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Summary 
Sensory exposure alters the response properties of individual neurons in primary 
sensory cortices. However, it remains unclear how these changes affect stimulus 
encoding by populations of sensory cells. Here, recording from populations of 
neurons in cat primary visual cortex, we demonstrate that visual exposure enhances 
stimulus encoding and discrimination. We find that repeated presentation of brief, 
high-contrast shapes results in a stereotyped, biphasic population response 
consisting of a short-latency transient, followed by a late and extended period of 
reverberatory activity. Visual exposure selectively improves the stimulus specificity 
of the reverberatory activity, by increasing the magnitude and decreasing the trial-
to-trial variability of the neuronal response. Critically, this improved stimulus 
encoding is distributed across the population and depends on precise temporal 
coordination. Our findings provide evidence for the existence of an exposure-driven 
optimization process that enhances the encoding power of neuronal populations in 
early visual cortex, thus potentially benefiting simple readouts at higher stages of 
visual processing. 
 

Introduction 
Sensory experience alters the response properties of neurons and populations in sensory 
cortex. In the visual domain, repetitive exposure to oriented stimuli impacts the response 
strength and selectivity of early visual neurons, with lasting consequences on post-
exposure activity (Cooke and Bear, 2010; Cooke et al., 2015; Dragoi et al., 2000; Frenkel 
et al., 2006; Karmarkar and Dan, 2006; Kirkwood et al., 1996; Meliza and Dan, 2006; Yao 
and Dan, 2001). Moreover, exposure to visual stimuli with temporal dynamics, i.e. moving 
bars and sequences of gratings, consolidates sequential firing across neurons in a 
stimulus-specific manner (Gavornik and Bear, 2014; Xu et al., 2012). While it is becoming 
increasingly clear that individual neurons in the primary visual cortex are flexible encoders 
that modify their filter characteristics through visual experience, it remains deeply puzzling 
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how these cells coordinate and constrain each other’s responses, in meaningful ways, in 
order to extract improved representations of stimulus structure.  
 
The primary visual cortex has traditionally been regarded as a passive filter bank 
converting sensory input into a sparse code for further feed-forward processing across the 
visual hierarchy. Yet, stimulus-evoked responses in the primary visual cortex propagate 
through the local circuitry in wave-like patterns (Benucci et al., 2007; Xu et al., 2007, 
Grinvald Arieli and Janke) and can persist long after the cessation of stimulation (Benucci 
et al., 2009; Funayama et al., 2015; Huang et al., 2008; Nikolić et al., 2009). These 
complex and temporally-extended population responses have been implicated in reward 
timing (Chubykin et al., 2013; Gavornik et al., 2009; Shuler and Bear, 2006), working 
memory (Harrison and Tong, 2009; Munneke et al., 2010; Supèr et al., 2001) and are 
known to interact with (Benucci et al., 2009; Funayama et al., 2015; Gavornik and Bear, 
2014; Nikolić et al., 2009; Wolff et al., 2017) and modulate the perception of (Brascamp et 
al., 2007; Fischer and Whitney, 2014; Funayama et al., 2015; Huang et al., 2008; 
Kahneman et al., 1992) subsequent visual stimulation. These dynamic properties exhibited 
by early visual neurons together with the exposure-dependent changes of stimulus-
responses, suggest a direct involvement of primary visual cortex in the active distributed 
representation of more complex visual features, thus supporting a more constructive 
interpretation of primary cortex function (Olshausen and Field, 2005).  

Here, we investigate the impact of visual exposure on the distributed response dynamics of 
populations of neurons, recorded simultaneously in cat area 17. We expand on previous 
studies on exposure-induced learning, by considering stimuli that are less redundant than 
oriented bars and gratings from an information perspective and thus better suited to 
capture aspects of distributed coding. In particular, we examine how brief, repetitive 
exposure to a large set of abstract visual shapes (letters of the Latin alphabet and Arabic 
numerals), affects the capacity of a hypothetical downstream decoder to identify the 
presented stimulus based on population activity. We employ brief stimulus presentations at 
high contrast, known to induce strong reverberatory population activity (Funayama et al., 
2015; Huang et al., 2008; Nikolić et al., 2009) and report exposure-driven changes in 
single-unit response properties, i.e. stimulus discrimination, firing rate magnitude and 
variability. Importantly, we find that the performance of a classifier trained to predict 
stimulus identity, based on short vectors of data, is improved by stimulus exposure over 
the course of a recording session: early trials have lower performance scores than late 
trials in a session. By characterizing the correlations between pairs of neurons and the 
selectivity of low-dimensional stimulus representations extracted via principal component 
analysis, we show that this optimized encoding of stimulus structure relies on coordinated 
changes that affect both spatial and temporal aspects of population dynamics. 

Results 
We recorded the activity of neuronal populations from area 17 of lightly anesthetized cats 
using silicon-based multi-electrode arrays (5 animals, 11 recording sessions with 
independent electrode insertions). We applied standard thresholding and spike-sorting 
techniques in order to isolate action potentials from single neurons and multiunit clusters 
(Materials and Methods). The receptive fields (RFs) of the recorded units (27-52 units per 
session, 443 units in total) were located nearby in visual space and could be jointly 
stimulated by a single luminance stimulus, flashed for 100 milliseconds over a black 
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background (Figure 1A). We used a large set of abstract shapes (34 uppercase letters and 
digits) as stimuli, which, due to their inherent structure, differentially activated the 
population of neurons with differing RFs. All stimuli were presented 50 times, in random 
order.  
 
Previous studies have shown that brief stimulus presentations at high contrast produce 
strong persistent activity in primary visual cortex (Funayama et al., 2015; Huang et al., 
2008). In our data, the flashed visual stimulus evoked a biphasic population response 
(example in Figure 1A), with an initial transient component which started immediately after 
stimulus onset and a delayed reverberatory component which started ~200 ms after 
stimulus offset. The reverberatory response was remarkably long lasting: 296 out of 443 
units (66.8%) fired above the baseline for the entire duration of the trial (one-tail t-test, 
p<0.05).   

We investigated the impact of visual exposure on these complex population responses 
from area 17, by subdividing each recording session into two or five consecutive trial-
blocks and by comparing the early trials to the late trials in each session (schematic in 
Figure 1B).  

