters are then used in trial 𝑘 + 1. Overall, the Bayesian weight learning model has 

two adjustable parameters (in addition to those of the base decision-making model): the 

assumed weight leak (𝛾𝑤) and weight diffusion variance (𝜎𝑤
2) across consecutive trials. 

Let us now consider how similar principles apply to learning the bias term. For this we again 
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assume a true underlying bias 𝑏∗ that changes slowly across consecutive trials according to 

𝑏∗(𝑘+1)|𝑏∗(𝑘) ∼ 𝑁(𝛾𝑤𝑏∗(𝑘), 𝜎𝑏
2),  (33) 

where the leak 𝛾𝑤 is the same as for �⃗⃗� ∗, but the diffusion 𝜎𝑏
2 differs. As we show in Drugowitsch 

and Pouget, 2018, the bias can be interpreted as a per-trial a-priori bias on the correctness on 

either choice, which brings it into the realm of probabilistic inference. More specifically, this 

bias can be implemented by extending the, until now two-dimensional, accumulated momentary 

evidences 𝑠 (𝑡𝑑) in each trial, by an additional, constant element. An analogous extension of �⃗⃗�  

adds the bias term to them, until now two-dimensional, weight vector. Then, we can perform the 

same Bayesian updating of the, now three-dimensional, weight vector parameters as described 

weights, to learn weights and the bias simultaneously. The only care we need to take is to 

ensure that, in the second step, the covariance matrix elements associated with the bias are 

updated with diffusion variance 𝜎𝑏
2 rather than 𝜎𝑤

2. Overall, a Bayesian model that learns both 

weights and biases has three adjustable parameters: the assumed weight and bias leak (𝛾𝑤), the 

weight diffusion variance (𝜎𝑤
2), and the bias diffusion variance (𝜎𝑏

2). A Bayesian model that 

only learns the bias has two adjustable parameters: the assumed bias leak (𝛾𝑤), and the bias 

diffusion variance (𝜎𝑏
2). 

 

 

 

Drift-diffusion model with heuristic reward bias and stimulus learning – RL-DDM 

Rather than using the Bayesian weight and bias update equations in their full complexity, we 

also designed a model that captures their spirit, but not their details. This model does not 

update a whole distribution over possible weights and biases, but instead only works with point 

estimates, which take values �⃗⃗� (𝑘) and 𝑏(𝑘) in trial 𝑘. After feedback 𝐶𝑘
∗ ∈ {−1,1} (as before, -1 

for “left”, 1 for “right”), the model updates the weight according to 
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�⃗⃗� + (𝑘) = �⃗⃗� (𝑘) + 𝛼 (𝐶𝑘
∗ −

𝑒(𝑡𝑑)

𝜃𝑡=0
) 𝑠 (𝑡𝑑),  (34) 

where 𝛼 is the learning rate. Note that, for rapid decisions (i.e., 𝑡𝑑 ≈ 0), we have |𝑒(𝑡𝑑)| ≈ 𝜃𝑡=0, 

such that the residual term in brackets is zero for correct choices, such that learning only occurs 

for incorrect choices. For slower choices and collapsing boundaries, we will have |𝑒(𝑡𝑑)| < 𝜃𝑡=0, 

such that the residual will be non-zero even for correct choices, promoting weight updates for 

both correct and incorrect choices. Considering that decision confidence in the Bayesian model 

is generally lower for slower choices, this learning rule again promotes learning rates weighted 

by confidence: fast, high-confidence choices result in no weight updates for correct choices, and 

large weight updates for incorrect choices, whereas low, low-confidence choices promote 

moderate updates irrespective of the correctness of the choice, just as for the Bayes-optimal 

updates. To ensure a constant weight magnitude, the weights are subsequently normalized by 

�⃗⃗� (𝑘+1) =
�⃗⃗� + (𝑘)

||�⃗⃗� + (𝑘)||
,  (35) 

to form the weights for trial 𝑘 + 1. 

