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Abstract

Methods for measuring the properties of individual cells within their native 3D environment will

enable  a  deeper  understanding  of  embryonic  development,  tissue  regeneration,  and

tumorigenesis. However current methods for segmenting nuclei in 3D tissues are not designed

for situations where nuclei are densely packed, non-spherical, heterogeneous in shape, size, or

texture, all of which are true of many embryonic and adult tissue types as well as in many cases

for cells differentiating in culture.  

Here we overcome this bottleneck by devising a novel method based on labelling the nuclear

envelope (NE) and automatically distinguishing individual nuclei using a tree structured ridge

tracing method followed by shape ranking according to a trained classifier. The method is fast

and makes it  possible  to process  images that  are larger than the computer’s  memory.  We

consistently obtain accurate segmentation rates of >90% even for challenging images such as

mid-gestation embryos or 3D cultures. We provide a 3D editor and inspector for the manual

curation  of  the  segmentation  results  as  well  as  a  program  to  assess  the  accuracy  of  the

segmentation.  

We have also generated a live reporter of the NE that can be used to track live cells in three

dimensions over time. We use this to monitor the history of cell interactions and occurrences of

neighbour exchange within cultures of pluripotent cells during differentiation. 

We provide these tools in an open-access user-friendly format. 
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Introduction 

Studying the properties of individual cells in relation to their neighbours in intact tissues is the

first step towards understanding the cell-cell interactions that govern the behaviour of tissues.

Single cell analysis can also reveal heterogeneity in cellular properties that is masked by lower-

resolution  population-averaging  methods.  Automated  computational  image  analysis  is  a

particularly  attractive  approach  because  it  is  free  from operator-bias,  provides  quantitative

data, and reveals sub-visual information that would not otherwise be apparent (Caicedo et al.,

2017; Dufour et al., 2017; Keller, 2013; Meijering et al., 2016).

In order to meet the need for automated nuclear segmentation in 3D, a wide array of methods

have been developed, reviewed in (Dufour et al., 2017; Kan, 2017; Meijering, 2012; Nketia et

al., 2017). It is becoming increasingly apparent, however, that there is no single ‘one size fits all’

solution to segmentation. New solutions are needed for situations where nuclei are densely

packed, non-spherical, or heterogeneous in shape, size, or texture: these things apply to many

embryonic and adult tissue types as well to cells differentiating in culture. There is also a need

to  reduce  the  time  and  computational  power  required  for  segmentation  of  each  cell:  this

becomes a limiting factor when imaging whole embryos, large tissues, when analysing time-

lapse data,  or  in  any other situation where large numbers  of  nuclei  need to be identified.

Finally,  adoption  of  published methods  by  the  community  can  be  limited,  highlighting  the

importance of creating well documented and user-friendly software  (Cardona and Tomancak,

2012; Carpenter et al., 2013; Meijering et al., 2016).

Here, we report a new approach to overcome these bottlenecks in quantitative image analysis

of individual cells in 3D. Rather than relying on staining for nuclear content (for example DAPI

or  Hoescht  staining),  we instead detect  the nuclear  envelope (NE).  This  makes  it  easier  to

identify individual nuclei that are in close contact with each other and does not suffer from

segmentation problems associated with textured nuclear staining, unusually shaped nuclei, or

cell debris.  Furthermore, the NE of individual nuclei are easily discernable by eye in crowded

tissues, and so manual correction of any mis-segmented nuclei becomes easier than is the case

for DAPI stained nuclei. We provide a user-friendly 3D-4D editing tool to rapidly correct any
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segmentation errors. 

We test our method alongside other previously-published user-friendly methods, with focus on

mid-gestation embryos, 3D cultures of pluripotent stem cells and pluripotent stem cell-derived

neural rosettes. These contexts are chosen because they exemplify many of the problems in 3D

segmentation that we set out to address:  crowded overlapping nuclear signals, non-spherical

nuclei, large numbers of nuclei, and decreases in signal intensity towards the centre of large

structures. Using our editing tool, we manually annotated thousands of nuclei in these contexts

to generate a set of segmented images which are made publicly available and which could be

useful as a standard segmentation benchmarking dataset (Ulman et al., 2017).

We consistently obtain accurate segmentation rates of >90% in these challenging contexts. We

demonstrate  the utility  of  this  tool  by measuring the expression of  the transcription factor

Tcf15 at single cell resolution across the anterior-posterior axis of the E8.75 mouse embryo. We

also developed a non-disruptive method to fluorescently label the NE in live cells and used this

to  follow  the  history  of  cell-cell  interactions  and  to  document  neighbour-exchange  as

pluripotent cells differentiate in 3D culture.   

This new tool, named “NesSys (Nuclear Envelope Segmentation System), adds to the expanding

toolkit  of  segmentation  approaches,  each  of  which  has  its  particular  strengths.   NesSys  is

particularly  well  suited  for  segmenting  large  numbers  of  nuclei  arranged  in  complex  3D

configuration  without  requiring  extensive  amounts  of  time,  computational  power,  or  user-

input. We provide NesSys as an open-access, well documented, easy to install and user-friendly

software. 

Results 

Segmentation of nuclei in groups of densely packed cells

Nuclei are commonly detected based on fluorescent markers of nuclear content, for example

dapi.  However, it can become difficult to distinguish individual cells based on dapi staining
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when nuclei are densely crowded, for example during neural differentiation of pluripotent cells

(Fig. 1A left), 3D cultures (Fig. 1A right) or in densely packed tissues in vivo (Fig. 1B).  

We  decided  to  avoid  this  problem  by  using  the  nuclear  envelope  (NE) as  a  landmark  for

segmentation. Staining for Lamin B1, an intermediate filament that marks the NE (Dittmer and

Misteli, 2011), allows crowded nuclei to be clearly distinguished by eye (Fig. 1). This observation

prompted us to explore whether using the NE signal as an input for an automated detection

method would be a successful approach. 

This led us to develop a method called Nessys (Nuclear Envelope Segmentation System) that is

able to reliably detect individual nuclei in crowded groups (Fig 1C: see also Movies S1, Fig. 3 and

Fig. 4A, B).  Below we give an overview of this method and a demonstration of its utility. 

Overview of the Nessys Segmentation Method

The main steps of the Nessys segmentation method are briefly summarised here (Fig. 2). An in

depth description of complex procedures (asterisks in Fig. 2) is also available in Supplementary

Materials.

• A steerable filter developed by (Jacob and Unser, 2004) is used to enhance the NE signal

in each slice of the 3D image (Ridge enhancement). 

• Regions of maximum fluorescence intensity are then identified using a Difference of

Gaussian  detector  (Marr  and Hildreth,  1980).   These  form the  starting  points  for  a

dynamic ridge-tracing process, which continuously identifies and moves to the brightest

adjacent pixel in an iterative process (see also Fig. S1 and Movie S2). 

• Over time, this tracking algorithm identifies branch points and iteratively establishes the

most likely segmentation solution using a naive Bayes classifier trained by the user (Fig.

S1 and S2). 

• Once this process has been completed for each z slice, 2D areas are linked together into

3D volumes. At this point, information from adjacent slices helps refining the initial 2D

segmentation results (Fig. S3).  
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Notably, the most computer-intensive aspects of this process are performed in parallel rather

than  in  series:  this  helps  to  greatly  reduce  the  computational  time taken to  analyse  large

images (see also Fig. 4D). 

An open access utility program and dataset for the benchmarking of nuclear segmentation

methods.

Determining the performance of a segmentation method requires a gold standard (or Ground

Truth – GT) image dataset  (Amat et al., 2014; Coelho et al., 2009; Maška et al., 2014; Ulman et

al., 2017). GT datasets may be computer-generated (Rajaram et al., 2012; Svoboda and Ulman,

2017; Wiesmann et al., 2017), or may consist of images which have been manually segmented

by biologist specialists  (Coelho et al., 2009). Recent initiatives have undertaken to make such

datasets publicly available  (Ulman et al., 2017). However, currently available GT datasets for

nuclear  segmentation  only  contain  a  ‘nuclear  content’  signal  and  in  most  cases  do  not

encompass  the  diversity  in  nuclear  shape  and  sizes  or  the  level  of  complexity  found  in

mammalian systems.

For  these  reasons,  we  have  generated  a  new  image  dataset  with  thousands  of  manually

annotated nuclei for segmentation benchmarking. We used both a NE signal (LaminB1) and the

more conventional chromatin signal (Dapi) (Fig. 3 and Table S1). 

This dataset includes images with crowded, overlapping, heterogeneous, non-spherical nuclei in

several different contexts, representing the particular segmentation challenges that we have

set out to address (Fig. 3).  Images include: 

• High density monolayer culture of differentiating mouse ES cells

• 3D cultures of differentiating mouse ES cells embedded in matrigel

• E3.5 mouse blastocysts

• Gastrulating mouse embryo at E7.5, focusing on a region of the distal epiblast

• Post-gastrulation  mouse  embryo at  E8.75,  focusing  on  three regions  of  the  embryo
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which capture both epithelial and mesenchymal structures as well as variations in signal

intensity due to light scattering or antibody penetration issues.

We called this dataset DISCEPTS (Differentiating Stem Cells & Embryos are a Pain To Segment)

and we intend to deposit  this  dataset  on a publicly available repository which will  then be

linked to from our website [https://framagit.org/pickcellslab/nessys].

In order to perform both manual annotation of nuclei in 3D and segmentation benchmarking,

we developed additional programs that we provide alongside the Nessys method (Fig. S4): 

1) a 3D painting tool to establish GT segmentation data (we estimate that ~100 3D nuclei were

manually segmented per hour). Note that this tool can also be used as a visual inspector and 3D

editor to curate outputs from any automated methods.

2)  An  extensible  segmentation  comparator  which  can  compute  the  benchmarking  metrics

described in (Coelho et al., 2009) as well as 3D maps of accurate hits and segmentation errors

(Fig. 3 and S4). This makes it possible to visually compare the frequency and distribution of each

class of segmentation error for each tested segmentation output. 