Exposure triggers changes in single unit response properties 

We began by measuring the impact of visual exposure on the ability of single units to 
discriminate visual shapes. For each unit, we calculated the discriminability index d’ 
(Cohen, 1977), which quantifies the difference between the mean responses to different 
stimuli relative to the standard deviations of those responses across trials. When early and 
late trials in each session were compared, we found that visual exposure led to a 
significant increase in average d’ across units (Figures 1C and D, 8.38% d’ increase, 
paired t-test, p = 6.4 x 10-13, 100-800 ms, 443 units). The increase was particularly 
pronounced during the reverberatory part of the population response (10.86% increase for 
the interval 300-600 ms, paired t-test p = 2.8x10-12), while no significant change in d’ was 
found during the early onset transient (2% increase for the interval 0-300 ms, paired t-test 
p = 0.1). Since this analysis compared only two blocks of trials, it obscured the temporal 
evolution of visual exposure effects. When sessions were split into 5 blocks of trials, we 
found that the average d’ across units improved gradually with exposure and did not reach 
a saturation point (Figure 1E, 10.9% increase between block 1 and 5, paired t-test p = 
1.3x10-7, the black line indicates the linear fit, y = 2.4 + 98.66), suggesting that further 
improvements in d’ may be possible with further exposure.  
 
In a subset of sessions, the recordings were performed with 32-channel laminar arrays, 
allowing us to investigate how exposure driven changes in single-unit d’ varied as a 
function of cortical depth (7 sessions, 289 units). We applied current source density (CSD) 
analysis by calculating the second spatial derivative of recorded voltages and estimated 
the location of the earliest current sinks which occur in thalamo-recipient layers 4 and 6 
(example in Figure S1 A). We split the units based on their laminar location into 
infragranular (IG), granular (G) and supragranular (SG) units. We found that the exposure 
driven increase in stimulus discrimination was significant at all laminar depths (Figures 1F 
and S1; paired t-test, p = 0.03, SG; p = 0.002, G; p = 1x10-9, IG). Interestingly, the peak d’ 
was significantly higher for SG and G units compared to IG units (one tail t-test, peak 
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SG>IG, p = 0.002 early trials, p = 0.021 late trials; peak G>IG, p = 0.00007 early trials, p = 
0.0001 late trials).  
 
Next we investigated how changes in single-unit d’ relate to changes in other single-unit 
response properties. An increase in stimulus discrimination could be explained by an 
increased difference between mean responses to different stimuli, or by a reduction in 
response variability. We found that the mean firing rate across all 443 recorded units, 
increased significantly with visual exposure for the reverberatory part of the response 
(Figure 2A,  5.2% increase, paired t-test p=7x10-9, 100-800 ms; 6.2% increase, paired t-
test p=2x10-8, 300-600 ms), while a significant decrease in firing rates was observed for the 
transient response (4% decrease, paired t-test p=0.001, 0-300 ms). In individual sessions, 
visual exposure led to a significant increase in mean firing rates in 9 out of 11 sessions 
(Figure S2, paired t-test, p<0.05). Over the course of the reverberatory response, the mean 
firing rate was correlated with the mean discriminability index, i.e. higher firing was 
associated with higher discrimination (Figure 2B, z-scored data from 11 sessions for the 
interval 300-600 ms, Spearman r = 0.58 early trials; r = 0.36 late trials). Interestingly, 
similar firing rates were associated with higher d’ values for late compared to early trials in 
a session (regression lines y = 0.47x - 0.35 early trials; y = 0.4x + 0.36 late trials, Figure 
2B), suggesting that the increased firing rate could not entirely account for the 
improvement in discrimination. When sessions were split into 5 blocks of trials we found a 
gradual increase in firing rate with visual exposure (Figure 2C, 5% increase between block 
1 and 5, paired t-test p = 1x10-6, linear fit y = 3.36x+97.81) 
 
The variability of single unit responses across trials was quantified by a simple measure, 
the Fano factor, calculated as the spike-count variance divided by the spike-count mean 
(Fano, 1947). In agreement with previous findings (Churchland et al., 2010), we observed 
decline in neuronal variability following stimulus onset by an average 14.7% across all units 
(the baseline to trough drop in variability ranged from 6.4% to 37% across sessions). 
Comparing early and late trials in a session, we found that visual exposure led to a 
significant decrease in response variability (Figure 2D, 2.5% decrease, paired t-test 
p=0.013, 0-300 ms; 3.5% decrease, paired t-test p=8x10-5, 300-600 ms; 3.3% decrease, 
paired t-test p=0.0001, 100-800 ms). In addition, over the course of the reverberatory 
response, the mean firing rate variability across units was negatively correlated with the 
mean discriminability index (Figure 2E, z-scored data from 11 sessions for the interval 300-
600 ms, Spearman r = -0.30 early trials; r = -0.38 late trials). In addition, similar variability 
levels were associated with enhanced discrimination for late trials compared to early trials 
in a session (regression lines y = -0.29x - 0.33 early trials; y = -0.38x + 0.3 late trials). 
When sessions were split into 5 blocks of trials we found that firing variability decreased 
gradually with visual exposure (Figure 2F, regression line y = -0.40x + 99.76 for the interval 
300-600 ms). 
 

Population encoding of visual shapes improves with visual exposure 

We next investigated how visual exposure affects the capacity of a hypothetical 
downstream decoder to identify stimuli based on the output of primary visual cortex 
populations. We addressed this question directly by employing a decoding approach. To 
this end, average unit responses within time bins varying between 10-400 ms were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2018. ; https://doi.org/10.1101/502328doi: bioRxiv preprint 

https://doi.org/10.1101/502328
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5	

