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Traditional cell type enrichment using fluorescence activated cell sorting (FACS) relies on 
methods that specifically label the cell type of interest. Here we propose GateID, a 
computational method that combines single-cell transcriptomics for unbiased cell type 
identification with FACS index sorting to purify cell types of choice. We validate GateID 
by purifying various cell types from the zebrafish kidney marrow and the human 
pancreas without resorting to specific antibodies or transgenes. 
 
The ability to enrich for different cell types from heterogeneous tissues underpins much of 
current biological and clinical research. Methods using FACS to enrich cells use reporter 
transgenes or fluorescent antibodies that are specific for the cell type of interest. However, 
limited availability of specific antibodies or - in case of reporter constructs - the need for 
genetic manipulation, limit this approach, especially in the case of human tissues. Here, we 
describe GateID, an optimization algorithm that combines single-cell FACS and transcriptome 
information with a goal to predict FACS gates for cell types that were identified by the single-
cell mRNA-sequencing (scRNA-Seq). It benefits from two technological breakthroughs:  single-
cell transcriptomics and FACS index sorting. Recent studies have demonstrated that a 
combining single-cell transcriptomics with index sorting can be used to better characterize 
cellular subpopulations1–3. Conversely, we reasoned that single-cell transcriptome data could 
be used to improve sorting of pure cell populations. Given a single-cell transcriptome training 
dataset GateID predicts novel FACS gates based on general properties such as cell size and 
granularity, nuclear staining, cellular proliferation, and mitochondrial activity. GateID allows the 
purification of specific cell types or states without the use of specific markers such as 
antibodies or transgenes. Importantly, GateID prediction is solely data-driven and does not 
require a priori information about FACS gates or cellular markers. 
 
The GateID workflow starts with generating a training dataset of the organ/tissue of interest 
(Fig. 1, step 1). To this end, single live cells are sorted while recording index data in all 
available scatter and fluorescent channels (Fig. 1, step 1a). Next, the transcriptome of all 
sorted single cells is sequenced using SORT-Seq4 and the cell type composition of the 
organ/tissue of interest is determined (Fig. 1, step 1b). The GateID training dataset is 
generated by merging the index sorting parameters with the cell type information obtained by 
scRNA-Seq for each cell (Fig. 1, step 1c). After defining the desired cell type, the 
computational gate design occurs (Fig. 1, step 2). At the core of GateID is an optimization 
algorithm that attempts to predict gates to obtain the maximum number of desired cells while 
minimizing the number of undesired cells. It iterates this procedure through all combinations of 
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FACS channels and subsequently through combinations of gates to predict best gates in terms 
of purity and yield (see Online Methods, Fig. 1, step 2d-e). Finally, the GateID predicted gates 
are experimentally validated using a new sample of the organ/tissue of interest (Fig. 1, step 3). 
Predicted gates are normalized to the new experimental dataset to correct for biological inter-
individual variability and FACS technical variability (Fig. 1, step 3f). Single cells passing 
through normalized GateID gates are sorted and sequenced using scRNA-Seq (Fig. 1, step 
3g-h). The cell type composition of the GateID enriched library is determined and the 
experimental purity of the GateID gates is calculated.  
 
To test our method, we first decided to focus on the adult zebrafish whole kidney marrow 
(WKM), the primary site of production of hematopoietic cells in zebrafish. Traditionally, their 
isolation relies on a limited number of antibodies, transgenic lines or manual gating subject to 
high variability5,6. To check if GateID could be a more attractive method, we first generated a 
training dataset of single live WKM hematopoietic cells (DAPI-) by merging FACS index data in 
12 dimensions (scatter and fluorescent dimensions from a BD FACSJazzTM) and cell type 
information for 1252 cells from 3 zebrafish. Using cell clustering and known markers, we 
identified 7 hematopoietic cell types7–11 (Supplementary Fig. 1a-c, see Online Methods) and 
first aimed to enrich for eosinophils. GateID predicted a yield of 46.9% and a purity of 79.3% to 
isolate eosinophils using a combination of two gates (Fig. 2a, Supplementary table 1). To 
experimentally validate the predicted gates, we sorted enriched (GateID) and unenriched (live 
cells) single cells from three independent WKMs (Fig. 2b, representative example for WKM 1 to 
3). As described above, GateID predicted gates were normalized to each new WKM in order to 
correct for inter-individual and technical variability (Fig. 2b, black gates are non-normalized 
while red gates are normalized to WKM 2 experimental dataset, see Online Methods). After 
scRNA-Seq of enriched and unenriched eosinophil libraries, we aimed to calculate 
experimental purities. To ensure high confidence in our cell type identification and our purity 
estimates, we clustered all zebrafish GateID experiments together (WKM 1-15, training 
datasets 1-3) resulting in 15984 single cells (Fig. 2c, see Online Methods). We then calculated 
the experimental purities of all our WKM experiments based on this full dataset. The above-
mentioned eosinophil enrichment experiments achieved an experimental purity between 68.9% 
and 78% purity even with as low eosinophil content as 0.6% in the unenriched population (Fig. 
2d, barplots, n=3). Two experiments of the three (WKM 1, 78% purity and WKM 3, 74.7% 
purity) show reasonable alignment with predicted purity. The reason the experimental purity 
varies from predicted, especially in WKM 2, lies in the individual variation that can be observed 
in both cell type composition and in FACS measurements per experiment (Supplementary Fig. 
2a). Interestingly, we observed that contaminating cells intermingled with enriched eosinophils 
in FACS space and are thus difficult to eliminate (Supplementary fig. 2b). The contaminating 
population in all experiments consisted mainly of monocytes. This is not surprising, since 
eosinophils and myeloid cells occupy partly overlapping FACS regions12. Importantly, the 
enriched eosinophils from each experiment clustered with the eosinophils in the unenriched 
population (Fig. 2d, black and orange points on t-SNE maps, respectively), meaning that 
GateID enriched cells capture the existing transcriptional variance in eosinophils from the 
unenriched library. This shows that GateID does not bias for a subpopulation of eosinophils. 
Finally, to compare GateID to manual gating, we isolated eosinophils as previously described12 
(Supplementary Fig. 2c). This manual gating yielded lower enrichment compared to GateID 
and revealed a stronger myeloid contamination (Supplementary Fig. 2d-e).  
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We next aimed to isolate additional hematopoietic cell types from the WKM. Our first BD 
FACSJazzTM training dataset (Supplementary Fig. 1b) was obtained using DAPI- WKM cells 
with a limited number of cells per individual. While this dataset was sufficient to design gates 
for eosinophils, GateID was unable to predict gates with satisfying purity and yield for HSPCs, 
lymphocytes or monocytes. Indeed, plotting purity versus yield for the best combination of 
GateID gates for each of these cell type clearly showed that training dataset 1 did not allow us 
to enrich these cell types to satisfying purities (Supplementary Fig 1d). We hypothesized that 
this limitation could be resolved by enhancing cell type separation in FACS space. However, 
we aimed to keep GateID antibody and transgene-free and therefore chose to stain WKM cells 
with generic cellular dyes. We chose MitoTracker, a fluorescent die that reflects mitochondrial 
abundance and activity, and CFSE, which binds to cytoplasmic proteins (see Online Methods). 
Neither dye stains any one cell type specifically, but all cells. To validate our approach, we 
used a new WKM sample and split it in two parts, one of which was stained with MitoTracker, 
CFSE and DAPI, while the other was stained only with DAPI. We FACS sorted and performed 
scRNA-Seq on both libraries. After identifying the relevant cell types based on the 
transcriptome, we evaluated all two-gate combinations for the enrichment of HSPCs, 
lymphocytes, monocytes and eosinophils in MitoTracker+ CFSE+ DAPI- (referred to as “stained” 
here onwards) and DAPI- (referred to as “unstained” here onwards) samples (Fig. 3a). We 
observed that unstained samples allowed to predict gates with lower yield compared to the 
stained samples. It is important to note that these samples are limited in the number of cells 
(~250 for each sample) and do not represent possible contaminating cells that could be 
observed in a larger sample, thereby predicting higher purities than would be obtained 
experimentally or with a larger dataset.  
 