Using these new tools and our DISCEPTS dataset, we compared the performance of Nessys to

other previously published popular methods (Fig. 3 and 4 and Materials and Methods) listed

below:

• Mins  (Lou et al.,  2014): originally designed for detecting cells within preimplantation

embryos based on nuclear content.

• Farsight (Al-Kofahi et al., 2010): designed for detecting nuclei based on nuclear content..

• Ilastik  (Sommer et al., 2011): A more generalist method which uses machine learning.

NB: to harness the full Ilastik capability and obtain the best performance we used both

the NE and the dapi channels as input to inform the Ilastik method (See also Methods).

The  table  of  3D  error  maps  shown  in  Fig.  3  hinted  at  the  fact  that  Nessys  does  perform
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particularly well in regions where nuclei  are densely packed or where the cells are flat and

overlapping (monolayer and acini). We did notice a slightly higher proportion of missed nuclei

in embryos compared to non-nessys methods.  When inspecting individual  images,  we were

able to confirm that this issue could mainly be attributed to the loss of NE signal when the cells

undergo mitosis. Overall, this preliminary analysis indicated that NesSys perfoms comparably

with other tools for relatively simple tasks (e.g.  blastocysts)  and may have an advantage in

more challenging contexts. 

Quantification of performance metrics of NesSys in comparison with other methods  using

the DISCEPTS dataset

To more throughoughy assess the performance of the tested methods on the DISCEPTS dataset,

we represented precision and recall for each method and biological specimen as a radar plot

(Fig. 4A). Precision measures the proportion of the shapes in the output of a method which

correspond to actual shapes in the input dataset while recall indicates the proportion of shapes

in the input dataset that have been recognised by a method (see also supplementary materials

section B 1 and 2). The F-measure, which combines precision and recall, is given in Table S2

together with additional performance measures as described in (Coelho et al, 2009) and Table

S3 for reference. 

We confirm that all methods perform well for segmenting nuclei in blastocysts, where nuclei

are generally near-spherical in the densest region (ICM) or well separated (TE). However NesSys

achieved close to or above 95% precision and recall  where other methods failed to achieve

satisfactory results (Fig. 4A). In particular, the greatest discrepancy was observed for images of

cells grown in culture (monolayer and acini) where the cells are often flat, overlapping and very

heterogeneous in shape.

The  summary  of  error  counts  shown  in  (Fig.  4B)  confirms  this  analysis.  Importantly,  the

balanced proportions of under and over-segmentation events and the minimal proportion of

missed or spurious events provided a good indication that parameters were properly adjusted

for all methods.
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Ultimately,  the  purpose  of  automated  nuclear  segmentation  is  to  fulfil  the  need  for  the

quantification of biologically relevant features. Therefore, we then assessed the deviation of

automated  methods  from  GT  in  the  distribution  of  generated  features  related  to  shape,

intensity or neighbourhood (Fig. 4C).

One  of  the  most  frequent  application  of  automated  segmentation  in  biology  is  its  use  in

generating  FACS-like  profiling  of  gene  expression  from  immunofluorescence  data,  i.e

quantitative immunofluorescence (Davies et al., 2013; Malaguti et al., 2013; Muñoz Descalzo et

al.,  2013;  Tsakiridis  et  al.,  2014;  Wymeersch  et  al.,  2016;  Zhou  et  al.,  2013,  1).  To  test

performance on this aspect,  we simulated the signal  from three heterogeneously expressed

transcription factors and computed a distance from GT intensities (see Supplementary Methods

B3).  We observed that  Nessys,  Ilastik  and  MINS performed similarly  with a  median  of  the

distribution  of  distance  under  20  AFU  (3  channels).  This  was  an  interesting  observation

indicating that intensity measurement was relatively robust to segmentation errors, notably

MINS error counts was greater in all biological samples and the JI deviation from GT one of the

most important (Fig.4C) whereas Nessys’ Jaccaird Index (JI) was the closest from GT.

Nuclear shape features are particularly relevant when studying morphogenesis  (Dufour et al.,

2017; Etournay et al.,  2016; Guirao et al.,  2015; Reuille et al.,  2015; Stegmaier et al.,  2016;

Veeman  and  Reeves,  2015;  Xiong  et  al.,  2014).  For  this  reason  we  computed the  shape’s

anisotropy and the angle between the main axis of the best fit ellipsoid for a detected shape

and its matching GT shape. In this case segmentation errors were much less forgiving, only

Nessys  and  Ilastik  provided  satisfactory  results  and  when  looking  at  results  for  individual

biological  samples,  these  features  deviated  from  GT  for  Ilastik  where  Ilastik  segmentation

resulted in the greatest number of errors (Monolayer and acini, Fig. S5). 

We also assessed performance on the detection of the number of neighbours as this feature

can  be  particularly  relevant  when  studying  collective  organisation  of  the  cells  in  various

contexts (Blin et al., 2018; Bove et al., 2017; Mesa et al., 2017; Schmitz et al., 2017; Shaya et al.,

2017; Toth et al., 2018). Again, only Ilastik and Nessys resulted in an accurate neighbour count

with a standard deviation of 2.2 neighbours from GT. This could be explained by the particular

ability of Nessys and Ilastik to identify precisely the position of the shapes centroid and to result

in shapes with higher JI than other methods (neighbourhood identification uses both centroids
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and the shape of the nuclei (see Fig. 4C bottom right image and sup methods B.3)

Altogether, our data provide an overview of the level of accuracy that can be expected from

Nessys  segmentation  on  biologically  relevant  features  and  we  conclude  that  Nessys  is  a

satisfactory method for applications involving measuring intensities, anisotropy, polarity and

neighbour analysis.

Finally, we addressed the problem of processing time becoming limiting for large images.  Using

a desktop computer with 64GB of RAM,  no method other than Nessys was able to process

images larger than 2GB in our hands, whereas Nessys was able to process a time lapse image

dataset  of  more  than  120GB  (not  shown).  This  property  of  Nessys  was  enabled  by  the

underlying SCIFIO I/O library  (Hiner et al., 2016) and ImgLib2 image structure  (Pietzsch et al.,

2012, 2) which allowed to process each time frame sequentially and which handled lager than

memory  images.  Processing  limitations  depend  on  the  computing  resources  available,  but

Nessys has the advantage of making it feasible to use a typical lab computer to segment large

images. 

Some of the methods we tested failed to complete segmentation or resulted in prohibitively

long segmentation times when images were larger than 200MB, we therefore report processing

times for non-Nessys methods for image crops <200MB only (Fig. 4D and Table S4). While in

some cases, processing time was shorter than with Nessys, Nessys was on average faster than

other  methods,  and  never  exceeded  a  processing  time  of  132  seconds  while  maximum

processing  time was  found to  be  251,  660  and  702  seconds  for  Ilastik,  Farsight  and  Mins

respectively. 

We noticed that with other methods, processing time increased proportionately with image

size (Table S5) which was not the case with Nessys. To investigate this aspect and as Nessys was

capable of  segmenting large images we artificially  varied image size of  the E8.75 image by

either varying the size or the number of image planes. We observed that the time taken to

segment each nucleus remained constant regardless of image size with an average of 40 nuclei

per seconds for the set of parameters used in this experiment (Fig. 4D). In other words Nessys
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processing time increases linearly with the number of nuclei in the image and not with image

size. This property can be explained by the fact that Nessys only uses 2 image filters which need

to work on every voxel of the image and these filters work in parallel on individual 2D planes.

Subsequent steps work on detected maxima which quantity is proportional to the number of

nuclei in the image. 

Overall,  we conclude that Nessys performs particularly well for large images and 3D images

containing  crowded  nuclei  and  provides  a  useful  addition  to  the  toolkit  of  segmentation

approaches currently available. 

Measurement of gene expression and morphological features in post-implantation embryos

To illustrate the usefulness of Nessys segmentation and the associated 3D painter for the study

of large embryos, we made use of mouse embryos that we have engineered to express venus

under  the  control  of  the  regulatory  elements  of  Tcf15  (Lin,  Tatar  et  al,  in  preparation),  a

transcription factor that marks the formation of somites (Burgess et al., 1996). The signal of the

Tcf15 venus reporter is included in the E8.75 image of  the DISCEPTS dataset.  Using Nessys

segmentation on the full image, we generated a plot of the median Tcf15 intensity per nucleus

versus  position of  nuclei  along  the antero-posterior  (AP)  axis  of  the embryo (Fig.  5A).  We

observed that within the fraction of cells which expressed higher levels of Tcf15 than average (>

1000 AFU) several clusters of points along the AP axis were clearly apparent. Using Nessys 3D

painter to manually annotate individual somites as well as other anatomical landmarks (Fig. 5B,

D), we confirmed that these point clusters reflected spatial organisation of the somites. 

Tcf15  was  known  to  be  expressed  in  somites  but  no  analysis  at  single  cell  resolution has

previously  been  reported.  We  observe  a  gradual  increase  in  Tcf15-Venus  fluorescence  as

somites  age,  reaching a peak at  the 7th oldest  somite (S3),  after which expression declines

sharply in the oldest somites S1-2 (Fig. 5A, B, C).  Notably, low levels of expression were also

detected within  the presomitic mesoderm prior  to  formation of  the first  somite.   We also

observe that Tcf15-Venus expression  displays considerable heterogeneity within each somite.
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This analysis illustrates how the combination of Nessys segmentation and 3D annotation tool

can be used to quantify large multidimensional images of complex embryos with good accuracy

and within a reasonable time frame.

A fluorescent NE reporter for the automated tracking of live cells

Next, we set out to label the NE in live cells in order to leverage Nessys segmentation power as

an input for cell tracking. 

While live markers of the whole nucleus are well characterised (for example H2B-FP (Kanda et

al., 1998), FP-NLS (Kalderon et al., 1984) and commonly used for cell tracking (Amat et al., 2014;

Faure et al., 2016; Lou et al., 2014; McDole et al., 2018; Stegmaier et al., 2016; Ulman et al.,

2017; Wolff et al., 2018), this is not the case of NE markers. 