converted into activity vectors and a Bayesian classifier was trained to determine stimulus 
identity using a 100-fold cross-validation procedure (schematic in Figure 3A, see Materials 
and Methods for details). A separate classifier was trained for each time bin (e.g. 43 
classifiers were trained for a 1100 ms long trial, with 50 ms time bins and 25 ms overlap 
between adjacent bins). In all sessions, classifiers trained on short 50 ms integration 
windows performed significantly above chance level (Figure 3B, data grouped by animal, 
chance level = 2.94% for 34 stimuli). In agreement with previous studies employing briefly 
flashed visual stimuli (Funayama et al., 2015; Nikolić et al., 2009; Volgushev et al., 1995), 
the population vectors of the reverberatory activity allowed for better classification of the 
stimuli than the initial transient response, indicating that intrinsic circuit computations 
improved the separability of stimulus specific population responses. Classification 
performance was also enhanced by the repetitive presentation of the set of visual shapes 
and this effect was confined to reverberatory activity. The time courses of performance 
along the trial varied between animals, but were similar for early and late trials within each 
session (individual performance profiles in Figure S3) and thus could be quantified by the 
area under the curve (AUC). When the experimental sessions from each animal were 
pooled together (Figure 3B), both the exposure driven increase in AUC for performance 
(average increase 33%, range 14-64%, t-test p<0.00006) and the increase in peak 
performance (average increase 27.7%, range 13-59.6%, t-test p<0.0003), were significant 
in all five animals. In individual sessions, visual exposure led to a significant increase in 
AUC for performance in 9 out of 11 sessions (average increase of 26%, t-test p<0.03, 
Figure S3). Absolute peak performance scores ranged from 8 to 49.5% correct for early 
trials and 16.5 to 59.6% correct for late trials and increased significantly in 8 out of 11 
experimental sessions (36% average increase, t-test p<0.016), while no session showed a 
significant decrease.  

The integration time window affected the difference in decoding performance between 
early and late trials (Figure 3C). Decoders that counted spikes over intermediate 
integration windows (50-200 ms) had large performance scores and showed significant 
differences in performance AUC between early and late trials (t-test, p<0.05), while very 
short (10 ms) and very long (400 ms) integration windows, resulted in lower performance 
scores and reduced improvements in performance AUC (t-test, p>0.05). Additionally, we 
investigated the impact of task difficulty on decoding performance, by varying the number 
of stimuli being decoded from 2 to 32 (Figure 3D). We found that classification of 8 or more 
visual stimuli led to significant differences between early and late peak performance (t-test, 
p<0.05), whereas classification of 2 or 4 stimuli (t-test, p>0.05) did not, as fewer stimuli led 
to ceiling effects (e.g. 2 class problems had early peak performance scores over 90% in 4 
out of 11 sessions).  

Previous studies have indicated that remarkably little stimulus-exposure can modify the 
response properties of primary visual cortex neurons. For example, as few as 100 
repetitions of a moving light spot altered the internal dynamics of V1 neurons to such an 
extent that it enabled post-exposure cue-triggered recall (Xu et al., 2012). Given the large 
number of stimuli in our set, in most of our recordings, individual stimuli were repeated only 
50 times. However, we tested the effects of a larger number of repetitions in a control 
session that consisted of 5100 trials (150 trials per stimulus). In this case, we observed an 
increase in performance AUC that continued past 50 repetitions per stimulus (Figure S4), 
suggesting that the observed effects can gain further strength with longer exposure.  
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Spike-count correlations are reduced by visual exposure 

Having established that visual exposure benefits stimulus encoding in primary visual 
cortex, we next investigated how exposure altered the structure of population activity. A 
comprehensive analysis of the structure of high-dimensional distributions is difficult. As a 
first approach we examined how repeated exposure affects shared trial-to-trial response 
co-fluctuations between units: for each pair of simultaneously recorded units and each 
stimulus, we calculated the correlation coefficient between spike-count responses across 
trials. This measure, termed spike-count correlation or noise correlation, is known to impact 
the amount of information in a population code (Averbeck et al., 2006). Spike-count 
correlations are usually estimated over longer time intervals in order to avoid the 
occurrence of non-Gaussian distributions of spike-counts. Therefore, we calculated 
correlations over a 300 ms interval (300-600 ms after stimulus onset) corresponding to the 
period in the trial with high classification performance. We found that noise correlations 
were on average positive (Figure 4A, mean SC 0.095 +- 0.0015 SEM and 0.075 +- 0.0014 
SEM, early and late trials respectively), indicating the existence of shared variability 
throughout the population. In addition, repeated exposure significantly reduced the strength 
of spike-count correlations (21% decrease, paired t-test, p <10-17) over the course of the 
session. In order to investigate how this reduction in shared variability depends on the 
stimulus preference of individual neurons, we calculated spike-count correlations as a 
function of signal correlations (Figure 4B). Signal correlations were computed as the 
correlations between the mean responses of neurons to the various stimuli. Consistent with 
previous studies (Cohen and Maunsell, 2009; Kohn and Smith, 2005), we found that spike-
count correlations were highest for pairs of neurons with similar stimulus preferences 
(positive signal correlations) and lowest for pairs of neurons with opposing stimulus 
preferences (negative signal correlations). In our data, the effect of repeated exposure on 
spike-count correlations was present irrespective of the stimulus preference of the two 
neurons and it was stronger for neurons with opposing preferences (78% decrease, two-
tailed t-test, p<10-9, signal correlations<-0.1; 9% decrease, two-tailed t-test, p<10-6, signal 
correlations>0.1).  Interestingly, attention has also been shown to decrease the strength of 
spike-count correlations, with a stronger effect on units with opposing stimulus preferences 
(Cohen and Maunsell, 2009).  

From a decoding perspective, ignoring spike-count correlations can lead to a significant 
loss in performance (Averbeck et al., 2006; Graf et al., 2011). We found that a support 
vector machine with quadratic features trained on trial-shuffled data and tested on original 
data (spike counts over the same 300-600 ms interval, see Materials and Methods), 
performed more poorly compared to a decoder trained on the original data, with access to 
the intact correlation structure (Figure 4C, mean performance 22.5% +- 1.32 SEM intact vs 
19.7%+-1.22 SEM scrambled, early trials; 26.7% +- 1.44 SEM intact vs 23.2%+-1.37 SEM 
scrambled, late trials). Interestingly, the performance loss was significant for both the early 
and late trials in a session (21.6 % decrease, paired t-test, p = 0.04 early trials; and 25.9 % 
decrease, paired t-test, p = 0.045 late trials), suggesting that while repeated exposure 
decreased the overall level of spike-count correlations in the data, a portion of spike-count 
correlations present in both early and late trials contributed positively to the population 
code. This finding is in line with a recent report in awake macaques showing that, when 
stimuli are structured, spike-count correlations are stimulus specific (Bányai et al., 2017). In 
addition, the performance of the classifier was significantly higher for late trials compared 
to early trials in a session both for the intact data and the scrambled data (21.4 % increase, 
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paired t-test, p = 0.032 intact data; and 18.5 % increase, paired t-test, p = 0.008 scrambled 
data). The increase in performance in the scrambled data is suggestive of changes in 
response properties that are independent of the correlation structure, e.g. the single 
neuron properties studied in the previous section.  