Since MitoTracker and CFSE allowed better separation of cell types in FACS space, we 
generated two training datasets of stained WKM hematopoietic cells. WKM training dataset 2 
was generated on a BD FACSJazzTM and resulted in 1.201 cells (Supplementary Fig. 3a) while 
training dataset 3 was generated on a BD FACSInfluxTM and composed of 1036 cells 
(Supplementary Fig. 3b). The optical setups of our BD FACSJazzTM and BD FACSInfluxTM 
allowed recording of index data in 12 and 27 dimensions, respectively. We used both datasets 
to design gates to enrich multiple hematopoietic cell types and demonstrate that GateID 
performance would be independent of the FACS machine of use. First, we repeated the 
eosinophil enrichments using stained WKM cells and sorting with a BD FACSJazzTM 
(Supplementary Fig. 3c-d). Notably, while GateID predicted gates are unconventional and 
humanly unintuitive, we show that our enriched population maps back in the same region as 
the classical manual FACS gate12 (Supplementary Fig. 3d). We obtained marginally higher 
purities (85.4% on average) when compared to unstained cells (73.9% on average) (Fig. 3b, 
Supplementary Fig. 3e-f, n=3). Next, we used GateID to predict gates to enrich for HSPCs on 
BD FACSJazzTM and BD FACSInfluxTM. GateID predicted a yield of 20% and a maximum purity 
of 90.5% to isolate HSPCs on a BD FACSJazzTM using a combination of two gates, one of 
them using the MitoTracker fluorescent channel (Supplementary Fig. 4a). Not surprisingly, the 
projection of GateID enriched HSPCs on the classical dimensions of FSC height and SSC 
height is similar to what is published12 (Supplementary Fig. 4b). Experimentally, we were able 
to enrich HSPCs to an average purity of 89% wherein enriched HSPCs clustered together with 
the unenriched HSPC population for each experiment when visualized on t-SNE (Fig. 3c, 
Supplementary Fig. 4c-d, n=3). Additionally, GateID predicted a yield of 30% and purity of 
98.6% to isolate HSPCs on a BD FACSInfluxTM (Supplementary Fig. 5a-b). We obtained 
purities averaging 67% and observed no bias towards a subset of HSPCs upon GateID 
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enrichment (Supplementary Fig. 5c-e, n=3). Importantly, we compared our transcriptomics 
method for cell type calling to manual histological classification to calculate purities. We found 
high correlation between both methods to calculate HSPC purities after enrichment using 
GateID (Supplementary Fig. 5f, dark blue points for HSPC enrichments on BD FACSJazzTM 
(triangles) and BD FACSInfluxTM (circles)). Finally, to benchmark GateID, we compared it to a 
classical method of enriching HSPCs based on their low expression of cd41 (Supplementary 
Fig. 4e)13,14. Enriched HSPCs from the cd41low fraction from cd41-EGFP transgenic zebrafish 
yielded an inferior purity compared to GateID predicted gates (Supplementary Fig. 4f-g). 
Surprisingly, the enriched HSPCs were contaminated by neutrophils. This result suggested that 
neutrophils reside partially in the cd41low WKM fraction, an observation that would have gone 
undetected without the combination of single-cell FACS and transcriptome information.  
Next, we used GateID to isolate lymphocytes, using four FACS dimensions including the CFSE 
fluorescent channel (Supplementary Fig. 6a-b). Experimentally, with BD FACSJazzTM, we 
obtained unbiased enrichment between 77% and 91.7% (Fig. 3d, Supplementary Fig. 6c-e, 
n=4). In silico, we tested the efficiency of lymphocyte manual gating as lymphocytes are 
characterized by their small FSC height and SSC height properties12 (Supplementary Fig. 6f). 
The manual gate yielded 60.9% purity and exhibited HSPC contamination (Supplementary 
Fig. 6g). We then challenged GateID to isolate a subset of myeloid cells on both BD 
FACSJazzTM and BD FACSInfluxTM. Neutrophils and monocytes are strongly intermingled in 
side scatter height vs. forward scatter height12. However, GateID made use of the CFSE or 
MitoTracker dimensions to design gates to purify monocytes (Supplementary Fig. 7a-b for BD 
FACSJazzTM and Supplementary Fig. 8a-b for BD FACSInfluxTM). We succeeded in enriching 
monocytes to average purities of 79.7% on BD FACSJazzTM and 87.1% on BD FACSInfluxTM 
(Fig. 3e, Supplementary Fig. 7c-d for BD FACSJazzTM, n=3 and Supplementary Fig. 8c-e for 
BD FACSInfluxTM, n=3). We find the enriched populations to overlap with the one present in the 
live population in t-SNE space for all experiments and found neutrophils to be the highest 
source of contamination. Finally, as described above, monocyte purities determined by 
histological classification highly correlated with the one determined by scRNA-Seq 
(Supplementary Fig. 5f, light blue circles). Overall, we demonstrate GateID’s ability to enrich 
multiple zebrafish hematopoietic cells to high purity solely using generic dyes. GateID proved 
more robust for cell types we enrich here when compared to the tested manual gating 
strategies that use FACS scatter properties or fluorescent transgenic lines. In addition, we 
show that GateID can be successfully used with FACS machines with different optical setups. 
 