An ideal live reporter needs to be bright, accurately localised and non-disruptive to cell function

when constitutively expressed. Lamins are well known to regulate cell function and even small

changes in their sequence or their expression levels can have deleterious effects (Dittmer and

Misteli,  2011;  Gruenbaum  and  Foisner,  2015).  Similarly  fluorescent  tagging  of  other  NE

associated protein may disrupt the function of the NE and affect cell  function  (Crisp et al.,

2006). Given these considerations,  we generated NE-mKate2, a chimeric construct consisting in

the bright mKate2 fluorescent protein (Shcherbo et al., 2009) linked to a NLS and attached to

the single-pass trans-membrane domain of Emerin (Bengtsson and Wilson, 2004). We reasoned

that this construct would be constantly imported into the nucleus while being tethered to the

intra-membranar network of the cells (Fig. 6). Indeed, random integration of NE-mKate2 driven

by a CAGS promoter (Alexopoulou et al., 2008) into mES cells  resulted in a bright signal with a

robust localisation to the nuclear rim (Fig. 6). As this construct is devoid of any known protein

interaction  motif  apart  from  the  NLS,  we  expect  this  protein  to  be  inert  to  cell  function.

Notably, we confirmed that NE-mKate2 ES cells were able to contribute at high efficiency to

chimeric embryos, indicating that the fluorescent label had no obvious deleterious effect on the

cells (Malaguti et al in revision). To conclude, the NE-mKate2 construct is a novel non-disruptive

fluorescent reporter for detecting the nuclear envelope in live cells.
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Tracking cell-cell interactions during differentiation of pluripotent cells

To explore the utility of our tools for identifying cells within time-lapse datasets, we performed

confocal live imaging of pluripotent cells differentiating into neural cells. We used mouse ES

cells  containing  a  Sox1-GFP  reporter  (Ying  et  al.,  2003) in  order  to  detect  Sox1+  neural

progenitors as they emerge over time (Fig. 7A, Movie S3). We chose this system because during

the first few days of this process, flat cells form tight 3D clusters in which it becomes difficult to

distinguish individual  cells,   (Fig.  7A).  Notably,  the neural  monolayer  culture  condition was

amongst the most challenging dataset to segment according to our benchmarking results (Fig.

4A and B). 

Although excellent tools exist for the automated live tracking of 2D cultures (Bove et al., 2017;

Hilsenbeck  et al.,  2016; Piccinini  et  al.,  2016; Roccio et  al.,  2013;  Winter  et  al.,  2015) ,  the

situation described here would not  be possible to address with these tools  because of  the

propensity of differentiating mES cells to squeeze underneath each other (Movie S3) making it

necessary to perform analysis in three dimensions.

One possible approach to tackle this challenging situation would be to perform mosaic labelling

to make it easier to track a few fluorescent cells among predominantly unlabelled cells. This

would be sufficient to extract a subset of cell lineages but would fail to capture local cell-cell

interaction or the broader multicellular context surrounding each cell, both of which are central

to understanding the emergent properties of  differentiating populations  (Bove et al.,  2017;

Toth et al., 2018). For this reason we decided to label all the Sox1-GFP cells with our NE-mKate2

construct in order to analyse the collective behaviours of differentiating cells in 3D.

Unlike  snapshot  images,  where  Nessys  segmented  cells  with  high  accuracy  without  user

intervention,  tracking of  this  challenging time-laspe image required a significant  amount  of

manual correction. However, NesSys segmentation plus manual correction could be completed

comfortably within one day (approx 7h) whereas manual segmentation of the entire dataset

would have taken around 70h (220 time points with an average of 30 cells per frame and at a
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rate of 100 cells segmented per hour). After segmenting each individual frame, we ran a basic

tracker (Supplementary Methods section C) and were able to obtain accurate lineage trees (Fig.

7A, B, Movie S3). 

We first tracked rates of cell death, cell survival, cell division (Fig. 7C) and differentiation (Fig.

7D). Interestingly when we compared the destiny of sister cells, we observed that the majority

of sister pairs underwent the same fate in terms of survival (Fig. 7E) and that all underwent the

same fate in terms of differentiation (Fig. 7F). This observation is consistent with the idea that

differentiation decisions can be made several generations before reporters of cell  fate become

detectable (Cohen et al., 2010; Costa et al., 2011).

We next monitored incidents of neighbour exchange (Supplementary Methods C), making use

of the ability of Nessys and associated tools to track the position of cells in 3D. Neighbour

exchange is thought to occur frequently in the mouse epiblast, but it is not known to what

extent this process influences the distribution of differentiating cells in culture.

We hypothesised that a major contributor to neighbour exchange would be the position of

divisions  with  respect  to  the  plane  of  cell  growth.  Indeed,  when  we  explored  the  3D

organisation of the cells over time, we noticed that the Z coordinate of the cells increased when

cells were dividing (Anisotropy was decreasing slightly as expected, however the change in z

coordinate was uncorrelated to the change in cell thickness, Fig. 7G). This raised the possibility

that  as  cells  divide  above  other  cells,  daughter  cells  would  reintegrate  into  the  colony  at

different  locations  thus  acquiring  new neighbours.  To  measure  this,  we  set  a  Z-coordinate

threshold above  which  divisions  were considered to be occurring  above the plane and we

classified  lineages  accordingly  (Fig.  7H).  Then,  we  compared  the  neighbour  exchange  rate

occurring before division and after division and we observed that when the cells divided above

the  plane,  neighbour  exchange  rate  was  more  likely  to  increase,  thus  supporting  our

hypothesis.  Notably  we  confirmed that  this  observation  was  unlikely  to  be  explained  by  a

change in cell velocity (Fig. 7H right). A division representative of this phenomenon is shown in

(Fig. 7K).

While this dataset is too small  to draw definitive biological  conclusions, it  illustrates that in
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principle it is possible to use Nessys and associated tools to measure the position of each cell in

three dimensions and assess cellular behaviours of these cells with respect to their neighbours

over time, even in challenging contexts where individal cells are tightly packed and difficult to

distinguish by eye. 

Discussion

In this study we set out to explore the idea of using the nuclear envelope (NE) for nuclear

segmentation as an alternative to DNA/chromatin labelling. This idea was proposed more than

fifteen  years  ago  and  preliminary  results  on  small  2D  images  were  promising  (Ortiz  De

Solorzano et al., 2001). Surprisingly however, this idea had not yet, to our knowledge, been

revisited for complex 3D datasets. Here we present Nessys, a method tailored to automatically

segment nuclei on the basis of the NE. We show that this method performs particularly well for

‘difficult’ datasets, where images contain a large array of nuclear shapes and sizes and where

nuclei overlap. It is also a method that is fast and which scales well to large images. We discuss

below the strengths and weaknesses of our method and we summarise our effort to make the

method easy to  adopt  by  the  community  and the usefulness  of  the  tools  and  dataset  we

provide with this article. 

Features of the NE signal explain Nessys performance

To construct the DISCEPTS dataset we focused in sampling a diversity of nuclei  shape, size,

texture and 3D tissue organisations. The images we gathered provide a good illustration of the

multiple challenges which still need to be addressed in nuclear segmentation and we believe

this dataset will be useful as a GT dataset for benchmarking purposes.

 

Importantly, this dataset illustrates that different cell types harbour different organisations of

their  chromatin  leading  to  very  heterogeneous  appearances  of  the  nuclear  content.  For

example,  the  nuclei  of  neural  cells  contain  regions  of  high  affinity  for  dapi  which  can  be
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seemingly randomly distributed within the nucleus, including at the periphery. This property

can confound methods relying on the assumption that brighter regions reside at the centre of

the shape. Also, nuclei boundaries which are key features for many methods (Dufour et al.,

2017; Kan, 2017; Meijering, 2012; Nketia et al., 2017) become very difficult to distinguish even

by eye. These problems are avoided when using a NE staining and this explains in part the

success of the Nessys method. Nuclear boundaries remain clear when NE-stained nuclei are in

close contact with one another (Fig. 1B) and indeed, our benchmarking results show that the

two methods which make use of the NE signal (Nessys and Ilastik) performed particularly well

for all embryo images (Fig. 4 A, B, Table S2). 

One  potential disadvantage of the NE signal is that the interior of the nucleus may become

difficult to differentiate from the exterior of the nucleus. As this distinction is easily achievable

by the human eye, Nessys uses a naive Bayes classifier trained on a small subset of shapes in

order to exclude non relevant shapes (inter-nuclear spaces). This classification ensures that only

one  channel  is  required  to  achieve  proper  nuclear  segmentation  and  leaves  other  colours

available for other purposes. This contasts with Ilastik, which in our analysis required the dapi

channel to perform well.  

Our benchmarking results also revealed that the biggest advantage of our methods over the

others we tested, Ilastik included, was observed for images of cells grown in culture. Although

mammalian embryos are recognised to be amongst the most challenging systems to segment

(Amat et al., 2014; McDole et al., 2018; Stegmaier et al., 2016), we show that differentiating

stem cells in culture can be equally, if not more difficult to segment accurately as they tend to

overlap  (Molnar  et  al.,  2016) and  be  flatter  and  less  regular  in  shape  than  their  in  vivo

conterparts. Due to the drop in resolution in the z-axis and in NE signal at the top and bottom of

the nuclei, even Ilastik failed to separate overlapping cells (Fig. 4A, B). Nessys performs well as

it makes full use of the optimal XY resolution first and then uses a graph colouring strategy to

link 2D shapes into 3D volumes.

We would like to emphasise that different methods are appropriate for different contexts, and

that  our  method is  intended to  complement,  rather  than  replace,  existing  methods,  being
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particularly well  suited for segmenting images with complex 3D arrangements of irregularly

shaped nuclei.

Adoptability of the Nessys method

1) Practicality of using NE over nuclear content

DNA labelling dyes are easy to use and for this reason are widely adopted to mark the nuclei of

the cells. Such dyes do not yet exist for the NE and so, usage of Nessys requires that the NE be

stained with antibodies. This may potentially impose constraints on applications due to host

species restrictions. We used LaminB1 as it is known to be expressed in most cell types with

minimal cell-cell variability (Swift et al., 2013), but other NE epitopes could be used: we provide

in  Table  S6  alternative  antibodies  which  provide  similar  signals  in  our  hands.  The  use  of

nanobodies might further improve practicality, reduce antibody penetration issues and be more

animal friendly, although we have not tested this approach ourselves (Schumacher et al., 2017).