Population responses cluster in low-dimensional projections 

To gain insight into how exposure driven changes in pairwise correlations manifest 
themselves at the level of full population vectors we took a projection approach. The firing 
rates of a set of n neurons (n, number of units recorded in each session) at a particular 
time can be represented as a point in a n-dimensional vector space. We mapped these 
high-dimensional data into a low-dimensional projection space via principle component 
analysis (PCA). We tracked the response vectors corresponding to different visual stimuli 
at multiple time points along the trial (50 ms time bins, see Materials and Methods). Over 
the course of the trial, the population responses to different stimuli (Figure 5A, letters “A”, 
“B” and “C” and Figure 6a, 34 letters and digits), clustered together in the space defined by 
the first two principle components in a stimulus specific manner.  After stimulus onset, the 
responses gradually segregated into specific subspaces. We found that these subspaces 
were more differentiable following repeated stimulus exposure: late trials showed 
enhanced segregation of stimulus-specific responses compared to early trials in a session 
(Figures 5A and 6A upper vs. lower panels; individual sessions in Figure S5). To quantify 
this segregation of clusters, we calculated for each data point the ratio between the 
Euclidean distance to its cluster center (defined as the average of all points evoked by the 
same stimulus) and the distance to the center of the data (defined as the average of all 
points irrespective of stimulus condition). This ratio (R) is close to zero if the points 
belonging to each stimulus cluster are well segregated in space and close to one if the 
data is spread randomly. For each session we picked the time point in the trial 
corresponding to the peak classification performance and calculated mean R across trials 
for each of the 34 clusters, i.e. 34 stimuli (Figure 5B). A scatter plot of R values 
corresponding to early and late trials for 34 stimuli in 11 sessions revealed that R 
decreased with stimulus exposure, i.e. stimulus clusters were better segregated for the late 
trials in a session. The change in R was significant (11% average decrease, paired one-
tailed t-test, p = 0.0029, Figure 5C and D).  
 
Next we determined whether the composition of principle components comes primarily 
from signal correlations (correlations between neurons in their mean responses to multiple 
stimuli), or from a combination of signal and spike-count correlations (correlations between 
neurons in their responses to repetitions of a single stimulus). We removed spike-count 
correlations by shuffling the data across trials, separately for each stimulus condition. Note 
that the temporal bin used for this analysis is much shorter (50 ms) compared to the bin 
used in the previous section for calculating pair-wise correlations (300 ms). In order to 
compare responses with identical distributions, we projected the original data in the 
principle component space determined with and without shuffling (compare Figure 6 A, B, 
see Materials and Methods for details). Such a shuffling, explicitly tests whether spike-
count correlations are helpful in determining meaningful principle components, which allow 
for a good segregation of stimulus-specific responses. We quantified the quality of the 
segregation with the help of a Bayesian decoder trained on data projected in the principle 
component space determined with or without prior shuffling and tested on unshuffled data 
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(20-fold validation procedure, see Materials and Methods). In the space described by the 
first two principle components, the effect of trial shuffling was substantial (2 PCs, Figure 6C 
left, 6D, 21.3 % decrease AUC, paired t-test p = 0.0001, 28.9 % decrease peak 
performance p = 0.0416 for early trials; 24.6 % decrease AUC, paired t-test p = 0.0025, 
23.1 % decrease peak performance p = 0.018 for late trials). In the space described by the 
first ten principle components, the detrimental effect of trial shuffling was even stronger (10 
PCs, Figure 6C right, 6d, 50.3 % decrease AUC, paired t-test p = 0.00018, 51 % decrease 
peak performance p = 0.00013 for early trials; 54.5 % decrease AUC, paired t-test p = 
0.00007, 49.8 % decrease peak performance p = 0.00089 for late trials). The effect of trial 
shuffling on the AUC was significantly stronger for late trials compared to early trials in a 
session (10 PCs, paired t-test p = 0.00063). This suggests that knowledge about the 
structure of spike-count correlations in early and, even more so, in late trials can 
significantly enhance decoding performance in low-dimensional projections. Interestingly, 
only a small drop in the amount of total explained variance was observed after trial 
shuffling (10 PCs, 5.3 % decrease, paired t test p = 0.000007 for early trials; 4.7 % 
decrease, paired t-test p = 0.000007 for late trials) in spite of a strong decrease in 
decoding performance (>50%). In addition, no significant differences were found in the 
amount of variance explained by the first 10 PCs between early and late trials in a session 
(paired t-test, p = 0.3696) in spite of a significant increase in peak performance (23.14 % 
decrease, paired t-test, p = 0.0132). The fact that the same number of PCs are required to 
explain the same amount of variance for both early and late signals, suggests that the 
advantages in performance come primarily from stimulus-specific constraints on the 
correlation structure of the population response. Such constraints affect both the 
correlation structure derived from the mean population responses to multiple stimuli (signal 
correlations, Figure 6C and 6D, blue and yellow bars), as well as the complete correlation 
structure including that derived from responses to repetitions of a single stimulus (signal 
and spike-count correlations, Figure 6C and 6D, gray and red bars). 