Additionally, we used GateID in a human, clinical setting. We and others previously sequenced 
single cells from islets of Langerhans obtained from human cadaveric material (reviewed in 15) 
to describe the transcriptomes of the 6 major pancreatic cell types (alpha, beta, delta, PP, 
acinar and ductal cells) implicated in the pathogenesis of diabetes. Unfortunately, isolating live 
alpha, beta and delta cells to high purity remains a challenge due to the absence of reliable 
markers. Previous efforts16 in obtaining enriched populations of alpha and beta cells by using 
antibodies are unclear, as delta cell markers were found in the enriched beta cell population, 
indicating a strong contamination from delta cells (table 1 in 16). We thus set out to use GateID 
to enrich alpha and beta cells to high purity from human pancreas. First, we used one of the 
donors from our previous dataset4 (D30) as a GateID training dataset. We merged the BD 
FACSJazzTM index parameters to the cell type information for 664 DAPI stained single cells 
(Supplementary Fig. 9a, pancreas training dataset 1). GateID predicted 43% yield and 100% 
purity for alpha cells and 52% yield and 100% purity for beta cells (Supplementary Fig. 9b,d). 
To experimentally validate the GateID predicted gates, we used a new donor (donor 1) to sort 
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enriched (GateID) and unenriched cells (Supplementary Fig. 9c,e). As we did for the zebrafish 
WKM, we clustered all the scRNA-Seq data from our pancreas experiments to confidently call 
cell types and calculate the GateID experimental purities. This combined dataset resulted in 
10176 cells representing 8 distinct pancreatic cell types (Fig.4a). For donor 1, we obtained 
100% pure alpha cell population and a 79% pure beta cell population (Fig.4b, barplot). 
Importantly, the GateID enriched alpha and beta cells clustered together with the unenriched 
population, revealing unbiased enrichment of both cell types (Fig.4b, t-SNE maps). We 
observed that the contamination in donor 1 beta cell gates stemmed from all other pancreatic 
cell types indicating an overall inefficient exclusion of undesired cell types. We hypothesized 
that training dataset 1 did not contain enough information about the undesired cells that would 
be present in an experimental sort or a larger dataset. Thus, GateID would predict gates 
without that specific information and such gates may not exclude undesired cells efficiently. To 
test this hypothesis, we built a larger training dataset of 2255 cells by sorting DAPI stained 
single cells on a BD FACSJazzTM and performing scRNA-Seq to identify the main pancreatic 
cell types (Supplementary Fig. 10a, pancreas training dataset 2). First, we repeated the alpha 
cell enrichment with new predicted gates designed on training dataset 2 (yield 51% and purity 
97%, Supplementary Fig. 10b-c) and obtained 89% experimental purity (Supplementary Fig. 
10g). Next, GateID predicted gates of 26% yield and 98% purity for beta cells (Supplementary 
Fig. 10d). We experimentally validated these gates with three independent donors (donors 2-4) 
and achieved an average purity of 95% (Fig.4c, Supplementary Fig. 10e-g). In t-SNE space, 
GateID enriched beta cells did not separate from the ones in the unenriched fraction. This 
means that GateID enriched beta cells capture the different transcriptional profiles present in 
the unenriched sample revealing unbiased enrichment of beta cells. Overall, our results show 
that GateID can faithfully predict gates to enrich for alpha and beta cells from the human 
pancreas, allowing us to purify these cell types solely based on their intrinsic FACS scatter and 
autofluorescence properties. 
 