We have also developed a NE live reporter  for the use of Nessys for time lapse imaging (Fig. 6

and 7). Given that several simple approaches are available for labelling the nuclear envelope,

we anticipate that most users should be able to find a method suitable for their own system.

2) Software usability

The community is in need of open-source, well documented and easy to use softwares in order

to accelerate quantitative, reproducible and collaborative research  (Cardona and Tomancak,

2012; Carpenter et al.,  2013; Meijering et al., 2016). In order to align with this goal,  and to

facilitate  adoptability  of  Nessys,  the  software  is  free  and  open-source

(https://framagit.org/pickcellslab/nessys),  the  installation  process  only  takes  a  couple  of

minutes and does not require particular knowledge in computing. Nessys has also been tested

on Linux, Windows and MacOS.

A  video  tutorial  and  documentation  for  Nesys  are  available  online and  the  user  interface

includes interactive tools for aiding parameter adjustments (see also  the    issue tracker   which

allows  comments  from  the  community).  The  software  and  associated  documentation  will

continue to be improved in response to user feedback.  A longer term goal is to remove the
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need for parameter adjustments altogether. Notably, we envision the possibility to use a few

annotated  volumes  with  the  Nessys  editor  as  a  training  set  for  automated  parameter

adjustments.

An important practical aspect of Nessys is that it is designed to be fast and to avoid problems

due to processing times-per-cell becoming limiting.  We have shown that Nessys can produce

accurate segmentation results in a reasonable time frame even for large datasets on a standard

lab workstation (Fig. 4)

3) Code portability, extensibility and future work

We developed Nessys using good software design practice. For instance, the user interface uses

a  modular  wizard  pattern  so  that  individual  subtasks  may  be  improved  without  modifying

others. This will facilitate future improvements of the method. Such improvements may include

replacing the last morphological filtering step with a modern shape refining method (Machado

et al., 2018) or using more sophisticated classifiers (Domingos, 2012) during the shape ranking

process to further improve accuracy. Future work will also focus on enhancing visualisation of

segmentation quality in order to speed up the segmentation editing process, for example by

including a colour map of the segmentation confidence score as described in  (Nketia et al.,

2015).

Nessys has initially been developed as a module for our own framework but is designed to be

portable to other general purpose frameworks such as ImageJ (Schindelin et al., 2015) or Icy (de

Chaumont et al., 2012).

This will help bridge our method with other powerful image analysis components. For example,

sing an image restoration method such as CARE  (Weigert et al., 2018)  upstream of a Nessys

segmentation together with downstream sophisticated tracking methods  (Ulman et al., 2017;

Wolff et al.,  2018)  will  bring us a step closer to the goal  of recording and interrogating the

emergent properties of collective organisation of the cells in context. 

Conclusion

In  conclusion,  we  hope  that  the  tools  presented  here  will  contribute  to  accelerating

quantitative research. We provide a robust 3D nuclear segmentation method together with a
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3D editor. The software is easy to install  as a stand-alone application and is designed to be

portable to general purpose frameworks such as ImageJ. We also provide a dataset and a utility

program for segmentation benchmarking in the hope that they will be useful to the community.

These tools are free and open-source and designed to work on a standard lab computer with

datasets generated from conventional microscopes. 

Methods 

Software Development and availability

NESSys and associated programs are written in java. Our programs only depend on open-source

libraries.  These include ImgLib2  (Pietzsch et al.,  2012) for  the Image data  structure,  SCIFIO

(Hiner et al., 2016) and BioFormats (Linkert et al., 2010) for Image Input/Output. We developed

our code in Eclipse March 0.3 (https://www.eclipse.org/).  Dependencies are managed using

Maven,  and  version  control  with  Git.  Source  code  is  available  on  GitLab  at  framasoft

https://framagit.org/pickcellslab/nessys.

Implementation details,  source code and user documentation are subject to changes as we

continue to improve the software. Source code and updated documentation may be found on

our  GitLab  repository  hosted  by  framasoft ( https://framagit.org/pickcellslab/nessys).  We

created a git tag ‘v0.1.0’ to label the commit which corresponds to the version of the software

that was used for this publication.

ES cell culture:

All mouse embryonic stem cell lines were routinely maintained on gelatinised (Gelatin, Sigma)

culture vessels (Corning) in Glasgow Minimum Essential Medium (GMEM, Sigma) supplemented

with  10%  foetal  calf  serum  (FCS,  APS),  100U/ml  LIF  (produced  in-house),  100nM  2-

mercaptoethanol  (Gibco),  1X  non-essential  amino  acids  (Gibco),  2mM  L-Glutamine  (Gibco),

1mM Sodium Pyruvate (Gibco). For 2i-Lif culture (Wray et al., 2011), the cells were maintained
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in N2B27 medium suplemented with 3µM of Chiron and 1µM of PD0325911. N2B27 consists of

a 1:1 ratio of DMEM/F12 and Neurobasal media supplemented with 0.5% modified N2, 0.5%

B27 and 2-β mercaptoethanol (all from Invitrogen). Cell culture was maintained at 37oC with

5 % CO2 and routinely tested for mycoplasma contamination.

Neural monolayer differentiation

Sox1-GFP ES cells (Ying et al., 2003)  were first differentiated into EpiSC following the protocol

described in  (Guo and Smith,  2010) and then further  differentiated into neural  rosettes as

follows: a confluent culture of EpiSC was diluted 1/40 and plated onto growth factor reduced

Matrigel (Corning) coated dishes in N2B27 medium containing 10µM of SB435215. The medium

was replaced every day and the cells were passaged every 2 days at a ratio of 1/3 – 1/6 onto

Matrigel  coated  dishes  until  neural  rosettes became clearly  apparent  (5  days).  On the last

passage,  the cells  were replated onto 12mm matrigel  coated glass  coverslips  and fixed for

immunostaining after 2 days of culture. 

Acini / 3D cell culture

Wild-type  E14tg2  alpha  ES  cells,  Tcf15-Het  and  Tcf15-KO  ES  cells  (Lin,  Tatar  et  al.,  in

preparation) were used for this dataset (The name of the cell lines used for a given image is

included in the name of the image). Cells were maintained in 2i-Lif condition and then plated

onto Matrigel coated dishes into N2B27/1%KSR medium supplemented with 12ng of bFgf and

20ng of Activin A as described in  (Hayashi  et al.,  2011) and containing 600µg/ml of growth

factor reduced Matrigel  to  induce the formation of  3D structures.  The cells  were fixed for

immunostaining on day 2 of EpiLC induction.

Mouse strains, staging and husbandry

Wild-type,  outbred  MF1  mice  and  transgenic  mice  –  Tcf15-venus  (Lin,  Tatar  et  al.  In

preparation). All mice were maintained on a 12-hr-light/12-hr-dark cycle. For timed matings,

noon on the day of  finding a vaginal  plug was designated as  E0.5.  Staging  of  early  mouse

embryos was done according to (Downs and Davies, 1993; Lawson et al., 2016).
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Embryos collection and dissection

For blastocysts, embryos were obtained at 8 cell morula stage by washing E2.5 oviducts with

M2 medium (Sigma). The zona pellucida was removed by a brief wash in Acid Tyrode’s solution

(Sigma) at room temperature. Embryos were cultured in KSOM medium (LifeGlobal) at 37C, 5%

CO2  for  24-hours  prior  immunostaining.  E7.5  and  E8.75  embryos  were  isolated  from  the

decidua  in  M2  medium  and  the  Reichert’s  membrane  was  removed  before  fixation  and

immunostaining.

Immuno-fluorescence, embryo clarification and imaging

Samples were fixed in 4% formaldehyde / PBS / 0,5% Triton X-100 for 10 min (cell cultures) or

30 min (embryos) at room temperature. For large embryos, the fixative was quenched with

100mM Glycine/PBS  for  5  min.  After  3  consecutive washes  with PBS/Triton,  samples  were

incubated for a minimum of 30 min (cell culture) or overnight (embryos) with blocking solution

which consisted of 5% donkey serum (Sigma), 0.1% Triton X-100 (Sigma) and 0.03% Sodium

Azide (Sigma) in PBS. Incubation with antibodies was performed for 1h (cells) or overnight at

room  temperature  (>E7.0  embryos)  or  at  4°C  (blastocysts).  Antibodies  were  all  diluted  in

blocking  solution.  Antibodies  used  for  each  image  is  given  in  Table  S1  and  dilutions  and

references  are  listed  in  Table  S6.  Samples  were  counterstained  with  1µg/ml  Dapi  (Sigma)

diluted  in  PBS  for  10  min  (cells  and  blastocysts)  or  30  min  (>  E7.0  embryos)  at  room

temperature.  Cells  grown  on  glass  coverslips  were  mounted  in  ProLong  Gold  Antifade

Mountant (Molecular Probes) 24h prior imaging. E7.5 and E8.75 embryos were further clarified

using a Benzylalcohol/Benzylbenzoate (BABB) based method adpated from (Dodt et al., 2007).

Briefly embryos were dehydrated in graded methanol series (25%, 50%, 75%, 90%, 100% twice)

of 5 min each. Embryos were then transferred to a 1:1 solution of BABB/Methanol for 5 min

before a final transfer into a pure solution of BABB inside a glass bottom metallic chamber for

imaging.  Blastocysts were placed on a 10µl PBS drop covered with mineral oil (Sigma) in a glass

bottom metallic chamber. Microscope and objectives used for imaging are listed in Table S1.

Segmentation methods: versions, parameter adjustments and benchmarking:

64 bits versions of Ilastik (version 1.1.9), Farsight linux version 0.4.4 and Nessys v0.1.0 were
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tested on a desktop computer  (i7  6700K 8 cores cpu,  64GB of  RAM and a 7200rpm HDD)

running Linux Opensuse Leap 42.3. MINS version 1.3 was run on the same computer but on a

Windows 8 OS with Matlab (version R2016a 9.0.0.341360).