Bias learning takes a similar flavor, using the update equation 

𝑏(𝑘+1) = 𝑏𝑘 + 𝛼𝑏 (𝐶𝑘
∗ −

𝑏(𝑘)

𝜃𝑡=0
),  (36) 

where 𝛼𝑏 is the bias learning rate. In contrast to weight learning, this update equation does not 

feature any confidence modulation, but was nonetheless sufficient to capture the qualitative 

features of the data. Overall, this learning model added two adjustable parameters to the base 

decision-making model: the weight learning rate (𝛼), and the bias learning rate (𝛼𝑏). 

 

Alternative learning heuristics 

To further investigate if a confidence-modulated learning rate was required, we designed 

models that did not feature such confidence weighting. For weight learning, they used the delta 

rule 
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�⃗⃗� + (𝑘) = �⃗⃗� (𝑘) + 𝛼(𝐶𝑘
∗ − 𝐶𝑘)

𝜃(𝑡𝑑)

𝜃𝑡=0
𝑠 (𝑡𝑑),  (37) 

where 𝛼 is the learning rate, and whose weight updated is, as before, followed by the 

normalization �⃗⃗� (𝑘+1) = �⃗⃗� +/||�⃗⃗� + (𝑘)||. Here, we assume the same encoding of make choice 𝐶𝑘 

and correct choice 𝐶𝑘
∗, that is, 𝐶𝑘 ∈ {−1,1} (-1 for “left”, 1 for “right”), such that the residual in 

brackets is only non-zero if the choice was incorrect. In that case, the learning rate is modulated 

by boundary height, but no learning occurs after correct choices. 

The bias is learned similarly, using 

𝑏(𝑘+1) = 𝑏(𝑘) + 𝛼(𝐶𝑘
∗ − 𝐶𝑘)

𝜃(𝑡𝑑)

𝜃𝑡=0
.  (38) 

Overall, this results in one adjustable parameter in addition to the base decision-making model: 

the learning rate (𝛼). 

 

Drift-diffusion model with reward bias and stimulus weight fluctuations 

To test if random weight and bias fluctuations are sufficient to capture the across-task 

differences, we also fit a model that featured such fluctuations without attempting to learn these 

weights from feedback. Specifically, we assumed that, in each trial, weights and biases where 

drawn from 

�⃗⃗� (𝑘) ∼ 𝑁((1,−1)𝑇/√2, 𝜎𝑟𝑤
2𝑰),        𝑏(𝑘) ∼ 𝑁(0, 𝜎𝑟𝑏

2),  (39) 

which are normal distributions centered on the optimal weights and bias values, but with 

(co)variances 𝜎𝑟𝑤
2𝐼 and 𝜎𝑟𝑏

2. We adjusted these (co)variances to best match the data, leading to 

two adjustable parameters in addition to those of the base decision model: the weight 

fluctuation variance (𝜎𝑟𝑤
2), and the bias fluctuation variance (𝜎𝑟𝑏

2). 

 

Model fitting 

We found the best-fitting parameters for each model by log-likelihood maximization (Palmer, 

Huk and Shadlen, 2005). Due to collapsing bounds and (for some models) sequential updates of 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 19, 2018. ; https://doi.org/10.1101/501858doi: bioRxiv preprint 

https://doi.org/10.1101/501858


38 
 

weights and biases, we could not directly use previous approaches that rely on closed-form 

analytical expressions (Ratcliff, 1978) for fitting diffusion models with non-collapsing 

boundaries. Instead, for any combination of parameters, we simulated the model responses to a 

sequence of 100,000 trials with stimulus sequence statistics matching those of the rodent 

experiments for the conditions that we were interested in fitting. These responses were used to 

compute summary statistics describing model behavior, which were subsequently used to 

evaluate the log-likelihood of these parameters. We computed the log-likelihood in two ways, 

first by ignoring sequential choice dependencies, and second by taking such dependencies into 

account. All model simulations were performed as described further above. We did not 

explicitly simulate the stochasticity of the non-decision time, but instead included this 

stochasticity as an additional noise-term in the likelihood function (not explicitly shown below). 