In short, we have described a novel computational method that combines single-cell 
transcriptomics and single-cell FACS to predict FACS gates that allow cell type enrichment 
without the aid of transgenes or antibodies. To demonstrate the effectiveness of GateID, we 
enriched four major hematopoietic cell types from the zebrafish WKM, a tissue for which 
transgenes labeling specific cell types are labor intensive to generate and antibodies are 
limited. Our approach proves sufficiently robust to enrich for hematopoietic cell types ranging 
from 0.5% (eosinophils) to 35% (monocytes) of the total WKM cell composition (Fig. 2-3). 
Importantly, we show that the performance of GateID does not depend on the proportion of the 
desired cell type in the tissue of interest. Indeed, no correlation (Pearson’s r = 0.07) was found 
between the achieved experimental purity and the abundance of the cell type of interest in all 
our 22 WKM enrichment experiments (Supplementary Fig. 11a). The performance of GateID is 
also independent of age and gender, as we did not control for these parameters while 
choosing our zebrafish or human samples. Additionally, our approach allows purification of 
more than one cell type from one animal as shown by purifying eosinophils, lymphocytes and 
monocytes from WKM 8 (Supplementary Fig. 3e, 6d, 7d).  Finally, GateID performs better than 
classical methods of cell type enrichment as shown for examples concerning eosinophils, 
HSPCs and lymphocytes (Supplementary Fig. 2d-e, 4e-g, 6f-g).  
 
In the WKM, we demonstrate that the distinction of the desired cell type is in FACS space 
compared to other cell types influenced the performance of GateID. A limitation of GateID is 
that it may not always perform well if cell types largely overlap in FACS space. That is, in 
absence of a specific marker for the cell type of choice (e.g. antibody or fluorescent reporter), 
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cell types might be difficult to segregate based on their scatter and autofluorescence 
properties alone. While these properties were sufficient to predict GateID gates for zebrafish 
eosinophils, they were not sufficient for zebrafish lymphocytes, HSPCs and monocytes 
(Supplementary Fig. 1d). While remaining antibody and transgene-free, we demonstrated that 
general dyes (MitoTracker and CFSE) allow segregation of hematopoietic cell types in FACS 
space and allow successful gate prediction and validation (Fig. 2). Finally, we want to 
emphasize that GateID can be used in combination with any antibody or transgene of choice. 
This approach would allow refinement of manual gating and potentially intricate gating for 
subsets of cells without the need for large antibody panels. 
 
Additionally, we showed that GateID could also enrich human alpha and beta cells from the 
islets of Langerhans. This is especially important for human tissues where purification of cell 
types is completely restricted to the availability of antibodies. Here, we demonstrate that 
GateID allows to purify live alpha and beta cells in an antibody independent manner. In our 
pancreas enrichment experiments, we demonstrated the role of biological variability between 
training dataset and all experimental datasets and its role on GateID’s performance. Variability 
mainly springs from variable proportion of cell types and different statistical properties for each 
cell type in different datasets. GateID offers a normalization strategy and we showed good 
robustness to correct for such variability. However, GateID gate prediction and normalization 
will perform adequately only if the training dataset captures sufficient diversity from the chosen 
sample. Along these lines, we observed that insufficient knowledge of the FACS properties of 
contaminating cells jeopardized GateID’s performance to enrich for beta cells from pancreas 
training dataset 1 (Fig. 4b). By increasing the size of this training dataset, GateID could more 
efficiently gate out contaminating cells, which was reflected in an increase in experimental 
purities to 99.3% (Fig. 4c, Supplementary Fig. 10f,g). To more precisely estimate the 
adequate size of a training dataset, we performed beta cell gate design using GateID on 
various datasets computationally generated from pancreas training dataset 1 (Supplementary 
Fig. 11b, see online method). Importantly, we computationally changed the ratio of 
contaminating cells in the enlarged datasets to visualize the impact of the proportion of non-
beta cells on the performance of GateID gates. We observed that gates designed on a smaller 
dataset (1x training dataset 1, 664 cells) fare poorly in comparison to gates designed on a 
larger dataset (2x and 3x training dataset 1, 1328 and 1992 cells respectively). Specifically, 
increasing the training dataset two fold to 1356 cells ensures higher mean purity even in the 
case of twice the amount of contaminating cells and may ensure higher robustness to 
fluctuations in cell proportions. Overall, in line with our results with WKM training datasets, we 
find training datasets ranging from 1000 to 1300 to allow robust gate design using GateID. 
Whereas generating such a training dataset can be a limitation due to the costs of scRNA-Seq, 
we emphasize that training datasets can be used to generate gates for all cell type present in 
the organ of choice. Additionally, thanks to GateID robust normalization strategy, the user will 
be able to enrich for a desired cell type in an unlimited amount of experiments, on different 
samples. 
 
Overall, we envisage a broad application of GateID to make purification of any given cell type 
easier and to allow enrichment of cell types never isolated before. 
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Methods 
 
Ethical statement 
All animal experiments were performed in accordance with institutional and governmental 
regulations, and were approved by the Dier Experimenten Commissie of the Royal Netherlands 
Academy of Arts and Science and performed according to the guidelines.  
Human cadaveric donor pancreata were procured through a multi-organ donor program. 
Pancreatic tissue was only used if the pancreas could not be used for clinical pancreas or islet 
transplantation, only if research consent was given and according to national laws. 
 
Tissue isolation 
The WKM of WT and cd41-GFP zebrafish were isolated as described previously1.  Briefly, after 
a ventral midline incision the internal organs were removed. The kidney was carefully dissected 
and collected in PBS supplemented with FCS. To mechanically dissociate single hematopoietic 
cells, the tissue was passed multiple times through a 1 ml low-bind pipet tip. The cells were 
filtered (70um and 40um cell strainers (VWR)) and washed. The pellet of hematopoietic cells 
was resuspended in PBS/FCS supplemented with DAPI (dilution 1/2000, Thermo Fisher) to 
assess cell viability. In case of staining, the pellet of hematopoietic cells was resuspended in 
PBS/FCS supplemented with both MitoTracker and CFSE (dilution 1/4000) and incubated at 
room temperature for 10 minutes. Cells were washed and resuspended in PBS/FCS 
supplemented with DAPI as described above. For training dataset generation, DAPI- single 
cells were sorted (BD FACSJazzTM or BD FACSInfluxTM) and erythrocytes with low forward and 
side scatter were excluded as described in Supplementary Fig. 1a. For GateID enrichment 
experiments, cells passing through all gates were sorted. For histology, pools of 10.000 cells 
were sorted in PBS supplemented with FCS and fixed 10 minutes in 4% PFA. After washing, 
cytospins were performed as described in ref. 5. Cells were post-fixed on slide and May-
Grunwald-Giemsa staining was performed following manufacturer’s instructions. Human 
pancreas isolation was done as described previously2. 
 