Exposure optimizes both variant and invariant aspects of population dynamics 

The segregation of evoked responses into localized stimulus-specific subspaces varied 
substantially over the course of the trial and peaked at different moments in time for 
different experimental sessions (Bayesian classifier Figure 3B and S3). We therefore 
examined the temporal dynamics of the population activity and investigated whether the 
evoked response to a stimulus was stable (invariant) or variable (variant) over the course 
of the trial, i.e. whether different time bins along the trial encode information about a 
stimulus in a similar or different manner. To this end, we concatenated the population 
activity vectors over three consecutive time bins of 50 ms each (Figure 7A). We calculated 
stimulus decoding-performance for the concatenated data and a control, where data were 
temporally scrambled.  We found that temporally scrambled data had significantly lower 
performance scores compared to the original concatenated data (35% decrease, paired t-
test p = 6.78 *10-6 for early trials; 39% decrease, paired t-test p = 1.93 *10-5 for late trials). 
The significant penalty incurred by scrambling data in the temporal domain implies that the 
encoding of visual stimuli varies at a fast time-scale, i.e. the representation of stimulus S at 
time t is different from that at time t+50 or t+100 ms. Taken together with the results from 
the previous sections, this suggests that the structure of the population response, in both 
the spatial and the temporal domain, is essential for a high quality encoding. Interestingly, 
for temporally scrambled data, the late trials preserved a significant advantage over the 
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early trials in a session, albeit reduced (Figure 7b, original concatenated data, 24% 
increase for late trials, paired t-test p= 0.0087; temporally scrambled data 15% increase for 
late trials, paired t-test p = 0.0028), suggesting that temporally invariant representations 
also benefit from stimulus exposure. Finally, a Bayesian classifier trained on 3 
concatenated consecutive 50 ms bins significantly outperformed a classifier trained on a 
single large 150 ms bin (18% relative decrease, paired t-test p = 3.14 x 10-5, early trials; 
23% decrease, paired t-test p = 3.39 x 10-7, late trials) emphasizing again the richness of 
information present in the temporal domain. Interestingly, the relative contribution of 
temporal structure to classification performance was stronger for late than early trials in a 
session, indicating a potential refinement of temporal information with stimulus exposure.  

Discussion 
We have demonstrated that repetitive exposure to briefly flashed visual shapes improves 
the discriminative capacity of primary visual cortex populations. Specifically, a Bayesian 
classifier trained to decode stimulus identity based on population vectors during brief 
temporal windows performed better during late trials as compared to early trials in a 
session. Classification performance was positively correlated with the mean firing rate and 
negatively correlated with the firing rate variability, both during the trial and over the course 
of a session. However, neither of these measures could fully account for the increase in 
classification performance: for sessions in which the firing rate didn’t change across the 
session, decoding performance was still higher for late than for early trials. Rather, 
stimulus discriminability originated primarily from an increase in selectivity that was 
apparent both at the level of individual units, as quantified by d-prime, and at the level of 
the population, as captured by the low-dimensional projections.  

Additionally, we found that stimulus exposure decreased the overall strength of correlated 
variability across trials, i.e. pairwise spike-count correlations were reduced with exposure. 
Such a reduction in shared variability can benefit stimulus encoding even in the absence of 
firing rate changes (Averbeck et al., 2006) and has been previously reported during 
attention and perceptual learning tasks (Cohen and Maunsell, 2009; Gu et al., 2011; Ni et 
al., 2018). Alternatively, an enhancement in signal, rather than a reduction in variability, 
could be the main driver behind exposure-driven changes in stimulus selectivity. The 
enhanced segregation of stimulus-specific clusters which we observed in the low-
dimensional projections of our data, suggested a combination of both effects: stimulus-
exposure reduced the cluster radius, indicative of a reduction in across-trial variability, and 
increased the overall spread of the data, and implicitly the distance between cluster 
centers, indicative of an increase in signal. Interestingly, in both early and late trials, the 
removal of spike-count correlations through trial shuffling, decreased classification 
performance, as well as the segregation of clusters in the PCA space, strongly suggesting 
that the intact correlation structure was advantageous for stimulus discrimination. Overall, 
the effect of stimulus exposure on spike-count correlations was complex: while the strength 
of correlations was reduced in late trials, knowledge about their structure was beneficial for 
stimulus discrimination both for the early and late trials in a session.  

We found that a brief, high contrast stimulus resulted in a stereotyped, biphasic response, 
consisting of a high amplitude transient followed by a delayed reverberatory response. 
Decoding performance diverged from the stereotyped dependence on rate dynamics, with 
accuracy peaking approximately 300 ms after stimulus offset, during the reverberatory 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2018. ; https://doi.org/10.1101/502328doi: bioRxiv preprint 

https://doi.org/10.1101/502328
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10	

component of the response.  Additionally, performance tended to remain high for the entire 
duration of the trial, suggesting that a considerable amount of stimulus-specific information 
was maintained by the dynamic population response. Sustained and information-rich 
sensory responses, persisting beyond the period of sensory stimulation, have been 
reported previously in a number of different sensory modalities and species. In vivo whole-
cell recordings from mouse primary auditory cortex during an oddball paradigm showed 
that excitatory neurons and parvalbumin-positive inhibitory interneurons exhibited a 
delayed response component, approximately 300 ms post-stimulus, which was modulated 
by stimulus content and carried signatures of deviance detection (Chen et al., 2015). In the 
primary auditory cortex of awake marmosets, preceding stimuli suppressed or facilitated 
responses to succeeding stimuli for durations greater than one second (Bartlett and Wang, 
2005). In mouse primary sensory cortex, the early sensory response (<50 ms) to a single 
brief whisker deflection encoded stimulus information, while the later activity (50-400 ms) 
was shown to drive the subjective detection (Sachidhanandam et al., 2013). Notably, in the 
primary visual cortex of awake mice, an oriented flashing light induced a biphasic 
membrane voltage response that consisted of an early, transient depolarization and a 
delayed, slow depolarization (Funayama et al., 2015). The delayed activity exhibited high 
orientation selectivity and influenced the evoked response to subsequent inputs in an 
orientation-selective manner. Moreover, the influence had behavioral consequences: in a 
psychophysics task in which human subjects were asked to report the direction of motion 
of a drifting grating, their response latencies were modulated by a preceding matching or 
non-matching grating flash, presented 0.5 seconds earlier (Funayama et al., 2015). In a 
separate study, a simultaneous change in both stimulus and background gave rise to 
delayed activity in macaque V1 (Huang et al., 2008). The magnitude of the delayed 
response varied with the size of the background and was strongly correlated with the 
perception of a visual aftereffect (~300 ms post-stimulus) demonstrated through human 
psychophysics. Finally, in human EEG, information about a previously presented visual 
stimulus could be decoded from an impulse response, even in the absence of lingering 
delay activity (activity-silent states), for long intervals after stimulus presentation (Wolff et 
al., 2017). Taken together, these studies highlight a propensity for primary visual cortex to 
maintain sensory information, far beyond the temporal intervals required by the traditional 
feed-forward model of the ventral stream. 