To describe how we computed the likelihood of model parameters 𝜙 without taking sequential 

dependencies into account, let index 𝑚 denote the different task conditions (i.e., a set of odor 

concentrations for odors A and B), and let 𝑛𝑚 be the numbers of observed trials for this 

condition in the rodent data that we are modeling. For each condition 𝑚, we approximate the 

response time distributions by Gaussians, using 𝑡𝑚 and 𝜎2
𝑡,𝑚 to denote the observed mean 

response time and variance (across trials). Furthermore, let 𝑃𝑐,𝑚 be the observed probability of 

making a correct choice in that condition. The corresponding model predictions for parameters 

𝜙, extracted from model simulations, are denoted �̄�𝑚(𝜙) and �̄�𝑐,𝑚(𝜙). With this, we computed 

the likelihood of responses times by 

𝐿𝑡,𝑚(𝜙) = 𝑁 (�̄�𝑚(𝜙)|𝑡𝑚,
𝜎2

𝑡,,𝑚

𝑛𝑚
) ,  (40) 

which is the probability of drawing the predicted mean reaction time from a Gaussian centered 

on the observed mean and with a variance that corresponds to the standard error of that mean. 

The likelihood of the choice probabilities was for each condition computed by 

𝐿𝑐,𝑚(𝜙) = �̄�𝑐,𝑚(𝜙)𝑃𝑐,𝑚𝑛𝑚(1 − �̄�𝑐,𝑚(𝜙))(1−𝑃𝑐,𝑚)𝑛𝑚,  (41) 
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which is the probability of drawing the observed number of correct and incorrect choices with 

the choice probabilities predicted by the model. The overall log-likelihood is found by summing 

over the per-condition log-likelihoods, resulting in 

𝐿𝐿(𝜙) = ∑𝑘 (𝑙𝑜𝑔 𝐿𝑡,𝑚(𝜙) +𝑙𝑜𝑔 𝐿𝑐,𝑚(𝜙)).  (42) 

To evaluate the log-likelihood that takes into account sequential choice dependencies, we 

computed the reaction time likelihoods, 𝐿𝑡,𝑚(𝜃), as before, but changed the choice probability 

likelihood computation as follows. For trials following correct choices, we computed the choice 

probability likelihood separately for each stimulus combination given the previous and the 

current trial, thus taking into account that psychometric curves depend on the stimulus 

condition of the previous trial (Fig. 6a-b). Due to the low number of incorrect trials for certain 

conditions, we didn’t perform this conditioning on the previous trial’s condition when 

computing the choice probability likelihoods after incorrect choices, but instead computed the 

likelihood across all trials simultaneously. 

For both ways of computing the log-likelihood, we found the parameters that maximize this log-

likelihood by use of the Subplex algorithm as implemented in the NLopt library (Steven G. 

Johnson, The NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt). In some 

cases we performed the fits without taking into account the sequential choice dependencies, 

and then predicted these sequential choice dependencies from the model fits (e.g., Fig. 6c-d). In 

other cases (e.g., for some model comparisons), we performed the model fits while taking into 

account sequential dependencies. The specifics of the model fits are clarified in the main text. 

The best model fits and respective parameters can be found in Suppl. Tables 1 and 2. 

 

Model comparison 

For comparison between different models with different number of parameters we use 

Bayesian information criterion (BIC) for model selection (Schwarz, 1978). For each model we 

calculate the BIC (Wit, Heuvel and Romeijn, 2012): 
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𝐵𝐼𝐶 = −2𝑙𝑛 (𝐿) + 𝑞 ∙ 𝑙𝑛 (𝑛)     (43) 

where q is the number of free parameters fitted by the model and n the number of trials that we 

fitted. Each model has a BIC associated to it. We compared different models by first converting 

the BIC score into a log10-based marginal likelihood, using −0.5𝐵𝐼𝐶/𝑙𝑛(10), and then compared 

models by computing the log10-Bayes factor as the difference between these marginal 

likelihoods. These differences dictate the explanatory strength of one model in relation to the 

other. The model with the larger marginal likelihood is preferred and the evidence in favor is 

decisive if the log-10 difference exceeds 2. 