Single-Cell mRNA Sequencing of Single Cells 
We used SORT-seq2 to sequence the transcriptome from single cells and store FACS 
information from single cells (index files). All sorts were carried out using BD FACSJazzTM or BD 
FACSInfluxTM. Unless mentioned otherwise, we used the following protocol for both model 
systems mentioned in this study. We lysed cells by incubating them at 65°C for 5 minutes, and 
then used Nanodrop II liquid handling platform (GC biotech) to dispense RT and second strand 
mixes. The aqueous phase was separated from the oil phase after pooling all cells into one 
library, followed by IVT transcription. The CEL-Seq2 protocol was used for library prep3. 
Primers consisted of a 24 bp polyT stretch, a 4 or 6bp random molecular barcode (UMI), a cell-
specific 8bp barcode, the 5′ Illumina TruSeq small RNA kit adaptor and a T7 promoter. We 
used TruSeq small RNA primers (Illumina) for preparation of Illumina sequencing libraries and 
then paired-end sequenced them at 75 bp read length using Illumina NextSeq at approximately 
45 million and 30 million reads for zebrafish kidney marrow and human pancreatic libraries 
respectively. 
 
Data analysis 
Zebrafish WKM and human pancreas were analyzed separately as follows. For each model 
system we analyzed, paired-end reads were aligned to the transcriptome of that model system 
using BWA5. We used Read 1 for assigning reads to correct cells and libraries, while read 2 
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was mapped to gene models. Only reads mapping to unique locations were kept. We 
corrected read counts for UMI barcodes by removing duplicate reads that had identical 
combinations of library, cellular, and molecular barcodes and were mapped to the same gene. 
Transcripts were counted using 256 UMI barcodes for the human pancreas (donor 1) and 4096 
UMI barcodes for the other human donors and the zebrafish kidney. The counts were then 
adjusted using Poissonian counting statistics to yield the expected number of molecules as 
described in. 
  
Data was normalized by median normalization to a minimum number of 1000 transcripts and 
genes expressing at least three transcripts in at least two cells were retained for zebrafish 
WKM. Pancreatic data was median normalized to 4000 transcripts and only genes expressing 
5 transcripts in at least 3 cells were retained for downstream analysis. We then computed the 
Pearson’s distance (1 - p) between cells. To cluster cells, we used a method previously 
published in ref. 6. Briefly, we used hierarchical clustering (‘hclust’ R function with ‘ward.D2’ 
method) to cluster cells. To identify the number of clusters, we used ‘cutreeDynamic’ along 
with the ‘hybrid’ method which allows the user to specify a ‘deepSplit’ parameter controlling 
the sensitivity of clustering. We evaluated 100 subsamples of our data by randomly selecting 
90% of the genes in the dataset, specifying the ‘deepSplit’ parameter as an integer from 0 to 4 
and evaluating the average silhouette width of the number of clusters. This procedure resulted 
in identifying the correct cell types for both data sets of the zebrafish WKM data and the 
pancreatic data. 
  
While evaluating the results of our enrichment experiments, we clustered all data together to 
ensure maximum confidence in resulting purity estimates. For zebrafish, this involved 
clustering both training datasets and enrichment experiments (WKM 1-15) resulting in 15984 
cells in all. For the pancreas data, clustering both training data sets and data from four donors 
resulted in a total of 10176 cells. 
  
Differentially expressed genes between two subgroups of cells were identified similar to a 
previously published method7. Briefly, we started by modeling the background expected 
transcript count variability. We then identified genes in each subgroup that were variably 
expressed by representing gene expression of each gene as a negative binomial distribution. 
We then computed Benjamini-Hochberg corrected p-values for the observed difference in 
transcript counts between the two subgroups as described earlier8 and identified differentially 
expressed genes (adjusted p-value < 0.01). Such genes were then used to annotate specific 
cell types within each model system based on known published literature. 
  
For the zebrafish WKM data, we selected the topmost ten genes for each cell type ordered by 
their log fold change in expression when comparing the gene’s expression in a specific cell 
cluster compared to other cell clusters taken together (Supplementary figure 1c). Some known 
marker genes, especially for HSPCs and lymphocytes do not make the top ten list. We 
manually added them to our list of differentially expressed genes. We then used hierarchical 
clustering to cluster genes in seven clusters (one for each cell type). We found that our 
manually added genes, namely, meis1b, myb (denoting HSPCs9) and pax5, cd79b (denoting 
lymphocytes9) clustered in the appropriate clusters and do not show expression elsewhere 
(Supplementary figure 1c). 
 
Gate prediction methodology 
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The goal of GateID is to predict gates towards sorting a desired cell type from a mixture of 
multiple cell types. In other words, we want to purify a specific cell type to maximum purity 
while sorting a sufficient fraction of the desired cells. Recent advances in flow cytometry allow 
users to index sort, which is to save and associate flow cytometry readouts pertinent to each 
sorted cell. After performing single-cell mRNA sequencing, one can then merge this 
information with the cell type annotation (Fig. 1 – Step 1) for each cell. Such a merged data set 
forms the starting point for GateID, and we refer to it as training data. 
  