In order to obtain the best segmentation output possible for each method tested, we followed

recommendations  available  for  each  tool  (http://katlab-tools.org/,  http://farsight-

toolkit.ee.uh.edu/wiki/Nuclear_Segmentation,

https://www.ilastik.org/documentation/index.html).  For  Nessys,  Mins  and  Farsight,  we

screened 5 segmentation attempts with distinct sets of parameters and retained the output

resulting in the best F-measure when compared to the GT (Table S2). For Ilastik, we first trained

the  pixel  classifier  on  both  the  LaminB1  and  Dapi  channels  to  recognise  3  pixel  classes:

background, nuclear content and ‘inter-nuclear space’ (z-axis included) which often consisted in

a  bright  LaminB1  signal.  Using  this  method  greatly  improved  Ilastik’s  ability  to  separate

touching nuclei in the subsequent steps. We then tested 5 sets of thresholding parameters and

retained the best segmentation result as explained above. 

Processing times were recorded by starting and stopping a digital stopwatch manually. Nessys

also logged processing times to the terminal. Farsight was run from the command line while all

the other methods were run from their graphic interface.

Metrics listed in Table S2, summarised in Fig. 4A and B and error maps shown in Fig. 3 were

computed  with  our  segmentation  comparator  program  (Fig.  S4)  and  morphometric

measurements  shown  in  Fig.  4C  and  S5  were  computed  within  PickCells  (Blin  et  al.  In

preparation) as detailed in Supplementary Methods.

Nuclear envelope reporter construct and cell line:

To generate the NE reporter, we used Gibson assembly to ligate a NLS-mKate2 fragment and

the  human  Emerin  transmembrane  domain  (nucleotides  878  –  1012  of  NM_000117.2)

downstream of a CAGS promoter included in a hygromycin resistance containing backbone.

mKate2-NLS was pcr amplified from pTEC20 which was a gift from Lalita Ramakrishnan ((Takaki

et al., 2013)  Addgene plasmid #30179; http://n2t.net/addgene:30179; RRID:Addgene_30179)

and the EMD sequence was pcr amplified  from a full length human emerin containing plasmid

(kind gift from Dr E. Schirmer). The NLS and (GS)3 linker sequences were included in the primers

overhangs.
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The resulting plasmid was validated by full sequencing of the insert and will be deposited to

addgene.

To generate the Sox1-GFP / mKate-NE double reporter cell line, we lipofected 2.5µg of plasmid

(Lipofectamin 3000, Thermofischer) according to the manufacturer’s recommendation into the

Sox1-GFP cell line  (Ying et al., 2003). Hygromycin resistant clones were selected for the best

compromise between high mKate2 intensity and proper NE localisation of the transgene.

Time lapse Imaging and tracking:

For  the  tracking  experiment,  the  sox1-gfp/NE-mKate2  cell  line  was  maintained  in  2i/Lif

condition and then differentiated into the neural lineage as follows: The cells were dissociated

with accutase (invitrogen) and replated at a density of 10 000 cells / cm2 into  N2B27/1%KSR

medium.  We  determined  that  Sox1-GFP  became  expressed  between  day  2  and  day  3  of

differentiation  and  so  replated  the  cells  at  day  2  of  differentiation  into  phenol-free

N2B27/1%KSR  medium  inside  a  glass-bottom  metallic  chamber  for  imaging.  Imaging  was

performed  with  an  inverted  Leica  Sp8  TCS   microscope  using  temperature  and  CO2  (5%)

control, a 20x objective with NA=0,7 and glycerol immersion. Excitation lasers were 488nm and

561nm  and  signal  was  captured  with  HyD  detectors.  25  z-planes  were  captured  every  6

minutes, final image resolution was 0.4 x 0.4 x 0.57 µm. The tracking and analysis procedure is

described in Supplementary Methods C2.
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Fig. 1 Segmentation challenges and Nessys results

(A) Side by side comparison of the Dapi and LaminB1 signals obtained by confocal microscopy

of pluripotent stem cells differentiated into neural cells (left) or grown in a 3D matrix (right). ‘B’

arrows indicate boundaries between touching nuclei, ‘D’ arrows point at cell debris, the ‘M’

arrow  shows  a  mitotic  nucleus  and  ‘I’  arrows  indicate  invaginations  of  Lamin  B1  into  the

nucleus.

(B) Confocal micrographs showing the diversity of cell shapes and volumes found in an E8.75

mouse embryo (left) and within a ‘monolayer’ of cultured cells (right). Dapi is shown in orange

and LaminB1 in cyan. For each image, a magnified region is shown as a series of planes along

the z axis of the image for both the Dapi channel or the LaminB1 channel. An image constructed

along the YZ axes is also shown. The faint vertical bar in the XY planes indicate the location of

the YZ image.

White arrows: loss of nuclei edge in the dapi signal, Red arrow: cell debris apparent in the dapi

signal, White asterisks: flat and large nuclei distinct from their surrounding cells.

(C) Images of segmented nuclei obtained with NESSys. Nuclei are assigned a unique label and a

random colour. The same regions as in panel B are shown. Notice how overlaping nuclei with

distinct morphology are identified accurately.

30

750

755

760

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/502872doi: bioRxiv preprint 

https://doi.org/10.1101/502872
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 2
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Fig. 2 Overview of the NESSys Segmentation Method:

The  main  steps  of  the  method  are  shown  in  white  boxes  annotated  with  a  blue  asterisk

whenever the step is further detailed in supplementary materials. Red numbers indicate how

many user-defined parameters are required at each of these steps. Where possible, a snapshot

of the intermediate output is shown. Iterations are represented with orange boxes annotated

with an icon to indicate whether iterations are parallelised or sequential. Instructions which are

part of the same iteration are contained within the same rounded box. In the ‘Tree Structured

Ridge Tracing’ step, a full tree is overlaid on the image and corresponds to the diagram on the

left of  the image.  The red  circle  represents  the root  (maximum where  the procedure was

initialised), smaller circles indicate the leaves of the tree, and lines represent the branches of

the tree. The use of a (reusable) trained Naive Bayes classifier is shown with a red box. This

classifier is trained by the user on a shape database before running the method.

LCA: Least  Common Ancestor,  Minimal  Validity  Check: This  step tests  performs  a  minimal

validity test to determine if the shape should be included in the list of shapes to be ranked by

the classifier: 1) the tested shape must not overlap with an existing shape 2) simple features

such as compactness or area must be within user-defined constraints.
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Fig. 3 Overview of  the manually segmented image dataset and sample error maps created

with Nessys’ validation and benchmarking tools.

The sunburst chart at the top of the figure shows the organisation of the image dataset. The size

of the rings sections is proportional to the number of manually segmented nuclei (ground truth

nuclei)  within  the  dataset.  (Grey  divisions:  biological  specimen,  M:  Monolayer,  A:  Acini,  B:

Blastocysts. Orange divisions: images, blue divisions:  manually segmented regions. NB: no sub-

division is drawn when the image was manually segmented in full). Representative test images

are shown in the left column of  the table below,  Scale Bars:  100 µm. For each image,  red

outlines represent the manually segmented image regions used to evaluate accurate hits and

errors which are shown as 3D maps in the other columns.  If  multiple regions are drawn, a

number in a grey box indicates the correspondence between a given region and the matching

3D map and sunburst section. 2nd column: accurate nuclei identified with Nessys. 3rd column:

Maps of Nessys errors. 4th and 5th column: Map of errors for the best and 2nd best non-Nessys

(NN.) methods. The legend for these errors is indicated in the top right corner of the figure. GT:

Ground Truth,  AM: Automated Method,  Merge: Only one nucleus found in AM when several

nuclei are present in GT,  Miss: nucleus found in GT but absent from AM, Split:  several nuclei

found in AM when only one is present in GT, Spur.: Spurious nucleus found in AM which does

not exist in GT. Please note that the Monolayer and the E8.75 images are the same images as in

Fig. 1B.
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Fig. 4 Error counting, morphological accuracy and computational time benchmarking

A  Radar charts representing precision and recall  for each tested method over the  DISCEPTS

dataset. B Stacked bar chart showing the proportion of detection accuracy and errors for each

tested  segmentation  method  (M:  Monolayer,  A:  Acini,  B:  Blastocysts,  7:  E7.5,  8:  E8.75).  C

Histograms of the deviation of morphological features from the ground truth (to create a single

graph for  each feature, 200 cells  from each biological  dataset were randomly sampled and

pooled  together  so  each  each  dataset  would  contribute  equally  to  the  graph.  A  table

summarises the mean and standard deviation of the distribution for each tested method (N:

Nessys, I: Ilastik, M: MINS, F: Farsight). The vertical dashed line shows the value of the measure

for the ground truth. An illustration is also given for most features to illustrate the concept

behind  the  measure  (see  also  Supplementary  Method  section  B3).  D Computational  time

benchmarking results. Left: Boxplots showing processing times in seconds recorded for each

tested  method  on  hand-segmented  images  less  than  200MB.  Middle:  Scatter  plot  of  the

number of  processed cells  per seconds by Nessys versus the size of  input image The input

image consisted of the E8.75 sample image which was resized by varying either plane sizes or

number of  planes while keeping the same resolution. The same input parameters were used in

each case. Bottom panel: Illustration of the maximum image size which could be processed by

each tested method on a lab workstation with specification given on the left drawing. Note that

the largest tested image was 120 GB which was successfully processed by Nessys, thus, the

dashed arrow indicates that Nessys can process larger images.
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Fig. 5

Fig. 5 Quantitative analysis of Tcf15 expression in a complex E8.75 mouse embryo.