To ensure that our analysis is not driven by the strong parameter number penalty that BIC 

applies, we performed the same analysis using the Akaike information criterion (AIC) and its 

corrected version (AICc), but found qualitatively no change in the results. All different model 

comparisons can be found in Fig. S4. 

In Fig. S4 we compared the following models. Models denoted simply “DDM” were diffusion 

models with optimal weights, 𝑤1 = 1/√2;𝑤2 = −1/√2. Models denoted “Bayes-DDM” learned 

their weights as described in the Bayes-DDM section. The “Random weights” models used 

weights that were stochastically and independently drawn in each trial (see Stimulus weight 

fluctuations section). The “Delta rule” models learned their weights by the delta rule. The “Full 

RL-DDM” model used the learning rules described in the RL-DDM section. Only “lapse” variants 

of these models included the lapse model components. Decision boundaries were constant 

except for the “collapsing boundary” model variants. The bias was foxed to 𝑏 = 0, except for the 

“Full RL-DDM” model and “bias” variants. In these bias variants, the biases (but not necessarily 

the weights, depending on the model) were learned as described in the Bayes-DDM section, 

except for the “Delta rule” models, for which bias learning was described in the Alternative 

learning heuristics section. In Fig. S4, all models are compared to the Bayes-DDM model that 

learns both weights and the bias, includes a lapse model, and has collapsing boundaries.  
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Weights fluctuation analysis 

As the RL-DDM model reaches a decision it has access to two variables, amount of evidence at 

the bound and the decision time td. For better understanding the dynamics immediately before 

the multiplication of the weights, we looked at the combination of sensory evidence (s1, s2) for 

each simulated trial. For each trial j there is a noisy sensory evidence trajectory (integration 

layer from Fig. 6). This means that by the end of trial j we can compute the mean drift rates that 

gave to rise to a decision: 

     〈𝜇𝑖
𝑗
〉 =

𝑠𝑖
𝑗

𝑡𝑑
𝑗
−𝑡𝑟

    (44) 

Each group in Fig. 8a and b has been segregated taking into account the Mahalanobis distance, 

as each line represents the distance of D=1 for a particular stimulus set. 

Considering the integrated evidence of Equation 13 and combined with the choice function of 

Equation 21 we see that  

𝑤1𝑠1(𝑡) + 𝑤2𝑠2(𝑡) + 𝑏 = 0   (45) 

Should represent the separation line between the two stimuli, and thus we can rewrite Equation 

45 as: 

𝑠2(𝑡𝑑) = −
𝑤1

𝑤2
𝑠1(𝑡𝑑) +

𝑏

𝑤2
   (46) 

Considering the straight-line equation 𝑦 = 𝑚𝑥 + 𝑖 we see that in our integrated evidence plots 

the boundary separation can be drawn with slope 𝑚 = −
𝑤1

𝑤2
 and intercept 𝑖 =

𝑏

𝑤2
.  

Stimulus weight fluctuation should then have an impact in the slope of the boundary line 

separating the classification between left and right stimuli, and b should influence the origin 
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intercept on that stimulus representation (Fig. 8). Considering the data points simulated for 

100.000 trials, we analyzed the effect of slope fluctuation in error rates. That is, how many 

errors would the model create by having a particular value of m, for both the identification and 

categorization task (Fig. 8). 

 

Analysis 

All the behavioral and statistical analysis, as well as all fitting, were performed in Matlab®. The 

different models were implemented and fitted in Julia v0.6. 
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FIGURE LEGENDS 

Figure 1. Two-alternative odor choice task 

(a) Rats were trained in a behavioral box to signal a choice between left and right port after 

sampling a central odor port. The sequence of events is illustrated using a schematic of the ports 

and the position of the snout of the rats. (b) Illustration of the timing of events in a typical trial. 

Nose port photodiode and valve command signals are shown (thick lines). A trial is initialized 

after a rat pokes into a central Odor Port. After a randomized delay dodor a pure odor or a 

mixture of odors is presented, dependent of the task at hand. The rat can sample freely and 

respond by moving into a choice port in order to get a water reward. Each of these ports is 

associated to one of two odors – odor A ((R)-(−)-2-Octanol) and odor B ((S)-(+)-2-Octanol). 