Instead, the findings outlined above and the results presented in the current manuscript are 
compatible with a dynamic coding framework for recurrent processing (Buonomano and 
Maass, 2009). In this framework, the cortical response to a stimulus emerges from an 
interaction between the input signals and the internal dynamical state of the network, 
including the ongoing activity (active states), but also the time-dependent properties of 
neurons and synapses (hidden states). According to this theory, efficient recurrent 
processing relies on two simple requirements:  (i) stimulus responses must persist beyond 
the duration of the stimulus, establishing a brief memory of recent events that can be 
integrated with novel incoming information (fading-memory property) and (ii) the temporal 
evolution of network states in response to different stimuli must result in reproducible 
stimulus-specific trajectories (separability property). Dynamic changes in hidden states 
through exposure to a specific set of inputs can presumably optimize the memory and 
separability properties exhibited by a recurrent circuit, by altering the network’s stimulus-
response mapping. In computational models, changes in hidden states via local 
experience-dependent plasticity rules were shown to explain numerous experimental 
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findings on cortical variability (Hartmann et al., 2015) and to increase the performance of 
recurrent networks on memory and prediction tasks (Lazar et al., 2009). Similarly, in our 
data, we found that experience-dependent changes gradually optimized the encoding of 
stimuli by primary sensory cortex populations. Given that the experiments were performed 
under anesthesia, the changes described here are likely to involve unsupervised 
“automatic” mechanisms, independent of attention and conscious control. However, it is 
also possible the anesthesia changes the dynamic regime of the cortex and further work is 
necessary to determine if the effects reported here persist in the waking state. 

The network of connections responsible for the observed reverberation of visual responses 
and the functional changes underlying the marked increase in stimulus discrimination with 
stimulus exposure are still unknown.  Given the presence of feedforward and feedback 
thalamo-cortical interactions (Hubel and Wiesel, 1959; Pei et al., 1994), we cannot exclude 
the possibility that exposure driven changes in primary cortex responses originate from 
interactions with subcortical structures. In fact, early vision studies have shown that slowly 
decaying inhibitory postsynaptic potentials in the lateral geniculate nucleus can maintain 
stimulus specific information for up to 300 ms and can modulate subsequent responses to 
reoccurring contours (Phillips and Singer, 1974; Singer and Phillips, 1974).	However, in our 
data, stimulus exposure resulted in a stimulus-specific increase in response selectivity, 
suggests that experience dependent changes affecting the local recurrent interactions in 
primary visual cortex and/or the long-distance recurrent interactions with higher cortical 
areas, are more likely responsible for the observed effects. The complex recurrent 
dynamics of the early visual system arise on the backbone of an intricate connectivity 
structure (Gilbert and Wiesel, 1992; Stettler et al., 2002), which has been refined during 
development to capture the statistical properties of the visual environment (Barlow, 1987; 
Berkes et al., 2011; Helmholtz, 1867; Löwel and Singer, 1992; Singer and Tretter, 1976). 
The structure and the synaptic weights of both local and long-range connectivity in the 
visual cortex reflect regularities present in visual scenes and thus are likely to serve as 
implicit knowledge for the processing of sensory evidence. As our data suggest, visual 
exposure appears to shape the internal network dynamics in a manner that results in a 
refinement of sensory coding, akin to perceptual learning (Crist et al., 2001; Gilbert et al., 
2009; Li et al., 2004; Sagi and Tanne, 1994; Schoups et al., 2001; Vogels and Orban, 
1985; Yan et al., 2014, Seitz and Watanabe, 2009; Watanabe et al., 2001). As such, the 
primary visual cortex appears to optimize its processing of visual information as a function 
of prior experience via its specifically wired, reverberating network in order to provide a 
highly selective representation of familiar stimuli during the late response phase. Within the 
primary visual cortex this optimization process was apparent across all laminae and 
seemed to favor the supragranular and granular compartments. 

From a functional perspective, the immediate responses of primary visual cortex neurons 
to feed-forward thalamic input carry information about simple visual features such as 
orientation, spatial frequency and motion (Hubel and Wiesel 1962). In contrast, the delayed 
responses that originate from recurrent interactions, carry information about more global 
aspects of scene organization (Ito and Gilbert, 1999; Lamme and Roelfsema, 2000) and 
are modulated by stimulus history (Benucci et al., 2009; Funayama et al., 2015; Gavornik 
and Bear, 2014; Huang et al., 2008; Nikolić et al., 2009; Volgushev et al., 1995), task 
context (Gilbert and Li, 2012; Li et al., 2004), behavioral state (Bradley et al., 2003), reward 
expectation (Chubykin et al., 2013; Gavornik et al., 2009; Shuler and Bear, 2006) and 
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sensory exposure (Cooke and Bear, 2010; Dragoi et al., 2000; Frenkel et al., 2006; 
Gavornik and Bear, 2014; Karmarkar and Dan, 2006; Xu et al., 2012; Yao and Dan, 2001). 
The complexity of these responses indicates that the primary visual cortex may contribute, 
at least partially, to functions traditionally attributed to higher order cortical areas 
(Olshausen and Field, 2005). Our study adds further support to the idea that neurons in the 
primary visual cortex are flexible encoders that alter their responses through visual 
experience. In particular, we have provided compelling evidence that exposure to a large 
set of visual shapes optimizes the population encoding in early visual cortex, resulting in a 
more efficient readout of stimulus-specific information. These findings suggest that the 
efficient visual discrimination of familiar stimuli can be partially achieved through separation 
of neuronal representations at the earliest cortical stage of sensory processing.  

Materials and Methods  

Electrophysiological recordings and data processing 
Data was recorded from five adult cats under general anesthesia during terminal 
experiments in two separate laboratories. The general methods have been described 
thoroughly in previous publications (Ni et al., 2016; Nikolić et al., 2009). All procedures 
complied with the German law for the protection of animals and were approved by the 
regional authority (Regierungspräsidium Darmstadt). 
 