A Scatter plot of the median Tcf15-venus intensity within the cell versus the cell position along

the Sagittal X coordinate. Notice the groups of points regularly organised along the X axis when

Tcf15 is high. B  Same as  A except that points are colour coded according to their respective

embryonic region as shown in D. C 3D rendering of the all detected nuclei in the E8.75 mouse

embryo image. The heatmap of the relative Tcf15-venus intensity is shown only for the tailbud

and somitic regions,  other regions are shown in grey.  D 3D rendering of nuclei  grouped by

embryonic  regions.  Scale bar in C and D: 100µm, the yellow dashed outline delineates the

shape of the embryo. 
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Fig. 6

Fig. 6 A novel synthetic NE fluorescent protein for live cell tracking

A Schematic representing the structure of the NE live reporter and its expected topology and

localisation within the cells. NLS: Nuclear Localisation Signal, (GS)3: Gly-Ser linker, EMD-TM: 44

C-ter  amino  acids  from  the  human  emerin  protein (UniprotKB:  P50402)  which  contain  a

transmembrane domain  B High resolution confocal  image showing the reporter  localisation

within a stable cell line constitutively expressing the reporter.
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Fig. 7

Fig. 7 Lineage and neighbour exchange analysis reveal that cell mixing is favoured by divisions

above the epithelial plane. 

A Single frame from the Sox1 time lapse experiment. Individual tracks are overlaid on top of the

mKate2 (green) and Sox1 (red) signals. The dots indicate the current position of the detected

cells.  B Tree representation of identified lineages. The level of Sox1 intensity within the cells

over time is shown with black to red to yellow colour code. C-D Waffle charts representing the

destiny of individual lineage branches either in terms of apoptosis, survival or division (C) or in
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therms of  Sox1 identity (D).  E-F Waffle charts  comparing the destiny of  sister  branches for

survival  (E) or for differentiation (F).  G  Beeswarm-boxplots showing the Z coordinate or the

anisotropy of dividing and non-dividing nuclei. A schematic is provided on top of the plots to

illustrate which nuclei are considered as ‘dividing’. H Waffle chart giving the number of lineage

trees contain a division occurring above the epithelial plane, within the plane or which do not

contain any division.  I Beeswarm-boxplots showing the mother branch to daughter branches

log2 ratio of the average velocity or neighbour exchange rate.  J Representative track (yellow)

containing a division above the epithelial plane which leads to greater neighbour exchange rate

after  division  (white  dots  represent  other  detected  cells  in  the  image).  The  corresponding

colour-coded trees based on Z coordinate or neighbour exchange rate are shown below images

(gaps in the tree correspond to time frames within which the cell was not detected). Note the

high Z coordinate at division and the increase in neighbour exchange rate after division.

SUPPLEMENTARY METHODS

A. Detailed description of the segmentation method

An overview of the segmentation procedure is depicted in Fig. 2. This section provides a more

detailed description of some of the key steps included in the segmentation method. Please also

note  that  source  code  and  the  latest  documentation  (including  advice  on  how  to  adjust

parameters)  can  be  found  on  the  Nessys  online  repository:

https://framagit.org/pickcellslab/nessys

1. Tree-structured ridge following procedure (Fig. S1)

The purpose of this step is to identify outlines of nuclei within a given 2D image plane. 

Inputs received from the previous steps include:

• The original NE signal for a specific plane
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• The corresponding ridge-enhanced plane (steerable filters output)

• An image location to use for initialisation

The  procedure  starts  from  a  unique  location  in  the  2D  plane  (maximum  identified  in  the

previous  step)  and  follows  the  ridges  in  the  vicinity.  The  key  idea  is  that  ridges  are  built

incrementally to form a series of ‘ridglets’ organised as a tree until some stop conditions are

met. The advantages are several:

• A shape can be constructed from any leaf pair by following the ridges leading to their

least common ancestor (LCA). (In the end a classifier ranks the shapes and identifies the

leaf pair to be selected).

• As a consequence, ridglets at the top of the hierarchy have a higher probability to be

selected as part of a nucleus outline.

• When building a shape from 2 leaves, ridge features can be computed from the sum of

pre-computed features for each ridglet to speed up the process.

Fig.  S1  depicts  this  procedure.  And Movie  S2 shows a  real  example  of  the ridge  following

procedure in slow motion.

2. Depth linkage procedure

Once all planes have been segmented, individual areas are linked together into 3D volumes (Fig.

S3). The procedure is as follows:

• Create a directed graph (V, E) of potential connections where V are areas and E define

potential linkage (Fig. S3 A, B, C)

◦ Create an edge E to the shape in the next plane if:

▪ inter-centroid distance is less than threshold

▪ shape overlap is more than the minimum percentage of each area

◦ Create an edge E to the shape in the subsequent planes if 

▪ the number of ‘jumped’ planes is less than threshold

▪ the shape is not already linked to other areas in previous planes

◦ Assign edge features for edge ranking during the graph colouring step
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▪ inter-centroid distance

▪ jaccard index

▪ sum of overlaps

▪ centre of overlaps

• Find areas with ambiguity (which mean more than 1 incoming or outgoing edge)

◦ if  multiple  connections  above  and  below  then  split  (Fig.  S3D).  Splitting  involves

checking which of the above or below merged areas have higher JI and then replace

current area with copies of the chosen areas. NB: to account for this later on, the

newly created edges will be assigned the JI computed between the merged area that

were copied and the area that was split.

◦ if ambiguity above only, then decide between merging shapes above or splitting the

current area using Jaccard indices

◦ if ambiguity below only, then decide between merging shapes below or splitting the

current area using Jaccard indices

• Graph colouring (Fig. S3E)

◦ Create a sorted queue of edges in descending value of Jaccard index

◦ For each edge check the source and target area

▪ Case 1: None have a colour: Create a new unique colour and assign to both

▪ Case 2: Only 1 has a colour: Test if volume is within bounds and merge

• Merge small volumes at boundaries if merged volume <  Mean volume +/- 3 sigma 

• Post-processing – All are optional (Fig. S3F)

◦ Split based on volume ‘anomalies’

▪ Intensity increase

▪ barycenter displacement

◦ Merge extrema?

◦ Remove volumes made of only one plane

◦ Morphological smoothing (Closing then Opening then add tips – dilation in z with

offset)

NB: This procedure is subject to change as we may further improve the method over time. We
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have  setup  an  issue  tracker  (https://framagit.org/pickcellslab/nessys/issues)   in  our  GitLab

repository which will enable anyone to look at scheduled plans to improve Nessys and also to

propose changes and fixes. 

B. Complementary details for the performance assessment procedure

1. Error counting

The  steps  outlined  below  describe  the  procedure  implemented  in  the  segmentation

comparator module to identify segmentation errors and accurate detections:

1. For each shape in the GT image, we associate the shape in the tested segmentation image

which possesses the biggest overlap. A reference of each matching pair is kept in memory as

we iterate over GT shapes(forward match).

2. The same is done in the opposite direction: for each shape in the tested image, we identify

the best matching shape in the GT image. The reference for each matching pair is kept in

memory (backward match)

3. Shapes are then classified as follows:

a. Miss: the GT shape shares less than 5% of overlap with its forward match (95% of the

shape is background in the test image)

b. Spurious: the tested shape shares less than 5% of overlap with its backward match (95%

of the shape is background in the GT image)

c. Merge: There is more than one forward match for the given GT shape in the tested image

d. Split: There is more than one backward match for a given tested shape in the GT image.

e. Accurate:  There is  exactly one backward match and one forward match for  a  pair  of

GT/tested shape.

NB: Shapes are excluded from the analysis if the matching shape in the GT image is in contact

with any of the 6  image borders. 
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For  each  GT/Tested  image  pair  given  as  input  to  the  program,  an  image  with  the  same

dimensionality of the input image is generated. This output image represents a map of the

shape classes defined above. GT and detected nuclei are drawn as an outline and given a label

which indicates their class as follows: ACCURATE = 1, EXCLUDED = 2, MISS = 3, SPURIOUS = 4,

SPLIT = 5, MERGED = 6. Applying a look up table to this image such as the ‘16-colours’ Lut in

imagej allows to visualise the accuracy of the segmentation method (Fig. S4 C, see also Fig. 3)

2. Precision and recall

Precision  and  recall  were  computed  in  LibreOffice  calc.  based  on  the  output  of  the

segmentation comparator.

Precision is defined as 
TP

TP+FP
and Recall as 

TP
TP+FN

TP (true positives) is defined as TP = Ntest−FP

where  Ntest is  the total  number of  shapes in the test  image minus the number of  shapes

excluded from the analysis and FP (false positives) FP=Nspur+Nsplit×(Nfrag−1)

where Nspur is the number of spurious shapes, Nsplit is the number of split event and Nfrag is

the average number of fragments per splitted shape.

FN (false negatives) is defined as FN=Nmiss+Nmerge×(Nms−1)

where Nmiss is the number of miss event,  Nmerge, the number of undersegmentation event

and Nms the average number of shapes per merge event.

3. Morphometric analysis

We performed the computation of morphometric features in a software built in our lab called

PickCells (Blin et al., in preparation, source code is available at https://framagit.org/pickcellslab)

and exported features to R (R Core Team, 2013) in order to build the plots shown in Fig. 4C and

Fig. S5. Features were computed as follows:
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▪ Anisotropy:

To measure the anisotropy for a given 3D shape, we computed the covariance matrix from the

list of voxel coordinates of the shape and performed its eigen-decomposition. Our code uses

the Math3 Apache library (http://commons.apache.org/proper/commons-math/). Anisotropy

was defined as: A=1−
λ2+λ3

2λ1
where lambda 1, 2 and 3 are the 1st, 2nd and 3rd eigenvalues

of  the  decomposition  respectively.  The  ‘anisotropy  difference’  shown  in  Fig.  4C  is  the

anisotropy value of the tested shape minus the anisotropy value of the matching GT shape.

▪ Eigen vector angles

We computed 3D eigen vectors from the eigendecomposition of the covariance matrix of the

list of 3D coordinates. The eigen vector angle shown in Fig. 4C is the angle between the first

eigen vector of the tested shape and the first eigenvector of the GT shape expressed between 0

and 90°.

▪ Jaccard Index

The Jaccard Index (JI) between a tested shape and its matching GT shape was computed by

expressing  volumes  (total  volume  and  volume of  the  shapes  intersection)  as  a  number  of

voxels.  JI  was  defined  as  JI=
IGT

V G+V T−IGT

 where  IGT is  the  volume  of  the  intersection

between the GT and the tested shape, VG is the volume of the GT shape and VT is the volume of

the tested shape.