Highlighted by the grey box, reaction time (RT) is the amount of time the rats spend in the 

central Odor Port after odor valve is on (i.e. discounting dodor). See Experimental Procedures for 

more details.  

 

Figure 2. Comparison between odor identification and mixture categorization tasks 

(a,b) Stimulus design. In the odor identification task, the odorants were presented 

independently at concentrations ranging from 10-1 to 10-4 (v/v) and sides rewarded accordingly 

(a). For the mixture categorization task, the two odorants were mixed in different ratios 

presented at a fixed total concentration of 10-1, and rats were rewarded according to the 

majority component (b). Each dot represents one of the 8 stimuli presented for each task. (c,d) 
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Mean accuracy (c) and mean reaction time (d) for the identification task plotted as a function of 

odor concentration. (e,f) Mean accuracy (e) and mean reaction time (f) for the categorization 

task plotted as a function of mixture contrast (i.e. the absolute percent difference between the 

two odors). Error bars are mean ± SEM over trials and rats. Colors in dots are presented as to 

help parse between stimulus space and psych- and chrono-metric curves. Solid lines depict the 

obtained fits for the predicted curves of a DDM, an exponential curve for performance and a 

hyperbolic tangent for RTs, as described in Palmer, Huk and Shadlen, 2005. 

 

Figure 3. Odor mixture identification task 

(a) Stimulus design. Two odorants (S-(+)-2-octanol and R-(-)-2-octanol) were presented at 

different concentrations and in different ratios as indicated by dot positions. In each session, 

four different mixture pairs (i.e. a mixture of specific ratio and concentration and its 

complementary ratio) were pseudo-randomly selected from the total set of 16 mixture pairs 

and presented in an interleaved fashion. (b, c) Mean accuracy (b) and mean of reaction times (c) 

plotted as a function of mixture contrast. Each point represents a single mixture ratio. Error 

bars are mean ± SEM over trials and rats. Solid lines depict the obtained fits for the predicted 

curves of a DDM for each set of mixtures at a particular concentration, family functions as 

described in Palmer, Huk and Shadlen, 2005. Colors represent the total concentration of the 

mixture, with black indicating a 10-1 mixture and lightest grey 10-4 mixtures. 

 

Figure 4. Failure to simultaneously fit performance on identification and categorization tasks 

with Drift-diffusion model.  
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(a) Drift-diffusion model (DDM). The model consists of three layers – Sensory, Integration and 

Decision layer. At the sensory layer, concentrations are transformed into rates that are 

contaminated with Gaussian noise. These rates are then integrated over time (Integration layer) 

and combined. Note that the choice of weights (-1 and 1) for the Decision layer allows it to 

effectively be a Drift-Diffusion model with collapsing bounds. This model presents 7 parameters 

(see Experimental Procedures). (b) Fitting results for accuracy and reaction time in 

identification task. Black solid line represents the model fit for this data, and dashed lines the 

prediction from the categorization data fit. (c) Fitting results for accuracy and reaction time in 

categorization task. Solid black lines depict the prediction for this data from the model fitted to 

identification, and dashed lines the DDM fit for this data. Error bars are mean ± SEM over trials 

and rats.  

 

Figure 5. Bayesian DDM with bias and stimulus learning explains identification and 

categorization task simultaneously.  

(a) DDM is even further expanded with the addition of changing stimulus weights, w1 and w2, 

and trial-by-trial reward dependent bias b. These weights are then combined with the 

integrated momentary evidences (s1,s2) plus the offset set by the bias b. After each trial the 

model updates stimulus weights according to the obtained outcome through a Bayesian learning 

rule. This model has 10 parameters (see Experimental Procedures). (b,c) Choice accuracy 

(fraction of correct trials) and odor sampling duration in identification task (b) and 

categorization task (c). Solid black line represents model fitted to both tasks (see Experimental 

Procedures for more details). (d) Choice accuracy and odor sampling duration for Interleaved 

condition. Solid lines represent the obtained fits for Bayes-DDM to this particular data, going 
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from lowest total concentration (lightest grey) to highest (black). Error bars are mean ± SEM 

over trials and rats.   