For one of the cats, anesthesia was induced by intramuscular injection of Ketamine (10 
mg/kg) and Xylazine (2 mg/kg) followed by ventilation with N2O:O2 (70/30%) and halothane 
(0.5%–1.0%). After verifying the depth of narcosis, pancuronium bromide (0.15 mg/ kg) 
was added for paralysis. Stimuli were presented binocularly on a 21 inch computer screen 
(HITACHI CM813ET) with 100 Hz refresh rate. To obtain binocular fusion, the optical axes 
of the two eyes were first determined by mapping the borders of the respective receptive 
fields and then aligned on the computer screen with adjustable prisms placed in front of 
one eye. Data was recorded with multiple silicon-based 16-channel probes from the Center 
for Neural Communication Technology at the University of Michigan (each probe consisted 
of 4 shanks, 3 mm long, 200 µm distance, 4 contact points each, 1,250 µm2 area, 0.3–0.5 
MΩ impedance at 1 kHz). To extract multi-unit activity, signals were amplified 10,000 and 
filtered between 500 and 3500 Hz.  
 
For four of the cats, anesthesia was induced by intramuscular injection of Ketamine (10 
mg/kg) and Medetomidine (0.02 mg/kg) followed by ventilation with N2O:O2 (60/40%) and 
isoflurane (0.6%-1.0%). After verifying narcosis, Vecuronium (0.25mg/kg/h i.v.) was added 
for paralysis. Data was collected via multiple 32-contact probes (100 µm inter-site spacing, 
~1 MΩ at 1 kHz; NeuroNexus or ATLAS Neuroengineering) and amplified (Tucker Davis 
Technologies, FL). Signals were filtered with a passband of 700 to 7000 Hz and a 
threshold was set interactively to retain multi-unit activity. 

Spike sorting  
The sorting of the recorded multi-units was performed offline via custom software that 
computed principal components of spike waveforms in order to reduce dimensionality and 
grouped the resulting data using a density-based clustering algorithm (DBSCAN). Both the 
well-isolated cells and the remaining multi-units, were included in the analysis.  
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Visual stimuli 
Stimuli consisted of 34 shapes: 26 letters (A–Z) and 8 digits (0–7). They were white on 
black background and spanned approximately 5–7 degrees of visual angle. In all sessions, 
we recorded 50 repetitions per stimulus; more than 200 repetitions per stimulus were 
recorded in session 042414. Trials were 1200 ms long with stimulus onset at 500 ms; 
stimulus onset was at 600 ms in session col10c05.  

Current source density analysis  

In 3 cats (7 sessions, 289 units), the recordings were performed with 32-channel linear 
arrays (100 micron spacing). Local field potentials to moving grating stimuli presented at 
maximal contrast were recorded either immediately before or immediately after the 
sessions with letters and digits. In these data, we applied current source density (CSD) 
analysis using a standard algorithm (Pettersen et al., 2006) based on the second spatial 
derivative estimate of the laminar local field potential time series. This analysis revealed 
successfully the short-latency current sink in the middle layers for each session, which has 
been shown to correspond most closely to layer 4Cα (Mitzdorf and Singer, 1979).  

Stimulus classification 
MATLAB and the Statistics Toolbox (The MathWorks, Inc.) were used for data analysis. 
An instantaneous Naïve Bayes decoder was trained and tested on individual time bins of 
population responses.  The size of a bin was 50 ms, unless specified otherwise. We 
performed cross-validation by randomly subsampling the data  (k-1% training, 1% test, k = 
100 repetitions). The task of the decoder was to determine the stimulus identity for each 
test trial, based on the population response in a particular time bin. Chance level was 
1/number of stimuli = 1/34. 
 
A SVM decoder with quadratic kernels was used in a similar manner for the computations 
shown in Figure 4. Here, we followed the analysis suggested in Averbeck et al., 2006 and 
tested whether a decoder would perform better or worse if not given access to the 
correlation structure present in the data. To this end, we trained our decoder on trial-
shuffled data (shuffling across trials within stimulus condition), tested on original data and 
compared this scenario with one in which the decoder was trained and tested on the 
original data.  

Principle component analysis (PCA) 

PCA was performed in order to visualize the high dimensional activity vectors 
corresponding to different visual stimuli. PCA was computed independently on 50 ms time 
bins of normalized spike count vectors for several relevant time windows in the trial (-100 
ms pre-stimulus activity, +100 ms, +300, +500 and +700 ms after stimulus onset). For 
Figure 5, PCA was computed on the trials corresponding to letters A, B and C. For Figure 
6, PCA was computed on the complete set of trials (34 stimuli).  
 
In several cases, we made modifications to the data handled by the decoder in order to 
test how the readout quality would be affected by those changes. For Figure 6, PCA was 
performed either on the original data (PCA original) or on trial-shuffled data (PCA shuffled). 
Independent trials of original data were then projected in these two PCA spaces. For both 
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projections, a Bayesian decoder was employed to separate the representations of 
population responses to different stimuli in the space described by either the first two or the 
first ten principal components. A k-fold validation method was employed (k=20): 19 parts of 
data were used to construct the PCA original and PCA shuffled spaces and to train the 
classifier. One part of data (original, not-shuffled) was used to test the performance of the 
classifier in the two projection spaces. This procedure was repeated 20 times, to obtain a 
reliable average.  
 
For Figure 7, data was concatenated over three consecutive 50 ms time bins, which 
increased the dimensionality of the data to three times the number of units. In order to test 
the specificity of temporal dynamics, the performance of a Bayesian decoder trained on 
concatenated data was compared to that of a decoder trained on temporally scrambled 
data (temporal scrambling over three consecutive time bins) and with that of a decoder 
trained on spike counts calculated over 150 ms.   