We treat gate prediction as an optimization problem, wherein predicted gates allow a minimal 
number of undesired cells while maximizing the number of desired cells. The algorithm takes 
as input a matrix with FACS measurements and cell type annotation for each cell. It requires 
the desired cell type and the minimum yield to be input by the user. Yield is defined as a 
percentage of desired cells (of the total number of desired cells) that are predicted to pass 
through the gates. GateID first predicts a gate for each pair of flow cytometer channels, 
comprising scatter and fluorescence channels, where each gate is represented as a polygon 
with four vertices. The starting gate is computed by setting its vertices to represent the 2nd 
and 98th percentile in each of the x and y-axis and functions as the starting point for the 
optimization algorithm. We use a two-step optimization as follows for the prediction of a gate - 
  
1.  The first step finds a gate that contains at least the user-specified minimum yield for desired 
cells while minimizing the number of undesired cells in the gate. Fitness of each solution is thus 
defined by the number of undesired cells in the gate. The highest fitness is the complete 
absence of undesired cells within the gate. The requirement of minimum yield is enforced by 
assigning the worst fitness (equivalent to the total number of undesired cells in the data set) to 
a solution not adhering to this constraint. 
2.  The second step takes as input the solution (gate) of the first step and tries to maximize the 
yield while disallowing an increase in undesired cells.  Fitness in this step is thus defined as the 
number of desired cells within the gate. Best fitness is achieved when all desired cells are 
sorted by the gate. The requirement of maximum number of undesired cells is enforced by 
assigning the worst fitness of zero yield to a solution not adhering to the constraint. 
  
By default, each step is run for 20000 iterations. While evaluating fitness at each iteration, we 
only allow solutions involving convex polygons thereby dismissing non-convex shapes that 
may result in over-fitting on the training data. 
  
Once gates for each pair of FACS channels are predicted, gate combinations can then be 
evaluated in logical conjunction (AND combination) such as all combinations of two gates, all 
combinations of three gates or a higher order. For example, many of the experiments in this 
study were carried out on BD FACSJazzTM, which records cytometry readouts in twelve 
channels, six scatter and six fluorescence channels. There are thus C(12,2) = 66 channel pairs 
and 66 gates. 66 gates can be further combined to yield 2.145 pairwise gate combinations 
(C(66,2)) evaluated in an AND configuration, meaning a cell has to pass through both gates to 
be sorted.  
 
A possibly better strategy could be to optimize a pair of gates in AND combination together, 
because optimization together may allow an increase in yield while reducing impurity in a 
coordinated fashion. One can thus optimize all 2.145 combination of pairwise gates together. 
In all examples we tested, two gates were enough to achieve high purity. These include stained 
samples of HSPCs, lymphocytes, eosinophils and monocytes.  While optimizing all 2145 
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pairwise gates is possible, the number quickly explodes thereafter to 45760 (combinations of 3 
gates) and 720720 for 4 gate combinations and thus may become intractable.  
  
This leads us to the third intuitive approach - that of recursive gating: once gates for each 
combination of FACS channels are predicted (66 gates in this study), the best gate in terms of 
purity is selected. This gate is paired with each other gate and re-optimized together. This 
process is repeated until 100% purity is reached, no overall improvement is observed in the 
subsequent iteration or if the number of gates exceeds a user-defined preset limit. This method 
is added in the algorithm but hasn’t been tested experimentally.  
 
Even if there are differences in methods mentioned above, different approaches predict gates 
that are comparable in yield and purity, demonstrated by experiments enriching eosinophils 
from the unstained sample (Fig 2), wherein the first method was used versus experiments 
enriching eosinophils from the stained sample, where each pair of gates was optimized 
together (Supplementary fig. 3c-f). Both experiments predicted similar purities for enrichment 
of eosinophils. Gates for pancreatic cell types were predicted by using the first method of 
optimizing gates separately, which predicted and achieved high purities experimentally (Fig. 4, 
Supplementary Fig. 9-10).  
  
As stated above, the objective function of the optimization procedure is to predict gates that 
allow a minimal number of undesired cells while maximizing the number of desired cells. This 
presents a discrete problem for optimization. In addition, scRNA-seq along with flow cytometry 
results in a limited number of cells, wherein the complete variance of each cell type population 
may not be captured sufficiently, especially for rarer cell populations. To address these 
problems, we chose a derivative-free, fast and robust optimization algorithm called MA-LS-
Chains, which combines an evolutionary algorithm along with a local search and is available as 
an R package (Rmalschains10). Such algorithms are known to converge faster and more reliably 
without being trapped in local optima (references within 10). While theoretically any robust 
global optimization algorithm may suffice, a comparison with other algorithms (Supplementary 
Fig. 12, and see below) shows that MA-LS-Chains is both fast and optimizes to the best purity. 
This is not surprising in the light of the “no free lunch” theorems, which state that certain 
optimization algorithms may do better than others for a certain kind of problem11.   
  
The procedure above states in brief how gates are predicted. However, every sorted biological 
sample is different owing to multiple sources of variability. For example, variability is introduced 
during tissue isolation and subsequent sorting. An added layer of variability springs from 
fluctuating proportion of each cell type per isolation and variability in the statistical properties 
for each cell type in FACS space. For instance, the inconsistency in the proportion of each cell 
type can be readily observed by comparing the unenriched barplots in Supplementary figures 
3e-f and 6c-e for the zebrafish, and Supplementary fig. 10f-g for human pancreas. Such 
inconsistency is further exacerbated by an overall shift in the distribution of all points 
demonstrated in Supplementary Fig.  2a (WKM1-3). For example, the distribution of side 
scatter height changes from a maximum of ~500 (WKM1) to ~100 (WKM2 and WKM3). Such 
variability requires that GateID predicted gates also change with respect to the current 
experiment in real time (Fig 1 – Step 3f). 
  