▪ Intensity distance

To simulate a heterogeneous expression of 3 transcription factors, we used the 32bit manually

segmented output and converted the image to an RGB image and added noise and blur . To

compute the intensity distance, we then measured the average intensity for each RGB channel

to obtain a 3D ‘colour coordinate’ for each shape. The ‘intensity distance’ shown in Fig. 4C is

the euclidian distance between the 3D colour coordinates of the tested shape and its best

matching GT shape. 

45

1070

1075

1080

1085

1090

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/502872doi: bioRxiv preprint 

http://commons.apache.org/proper/commons-math/
https://doi.org/10.1101/502872
http://creativecommons.org/licenses/by-nc/4.0/


▪ Inter-centroid distance: 

The inter-centroid distance corresponds to the euclidian distance between the centroid of the

GT shape and the best matching tested shape.

▪ Relative volume difference

The relative volume difference was defined as V dif=
V T−V G

V G

▪ Neighbours difference 

To identify  neighbours  for  each individual  shape  in  an  image,  we first  created  a  Delaunay

triangulation using the centroids of the shapes as input. We then removed edges in the graph

by applying a cutoff of 5µm to the shortest border to border distance between adjacent shapes.

The number of neighbours for a given shape was given by the degree at the corresponding

vertex in the resulting graph. The neighbours difference reported in Fig. 4C and Fig. S5 was

equal to the number of neighbour of the tested shape minus the number of neighbour of the

GT shape.

C. Additional analysis of Nessys outputs

1. Tcf15 expression analysis

The  Tcf15  expression  analysis  shown  in  Fig.  5  was  performed  in  PickCells.  The  Nessys

segmentation module was used to perform the segmentation of the full E8.75 image of the

DISCEPTS dataset. For Fig. 5C and D, embryonic regions were manually annotated using the

Nessys 3D painter module. A rule was created in PickCells to assign nuclei to a given embryonic

region if their shape overlapped with the annotated region by at least 95%. Fig 5A and B 3D

representations were created using the 3D scene module in PickCells. 

2. Cell tracking and Neighbour exchange analysis

The tracking results presented in Fig. 7 were obtained with the tracking module of PickCells

(https://framagit.org/pickcellslab/pickcells-essentials/tree/develop/pickcells-tracking)  using

manually edited Nessys segmentation as input.
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1. Neighbour exchange rate definition

First, the neighbour graph was computed as described in (section B3 ‘Neighbour Difference’) for

each time point. Then, we compared each nucleus to itself in the previous time point to obtain

the number of unique neighbours that have been lost (N loss = set difference of neighbours at t

and neighbours at t+1) and the number of unique neighbours that have been gained (Ngain = set

difference of neighbours at t+1 and neighbours at t) during one time frame:

We then defined the neighbour exchange rate (NER) for a given branch as follows:

NER=

∑
t=tstart

t end

Nlosst+∑ Ngain t

t end−t start

where tstart and tend are the time frame of the first and last node of the branch respectively.

2. Nuclei and Branches classification

Sox1 classification: We defined a branch as Sox1+ if the mean of average Sox1 intensity of

nuclei composing the branch was above a given threshold. This threshold was set subjectively

based on both the shape of the distribution of nuclei mean intensities and based on visual

inspection of the movie  (Movie S3 – PickCells allows us to click on individual nuclei or branches

to obtain the features values of the selected object).

Dividing nuclei: Nuclei were defined as ‘dividing’ based on their position in the lineage tree, i.e

a nucleus  with two outgoing  links  and its  depth  one neighbouring  nuclei  in  the tree were

defined as  ‘dividing’ (Fig. 7G).

Apoptotic nuclei: apoptotic nuclei were defined as the leaf nodes in a tree which did not reach

the end of the movie.
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Dividing branch: A branch for which the last node corresponds to a dividing nucleus.

Apoptotic branch: A branch for which the last node corresponds to an apoptotic nucleus.

Surviving Branch: A branch for which the last node was neither a dividing nor an apoptotic

nucleus.

Above/ below plane classification: We defined a lineage as dividing above the epithelial plane

if the average Z coordinates of dividing nuclei was above 6.5 µm which corresponded to the 3rd

quartile  plus  1.5  times  the inter-quartile  range  of  the  distribution of  Z  coordinates  of  non

dividing nuclei (Fig. 7G). Branches were then defined as above or below based on the category

of the tree they belonged to. Lineages with no divisions were excluded.
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SUPPLEMENTARY FIGURES AND TABLES

Fig. S1
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Fig S1 Detailed description of the Tree Structured Ridge Following procedure

A Block  diagram  depicting  the  flow  of  operations  performed  during  the  ridge  following

procedure.  Double  Ellipses:  Input/Cache,  Simple  Ellipses:  Subprocesses,  Losanges:  decisions,

Parallelograms: Outputs. Processes in bold and underlined are further described on the right

hand side of the flowchart. B Describes how the neighbourhood of a node centre is probed in

order to follow local ridges. The graph on the right represents the profile of intensities along

the perimeter of the circle drawn on the left. C Shows how a ridge section is constructed pixel

wise.  ‘C’ is the current centre of the 8 neighbours window (last pixel identified as belonging to

the ridge), ‘R’ represents the pixel identified as ridge just before ‘C’ and is used to find the 3

next potential ridge pixels which are shown with a ‘?’. The schematic on the right shows the

direction  of  the  following  process  from the  neighbour  maximum towards  the  node  center

(Origin).  Schematics in the bottom section depicts  the stop conditions (I,  O,  M, P)  and the

resulting paths  after required operations such as ‘rebase’ or  ‘linkage’  operations.  Note that

when this step if performed “as root”, only I and O are used. D Illustrates the last step required

to construct the ridges to the next nodes in the tree (‘Find Blind’). A large field of view with 3

nuclei is drawn on the left. Branches of the tree that have already been built in this example are

represented with red dashes, a red circle is drawn at the position of the root node. The region

where the ‘find blind’ step is being performed is magnified on the right. Each possible stop

condition is depicted. Green leaves are represented where leaf nodes are identified and an

orange leaf is drawn where a path intersection is found as this induces a new leaf child in the

corresponding internal node of the tree.

Yellow Circle: Current Node Center, Green Circle: Neighbourhood Maximum, CP: Crossing Point,

P: Path to parent node, O: Origin, M: Missed, I: Intensity Drop, T: Sharp Turns, C: Own path

Crossing. L: Loop to self, Distance stop.
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Fig. S2
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Fig S2 Description and example of distributions of the ridge features used as input to the

Naive Bayes Classifier

A This table provides an overview of the features computed for each ridge passing the minimal

validity check in order to rank and select the most probable shape with a naive Bayes classifier.

B A matrix of plots representing the distributions of feature values of a sample training set used

by the classifier. Blue are valid shapes and red invalid shapes. Plot created in R with ggpairs

from the GGally library(“Extension to ‘ggplot2’ [R package GGally version 1.2.0],” n.d.)
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Fig. S3 Description of the Depth linkage procedure and definition of user-defined parameters.

The schematics in this figure represent individually segmented planes in a 3D image. image
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planes are shown as dashed vertical lines with 2D areas identified in the previous steps of the

segmentation drawn as solid shapes. The relative position of each plane is indicated by the

letter P followed by the plane index. A Represents an example of a directional graph created by

the  first  step  of  the  procedure.  Arrows  represent  the  links  which  are  created  if  the  two

connected shapes can potentially be part of the same volume.  B Required conditions for link

creation when the areas to lookup (blue shapes) are located in the directly adjacent plane as

the area under consideration (orange shape).  The drawing at the top shows the max inter-

centroid  distance threshold as  a  dashed circle.  The red cross  shows the centroids that  are

excluded and green ticks the centroid that can be included. The bottom drawing shows the

effect of the ‘overlap threshold’. Percentages indicate how much of the area overlaps with the

surface of the other area. Left percentage is for the blue shape and right percentage is for the

orange  shape.  The  outcome with  two distinct  values  for  the  overlap  threshold  is  given.  C

Condition for edge creation when the area to lookup (blue shape) is located further than the

plane  directly  adjacent  to  the  area  under  consideration  (orange  shape).  The  ‘Max  Jump’

parameter defines the maximum number of planes that are allowed between two areas for an

edge  to  be  created.  The  drawing  also  shows  the  rule  that  applies  when  the  area  already

possesses an edge with an area in a plane located upstream. D Diagrams showing rules applying

when ‘ambiguities’ are detected. The shapes colours indicate their unique id and the area with

ambiguities is shown in orange. Two cases are represented: 1) ambiguity is found both with the

above plane and with the plane below. In this example, the Jaccard Index (JI)  between the

merged areas above and the current area is higher than the JI between the merged areas below

and the current plane 2) ambiguity is found only in the plane below. The outcome obtained in

the case that the JI between the current area and the merged areas in the bottom plane is

higher  than the JI  between the current  area and the area above  is  shown on the right.  E

Illustration of the volume labeling procedure. Numbers in rounded squares indicate the order

of events. The numbers next to the edges represent the value of the JI between two connected

areas. Each colour indicates a unique id. Areas with the same id will belong to the same volume

eventually. White means that no volume id has yet been assigned. The effect of the ‘volume

constraint’ (Max volume and min volume parameters) is shown. F Illustrations of the optional

post-processing steps. Left panel: Intensity based splitting. Example image planes with Lamin B1

signal are shown. The corresponding diagram illustrates a cut where the peak in the intensity
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ratio (IR  –  intensity  at  the center  dividied by intensity  at  the rim)  is  found.  Middle  panel:

Displacement  based  splitting:  The  top  diagram  shows  an  example  of  an  under-segmented

volume.  The profile  of  the centroid  displacement  (CD)  along image  depth  is  given.   In  the

bottom drawing, a cut is shown at the peak of the CD value. Right Panel: Volume smoothing.

Examples  of  artifacts  are  given in  the top diagram.  The bottom drawing shows how these

artifacts are expected to be corrected.  Additional  areas  at  the tips  of  the volume are  also

shown.

Fig. S4 Overview of Nessys features  for segmentation validation and benchmarking

A Snapshot of the first window to appear when launching the Nessys standalone application.