Supplemental Information 
The supplemental information for this article includes five figures. 
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Figures and figure legends 
 
 

 
 
Figure 1. Visual exposure enhances stimulus discrimination by primary sensory 
neurons.  (A) Cluster of receptive fields of simultaneously recorded multi-units (rectangles) 
relative to the location of a visual stimulus and peristimulus time histogram of population 
responses to stimulus “A". Responses display a transient component following stimulus 
presentation and a long-lasting reverberatory component. (B) In each session, 34 visual 
stimuli were presented 50 times each, in random order. Sessions were split in 2 or 5 
consecutive blocks of trials and analyzed separately. (C) Discriminability index (d’) for early 
(black) and late (red) trials in a session (2 trial-blocks, 11 sessions, 443 units). (D) Box 
plots showing effect of visual exposure on the distribution of d’ values across 443 units, for 
the 0-300 ms, 300-600 ms and 100-800 ms time-intervals. (E) Gradual increase in 
discrimination power with of visual exposure (5 trial-blocks, average d’ over the 300-600 
ms interval).  (F) Laminar analysis in a subset of sessions (289 units): box plots show 
changes in d’ across units from supragranular (SG), granular (G) and infragranular (IG) 
laminae (complete d’ profiles in Figure S1).  
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Figure 2. Visual exposure increases firing rates and decreases firing rate variability. 
(A) Average firing rates for early and late trials (matched baseline) showed significant 
increases in firing rates with visual exposure for the intervals 100-800 ms and 300-600 ms. 
(B) Normalized firing rates for 6 consecutive 50 ms temporal bins (300-600 ms) against the 
corresponding d’ scores, superimposed for all 11 recording sessions. Similar firing rate 
levels resulted in higher d’ scores in late trials (red) compared to early trials (black) in a 
session. (C) Gradual increase in firing rates with visual exposure for the interval 300-600 
ms (5 exposure blocks). (D) Response variability (Fano factor) for early and late trials 
(matched baseline) showed significant decreases in variability with visual exposure for the 
intervals 100-800 ms and 300-600 ms. (E) Normalized Fano factor scores plotted against 
d’ scores (similar to B). Similar FF levels resulted in higher d’ scores in late trials (red) 
compared to early trials (black). (F) Gradual decrease in response variability with visual 
exposure for the interval 300-600 ms (5 session blocks).   
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Figure 3. Visual exposure increases stimulus classification performance. (A) 
Illustration of decoding method: spike-count vectors over fixed time bins were used to train 
a Naïve Bayes classifier in order to estimate the probability of a given stimulus ‘S’ given the 
response ‘R’ (see Materials and Methods for details).  (B) Stimulus decoding performance 
was substantially above chance level (dotted line) for the reverberatory part of the 
population response (50 ms time bins, 25 ms sliding window). Grouped data by animal 
showed significant increases in performance peak and AUC in each individual animal: 
early trials (black) had lower performance scores compared to late trials (red) in a session. 
(C) Performance AUC using the integration bin size denoted on the x-axis for early and late 
trials. Performance is highest for intermediate integration intervals. (D) Peak classification 
performance as a function of task difficulty (number of stimuli being classified), relative to 
chance level (dotted lines). Differences between early and late trials are more pronounced 
for harder classification problems.  
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Figure 4. Visual exposure reduces spike-count correlations. (A) Mean spike-count 
correlations across trials as a function of signal correlations, which here measure the 
similarity of two neurons’ responses across stimulus conditions. Spike-counts were 
calculated over a 300 ms interval corresponding to the reverberatory part of the evoked 
response (300-600 ms, late trails (red) have lower correlation scores compared to early 
trials (black) in a session. Margins: Standard error of the mean. (B) Performance of a SVM 
with quadratic kernel trained with (original data, black and red) or without (shuffled data, 
gray and orange) intact correlation structure and tested on original data.  
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Figure 5. Visual exposure enhances the segregation of population responses into 
stimulus-specific clusters. (A) Early and late evolution of population responses to three 
visual stimuli (letters A, B and C) in the projection space described by the first two principle 
components, based on 50 ms time bins. Each marker represents the population activity 
(spike count in 50 ms) from a single trial to one of these three visual stimuli. Individual 
stimuli form segregated clusters, 300 ms after stimulus onset. The segregation is more 
pronounced for late trials compared to early trials in the experiment. (B) Scatter of average 
R values for all clusters in all sessions. For each cluster condition, the average R 
calculates the mean distance from all points to the cluster center divided by the distance to 
the center of all data. Late trials have lower R values compared to early trials in a session, 
suggesting an increased segregation of data points into clusters. (C) The average 11% 
drop in mean R is significant. (D) When calculated separately for each session, the drop in 
R is significant in 6 sessions. 
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Figure 6. Clustering of population responses is sensitive to the correlation structure 
exhibited in the data. (A) Early and late evolution of population responses to 34 visual 
stimuli (letters and digits) in the projection space described by the first two principle 
components, based on 50 ms time bins. (B) Trial-scrambling has a weak effect in the 
space described by the first two principle components. (C) Decoding the representations of 
stimuli in the space described by the first two (left), or ten (middle) principle components, 
reveals the importance of intact trial-specific population dynamics (34 stimuli, 11 
experimental sessions). (D) Decoding performance as a function of the number of principle 
components for early and late trials, original and scrambled data (34 stimuli, 11 
experiments). Note that for the original data, the advantage in classification performance 
does not originate from a difference in the amount of total variance explained.  
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Figure 7. Visual exposure enhances both temporally specific and temporally 
invariant aspects of stimulus encoding. (A) Schematic representation of scrambling 
procedure: in each session, the performance of a Naïve Bayes decoder trained on the 
spike-counts of N units in three consecutive 50 ms time bins (red or magenta) is compared 
to temporally scrambled data (blue) and to spike-counts over a single 150 ms time bin 
(black). (B) Over the course of the trial, decoding performance (three consecutive 50 ms 
time bins) is higher for late trials (red) compared to early trials (magenta) in a session 
(average over 11 sessions, shaded areas indicate s.e.m.). Temporally scrambled data has 
lower performance scores, but preserves a significant difference between early (dark blue) 
and late trials (light blue). (C) Differences in performance AUC are significant between 
early and late trials for all three conditions (11 sessions). The performance of a classifier 
trained on three consecutive 50 ms bins is significantly higher than that of a classifier 
trained on a single 150 ms bin, suggesting that responses are temporally specific. In 
addition, the improvement in classification performance based on temporally scrambled 
data suggests that also temporally invariant aspects of stimulus encoding benefit 
significantly from visual exposure. 
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