The first approach, normalization method 1, is to deal with such variability by standardizing the 
values for the vertices of gates to the unenriched population of cells of the training data set 
using z-normalization. During FACS enrichment, one can analyze sufficient events (~10000 
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events) and use the mean and the standard deviation of the population of the current sort to 
normalize gates using the reverse of z-normalization procedure. Another method for gate 
normalization is elaborate and requires machine learning, and we refer to it as normalization 
method 2. Briefly, one first trains a machine learning classifier to classify the desired cell type 
based on the training data. The current sort, however, could have a different overall distribution 
of points, different cell type proportion therefore changing the statistical variance in different 
dimensions and is known to create a problem for classifiers12. Thus, data from the current sort 
needs to be normalized to the target distribution of the training data for each FACS channel. To 
do this, one can use methods such as non-linear qspline normalization13 used to compare 
different microarray chips to each other. Once the new data is normalized in this fashion, we 
classify the cells therein as desired and undesired cells using the trained classifier. We next z-
normalize predicted gates to the desired cells from our training data and renormalize them to 
the predicted desired cells in the new data from the current sort. We again use z-normalization, 
but instead of normalizing the gates to the complete dataset, we normalize them using only the 
predicted desired population. This approach accounts for high variability in cell-type 
proportions from experiment to experiment, as opposed to the reverse z-normalization strategy 
on the complete set of points, which accounts for overall variability in the distribution of the 
whole data set. We note that one can also use normalization method 2 without the use of 
qspline normalization but with machine learning included to train and then predict desired cells 
from the current FACS enrichment experiment.  
 
Gate prediction for zebrafish WKM and Human pancreatic alpha and beta cells 
To predict gates for eosinophils from the unstained zebrafish WKM, we used GateID to 
optimize gates on each of the pairs of FACS channels (66 gates) and then computed the best 
combination of two gates in an AND combination (Supplementary table 1). Gates were 
normalized using the normalization method 1 for each of the eosinophil sorts from the 
unstained WKM. For experiments concerning hematopoietic cell types in the stained WKM on 
BD FACSJazzTM (HSPCs, lymphocytes, monocytes and eosinophils), we optimized all 2145 
gate combinations together in a pairwise fashion. For experiments on BD FACSInfluxTM, we 
optimized 61425 gate combinations together in a pairwise fashion. As one can observe from 
the eosinophil enrichment, both methods yielded experimentally similar results (Fig 2d, 3b). 
Gates were normalized for each sort using normalization method 2. 
 
For alpha and beta cells from the human islets of Langerhans, we optimized gates for each of 
the pairs of FACS channels (66 gates) and computed the best combination of gates in AND 
configuration. Gates for alpha cell and beta cells predicted from the smaller training data (d30, 
Supplementary fig. 9) were normalized using the mean normalization method 1 relying on the 
whole population of cells, as were the beta cell gates for the second donor, based on the 
second training dataset (Supplementary fig. 10a-e). To compare normalization methods, beta 
cells from the third donor were normalized using both normalization method 1 and 2 that 
yielded similar results. We displayed the results from method 2 in Supplementary Fig. 10. 
 
Comparison of different optimization algorithms 
Different optimization algorithms may perform variably for different optimization tasks. To 
check if our choice of using MA-LS-Chains was indeed the best, we evaluated eight different 
optimization algorithms (Supplementary Fig. 12). These were controlled random search (CRS, 
R package: nloptr14,15), continuous genetic algorithm (GA, R package: GA16), MA-LS-Chains (R 
package: Rmalschains10), bounded Hooke-Jeeves (HJK, R package: dfoptim17), bounded 
Nelder-Mead (NMK, R package: dfoptim17), simulated annealing (SA, R package: GenSA18), 
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DEoptim (R package: RcppDE19), bound optimization with quadratic approximation (BOQA, R 
package: nloptr20). We randomly chose two gates to optimize together using the stained WKM 
and HSPCs as the desired cells. For each optimization algorithm, we optimized those gates for 
maximum purity with at least a 20% yield. We repeated this process 100 times while choosing 
two random gates to optimize every iteration and recorded the purity of each optimization 
algorithm. 
 
Computational generation of inflated dataset(s) for understanding the size of training 
data 
It is important to understand the size of training dataset required for the generation of robust 
gates. Here, we wish to make a distinction between the feasibility of designing a gate and its 
efficacy during a real experiment. GateID can design gates with little number of cells, as in the 
case of eosinophils from the unstained training data 1 for the zebrafish WKM. In this particular 
case, there are 48 eosinophils in the training dataset (3.8% of total cell composition). 
Eosinophils are relatively distinct in FACS space allowing GateID to predict gates with high-
predicted purity. However, an enrichment experiment involves many more cells with higher 
variance in their FACS readouts that may not always be represented in the training dataset. If 
this is the case, GateID cannot take into account FACS profiles for possible contaminating cell 
types that are not visible to the algorithm while predicting gates. Thus in practice, GateID 
predicted gates may not perform as predicted using a smaller dataset. We believe this is the 
reason behind the fact that the predicted beta cell gates designed on the first limited training 
dataset (664 cells) of the pancreas did not do well in an actual experiment (Fig. 4b, Supp. fig 9d-
e, donor 1 – 78.3% purity). To further check if our hypothesis was true, we did the following 
computational experiment. We used our limited training dataset from the pancreas (training 
dataset 1, 664 cells) to generate two larger datasets using truncated multivariate sampling. 
Briefly, we sampled random instances from a normal distribution parameterized by the mean 
and variance of each cell cluster in the dataset, for each FACS channel. We used this method to 
increase the size of our dataset twofold and then threefold. We took care that the random 
deviates resided within the bounds of zero and a maximum of the particular FACS channel, 
similar to data from a FACS experiment. This method also ensured that the artificial datasets 
would have identical proportion of cell clusters in comparison to the training data. We then used 
GateID to design gates on both these artificial datasets.  
 