 

Figure 6. Bayes-DDM predicts trial-by-trial change of choice bias after a rewarded trial and 

given stimulus. 

(a,b) Psychometric functions for mean (dashed line) and conditional curves following a reward, 

side choice and a given stimuli. For the identification task all four stimuli from 10-1 to 10-4 are 

depicted (a). For the categorization task from 12 to 100% mixture contrast (b). Filled-in circles 

and equivalent lines represent trials following a right-reward (B>A) and open circles, trials 

following a left-reward (A>B). Lines represent fits of a cumulative Gaussian to the data. Grey 

arrows in (a) elucidate the measured change in choice bias (see Experimental Procedures). (c,d) 

Change in choice bias plotted as a function of the previous stimuli, for plots in (a,b). All four 

different odor concentrations for identification task (c); and all mixture sets for categorization 

(d). Points correspond to behavioral data (left side), and solid lines to the predicted change from 

the model fitted to Fig. 5 (right side). Black points and line correspond to the obtained 

measurements considering all data together and predicted size of effect when Bayes-DDM fits 

chrono- and psycho-metric curves for both tasks. Depicted is also each one of the four rats as 

points with a different shades of grey, with their analogous model predictions (grey lines).  

 

Figure 7. Bayesian model comparison. 

(a). Model comparison between different family of models against optimal model (Bayes-DDM) 

using Bayes factor. While the models were only fitted on the mean psycho- and chronometric 

function, the quality of the fitted data was evaluated considering an objective function 
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additionally takes each model’s prediction of the conditional psychometric functions regarding 

previous reward into account (see Experimental Procedures for details). Here we depict: two 

optimal DDM that don’t learn weights, one with trial-by-trial bias modulation and one without; a 

random weights model in which stimulus-to-bound weights fluctuate from trial to trial 

stochastically; two simplified versions of Bayes-DDM: one without bias modulation and another 

without weight learning; and two heuristic models in which we implement a network that 

mimics a DDM that learns the stimulus-to-choice map through Reinforcement learning (RL-

DDM), being one of them without confidence weighted learning. The grey dots show the Bayes 

factor for individual rats, and the black dots the Bayes factors for the fits using the accumulated 

data across all rats (adjusted for the increased number of trials). For more details about these 

models and other versions see Experimental Procedures and Supplementary material. 

 

Figure 8. Weight fluctuations amplify errors in categorization task. 

(a,b). Stimulus space for categorization task. Each point represents a combination of inferred 

drift rates for a given trial in the pure DDM (with no-learning) that was fit to identification but 

outperformed in the categorization task (see Experimental Procedures for more details). Solid 

oval lines represent the Mahalanobis distance of 1 in relation to the population average for each 

of the eight stimuli. Solid black line depicts the ideal classifying process: above it implies a right-

side decision, below it a left. Color code for each point and line follows the same logic as Fig. 

2a,b. The larger overlap of each set in the identification task (a) explains the performance 

degradation, as most points are located around the origin. For the categorization task (b), the 

lack of overlap between stimuli clarifies the higher performance seen in Fig. 4. (c,d) Mean drift 

rates for the most difficult left-decision choice for Bayes-DDM model. In the case of the 

identification task this is the 10-4/0 stimuli (c); for the categorization task the stimulus is the 
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56%/44% mixture (d). Blue signal the correct classified choices and red the incorrect. 

Considering the ideal separation bound we show the projected histograms for the difference. 

(e,f) Same as (c,d) but now with fluctuating weights depicted as the slope of the category bound. 

Grey area indicates the weight fluctuations that are equivalent to 1 standard deviation for both 

tasks.  Blue indicates trials that were originally incorrect in (c,d) but became correct, and red 

indicates trials that became incorrect but originally correct. Light grey dots indicate answers 

that remained unchanged. Histograms quantify the four populations of dots. 
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