To evaluate the performance of the gates generated above, it is important to take into account 
that contaminating cells may be higher in number in another experiment. We therefore listed the 
most common cell type(s) that contaminates beta cell gates (alpha cells and delta cells for our 
dataset) and increased its proportion in stepwise fashion while generating a dataset of a larger 
size. Here, we used a size of 20000 cells, which is in the same range as an actual experiment 
involving sorting of live cells. We then evaluated the gates predicted by GateID on our actual 
training dataset 1 (664 cells) and two artificial training datasets on this test dataset. We 
repeated this evaluation test 50 times for each of the three sets of gates. We observed that 
gates designed on a smaller dataset (1x) fare poorly in comparison to gates designed on a 
larger dataset (2x and 3x) (Supplementary Fig. 11b). Specifically, increasing the training 
dataset two fold to 1328 cells ensures higher mean purity even in the case of twice the amount 
of contaminating cells and may ensure higher robustness to fluctuations in cell proportions.  

 
Truncated multivariate sampling was carried out using package ‘tmvtnorm’ in R. 
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Figure 1. GateID workflow 
In step 1, the GateID training dataset is generated. (a) Live single cells from the organ of 
interest are sorted in an unbiased manner and index data for all available channels is recorded. 
(b) Single cells sorted in (a) are sequenced to determine the cell type composition of the organ. 
(c) The GateID training dataset is generated after merging the FACS index data and the cell 
type information for each single cell. In step 2, the gates are computationally designed for the 
desired cell type. (d) Gates are computed for each possible combination of channels. (e) The 
best combination of gates is chosen in order to maximize yield and purity of the desired cell 
type. In step 3, GateID predicted gates are experimentally tested. (f) The predicted gates are 
normalized to the new experimental dataset. (g) Single cells in GateID gates are sorted. (h) 
After scRNA-Seq, cell types present in the GateID enriched library are determined and the 
experimental purity is calculated. 
 
Figure 2. Proof of principle: enrichment of zebrafish eosinophils using GateID 
(a) GateID predicted gates to isolate eosinophils from unstained WKM on BD FACSJazzTM. 
Gates were predicted on unstained WKM training dataset 1. Red points show desired cells 
(eosinophils) present in training dataset 1 and blue points show undesired cells present in the 
other gate. A blue colored undesired cell inside a gate denotes an impure cell that will be 
sorted. (b) Contour plots of unstained WKM cells showing experimental sorting gates for 
eosinophils for WKM 2 experiment (representative example for WKM 1 to 3 eosinophil 
enrichment experiments) on BD FACSJazzTM. Gates in black represent GateID predicted gates 
prior to normalization, whereas red gates show GateID normalized sorting gates. Sorted cells 
passed through normalized gate 1 and gate 2. Percentages of events within each gate are 
indicated. (c) t-SNE map of the complete zebrafish WKM dataset (all WKM training datasets 
and enrichment experiment datasets of this study, n=15.984 cells). Single cells are colored 
based on cell type.  (d) Barplots and t-SNE maps showing the outcome of GateID eosinophil 
enrichments for three independent experiments (WKM 1 to 3) on BD FACSJazzTM. Gates were 
predicted on unstained training dataset 1. In the barplots, numbers within the bars indicate the 
percentage of eosinophils in the corresponding library and numbers above the bars indicate 
the cell type fold enrichment between unenriched and GateID enriched library. On the t-SNE 
maps, grey points represent all cells from the WKM dataset. For each experiment, black dots 
are single cells in the unenriched library for a given experiment, while colored dots are single 
cells in the GateID enriched library for the same experiment. 
  
Figure 3. General dyes enhance cell type segregation in FACS space to allow their 
purification with GateID 
(a) Curves showing trade-off between yield and purity of GateID solutions for HSPCs, 
lymphocytes, monocytes and eosinophils on stained (solid line) and unstained (dashed line) 
cells from the same zebrafish WKM (WKM 7). (b-e) Barplots and t-SNE maps showing the 
outcome of GateID enrichments of (b) eosinophil (WKM 4) (c) HSPC (WKM 5) (d) lymphocyte 
(WKM 6) and (e) monocyte (WKM 7) on BD FACSJazzTM. Gates were predicted on stained 
training dataset 2. In the barplots, numbers in the bars indicate the percentage of the desired 
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cell type in the corresponding library and numbers above the bars indicate the cell type fold 
enrichment between unenriched and GateID enriched library. On the t-SNE maps, grey points 
represent all cells from the WKM dataset. For each experiment, black dots are single cells in 
the unenriched library for a given experiment, while colored dots are single cells in the GateID 
enriched library for the same experiment. 
 
Figure 4. GateID allows enrichment of α and β cells from human pancreatic islets 
(a) t-SNE map of the complete pancreas dataset (all pancreas training datasets and 
enrichment experiment datasets, n=10.176 cells). Single cells are colored based on cell type. 
(b-c) Barplots and t-SNE maps showing the outcome of GateID alpha and beta cell 
enrichments for two independent donors on BD FACSJazzTM. Gates for donor 1 were predicted 
on unstained training dataset 1 and gates for donor 2 were predicted on unstained training 
dataset 2. In the barplots, numbers within the bars indicate the percentage of alpha and beta 
cells in the corresponding library and numbers above the bars indicate the cell type fold 
enrichment between unenriched and GateID enriched library. On the t-SNE maps, grey points 
represent all cells from the pancreas dataset. For each experiment, black dots are single cells 
in the unenriched library for a given experiment, while colored dots are single cells in the 
GateID enriched library for the same experiment.  
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