This  window  lets  the  user  choose  the  specific  tool  to  work  with.  B  Snapshot  of  the

segmentation editor interface. The streak region of the E8.75 embryo (blue and white image) is

loaded into the editor together with a segmentation result which appears as yellow outlines.

Selected shapes have been highlighted in red.  C Overview of the ‘segmentation comparator’

tool.  Boxes  with  a  title  over  an  orange  background represent  java  implementations  in  the

application.  The  tasks  that  they  handle  is  indicated  inside  the  box.  The

‘SegmentationComparator’ interface is shown in a blue box and can be extended to add custom

metrics to the benchmarking process (dashed box). Required inputs are shown on the left-hand

side: A GT image and a tested segmentation are loaded into the application which performs

‘shape  matching’,  error  counting  and  computes  performance  metrics.  Note  that  batch

processing of images is supported as long as the number and dimensions of GT images are the

same as tested segmentation images. Outputs of the program are illustrated on the right-hand

side of the diagram. Summary.tsv is a table with all computed metrics for each image. The raw

image of the 3D error map created by the program is shown with the ‘16 colours’ lookup table

of ImageJ (Image Map - left) and a 3D view of this image obtained with the ImageJ 3D viewer

(Image Map - right). Blue: accurate hit, yellow: spurious,  purple: merge, orange: split. An online

video  tutorial  for  the  Nessys  method  is  readily  available  at

https://peertube.mastodon.host/videos/watch/ca891fb7-df04-4da1-abf9-509586162944 and

detailed  tutorials  for  all  Nessys  tools  will  be  released  soon  on  the  following  website:

https://pickcellslab.frama.io/docs/
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Fig. S5

Fig. S5 

Histograms of the deviation of morphological features from the ground truth for each biological

dataset  including  all  nuclei  (complementary  data  for  Fig.  4C).  blue:  Nessys,  purple:  Ilastik,

yellow: Mins, green: Farsight. 
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Table S1: Summary of DISCEPTS  image properties 

Table S2: Segmentation accuracy measures for each biological specimen and method

58

Channels Microscope Objective

Neural Monolayer 1 8 GammaTubulin / LaminB1 / Sox1-GFP / Dapi Prolong Gold Leica SpE ACS APO 63.0x1.30 OIL 0,227 x 0,227 x 0,503
3D Acini 3 12 Oct6 / LaminB1 / Dapi / gammaTubulin Prolong Gold Leica Sp8 HC PL APO 40x/1.30 Oil CS2 0.238 x 0.238 x 0.5
Blastocysts 5 12 LaminB1 / Dapi PBS Leica Sp8 HC PL APO 40x/1.30 Oil CS2 0.36 x 0.36 x 0.5
E7.5 1 12 LaminB1 / Dapi BABB Leica Sp8 HC PL APO 40x/1.30 Oil CS2 0.142 x 0.142 x 0.5
E8.75 1 12 Dapi / Tcf15-venus / gammaTubulin / LaminB1 BABB Leica Sp8 HC PL APO 40x/1.30 Oil CS2 0.28 x 0.28 x 1

Biological 
Specimen

Number of 
images

Bit 
Depth

Imaging 
medium

Voxel size (µm)

Monoloayer ( 1 image - 470 Cells)
Method JI RI Haussdorf NSD Merge Miss Split Spurious Accurate Precision Recall F-Measure
Nessys 0,61 0,94 256,70 0,30 4,50 % 2,00 % 2,84 % 1,03 % 89,63 % 96,13 % 93,48 % 94,79 %
Ilastik 0,58 0,94 261,47 0,44 10,00 % 4,25 % 19,69 % 2,21 % 63,85 % 78,10 % 86,10 % 81,90 %
MINS 0,42 0,91 256,36 0,64 16,75 % 3,25 % 9,25 % 8,75 % 62,00 % 82,00 % 80,39 % 81,19 %
FarSight 0,63 0,93 256,11 0,18 24,25 % 0,00 % 21,32 % 0,76 % 53,67 % 77,92 % 75,99 % 76,94 %

Acini (3 images - 512 Cells)
Method JI RI Haussdorf NSD Merge Miss Split Spurious Accurate Precision Recall F-Measure
Nessys 0,68 0,97 91,55 0,14 5,76 % 0,00 % 3,66 % 1,29 % 89,30 % 95,05 % 94,24 % 94,65 %
Ilastik 0,53 0,96 92,21 0,33 27,30 % 4,26 % 23,45 % 3,13 % 41,86 % 71,75 % 68,85 % 70,27 %
MINS 0,41 0,95 92,11 0,52 28,94 % 2,35 % 19,75 % 3,57 % 45,39 % 75,06 % 69,95 % 72,41 %
FarSight 0,58 0,96 92,95 0,14 39,25 % 0,00 % 8,71 % 19,58 % 32,47 % 70,42 % 62,14 % 66,02 %

Blastocysts (5 images - 699 Cells)
Method JI RI Haussdorf NSD Merge Miss Split Spurious Accurate Precision Recall F-Measure
Nessys 0,69 0,96 80,37 0,17 0,17 % 4,67 % 2,57 % 0,00 % 92,59 % 97,43 % 95,15 % 96,28 %
Ilastik 0,73 0,97 80,80 0,16 1,17 % 1,34 % 4,75 % 0,65 % 92,10 % 94,60 % 97,48 % 96,02 %
MINS 0,71 0,96 81,34 0,21 3,51 % 0,17 % 4,68 % 1,78 % 89,87 % 93,40 % 96,33 % 94,84 %
FarSight 0,70 0,95 78,05 0,03 15,66 % 0,00 % 3,63 % 1,83 % 78,89 % 94,55 % 84,65 % 89,32 %

E7.5 (2 Zones 924 Cells)
Method JI RI Haussdorf NSD Merge Miss Split Spurious Accurate Precision Recall F-Measure
Nessys 0,59 0,87 283,01 0,17 6,27 % 2,34 % 4,16 % 0,35 % 86,88 % 95,49 % 91,44 % 93,42 %
Ilastik 0,70 0,90 272,92 0,09 6,34 % 0,00 % 6,86 % 0,66 % 86,14 % 92,48 % 93,64 % 93,05 %
MINS 0,54 0,87 283,50 0,47 14,71 % 1,67 % 22,69 % 2,87 % 58,07 % 74,44 % 84,10 % 78,98 %
FarSight 0,60 0,83 123,24 0,01 18,57 % 0,00 % 28,81 % 2,71 % 49,91 % 68,48 % 82,67 % 74,91 %

E8.75 (3 zones - 4593 Cells)
Method JI RI Haussdorf NSD Merge Miss Split Spurious Accurate Precision Recall F-Measure
Nessys 0,64 0,85 991,02 0,26 3,11 % 3,03 % 2,05 % 0,81 % 91,00 % 97,14 % 93,81 % 95,45 %
Ilastik 0,65 0,86 988,70 0,34 8,15 % 2,92 % 6,28 % 1,28 % 81,38 % 92,44 % 88,84 % 90,61 %
MINS 0,56 0,82 1004,26 0,46 13,10 % 0,55 % 16,29 % 2,89 % 67,17 % 80,82 % 86,55 % 83,59 %
FarSight 0,63 0,84 1033,03 0,18 21,30 % 0,30 % 7,11 % 2,51 % 68,79 % 90,39 % 78,43 % 83,98 %
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Table S3: Description of the measures provided by the segmentation benchmarking tool

Table S4: Processing Time for each image and method

59

Image Zone Image Size (Mpx) Image Planes XY Res (µm) Nessys Ilastik Farsight Mins

Monolayer 130520_Rosette Whole image 47,012364 36 0,23 101 232 59 702

Acini
E14tg2a_d2_6.tif Whole image 40,894464 39 0,24 87 168 660 499
Tcf15-KO-A1_d2_3.tif Whole image 37,748736 36 0,24 75 148 521 432
Tcf_Het_d2_5.tif Whole image 28,311552 27 0,24 37 251 310 325

Blastocysts

161202_B1_C1 1 17,5879 236 0,36 59 116 34 NA
161202_B1_C2 2 17,254904 236 0,36 67 123 33 157
161202_B2_C1 1 31,349175 237 0,36 97 163 61 333
161202_B2_C2 2 10,953192 237 0,36 61 79 21 151
161202_B3 Whole image 21,826675 239 0,36 67 104 42 209
161202_B4_C1 1 12,77804 257 0,36 75 76 25 168
161202_B4_C2 2 20,509628 257 0,36 84 128 40 190
161202_B4_C3 3 13,65441 257 0,36 69 74 27 118
161202_B5_C1 1 12,27447 196 0,36 64 66 24 107
161202_B5_C2 2 11,56077 196 0,36 63 62 23 98
161202_B5_C3 3 11,56077 196 0,36 67 62 23 102

E7.5
161202_E75_Zone1 1 3,8794 140 0,2838 63 26 6 57
161202_E75_Zone2 2 8,22987 297 0,2838 132 52 12 157

E8.75
E90_Epithelia Epithelia 12,0048 41 0,28 38 79 171 345
E90_Somite_64_124 Somites 7,9422 61 0,28 29 39 165 174
E90_Streak Streak 7,095222 51 0,28 40 42 115 158

ClusteringComparator Name of the java class generating the measures listed below
Jaccard Index Similarity measure (higher values are better)
Rand Index Similarity measure (higher values are better)
Hausdorff Mean maximum of the set of minimal distances between two compared shapes (lower values are better)
Hausdorff Std Standard deviation of the Hausdorff measure distribution
NSD Mean
NSD Std Standard deviation of the NSD measure distribution
SegmentationAccuracy Name of the java class generating the measures listed below
Merge count Number of merged events
Merge size Mean Average number of shapes per merge event
Merge size Std Stand deviation of the distribution of the number of shapes per merge events
Miss Number of miss events
Ref Number of Border Cells Number of shapes touching the image border in the GT image
Ref Total Number of Cells Total number of shapes in the GT image
Split count Number of split events
Split size Mean Average number of shapes per split event
Split size Std Standard deviation of the distribution of the number of shapes per split events
Spurious Number of spurious detection occurrences

Stretch

Test Number of Border Cells Number of shapes touching the image border in the tested image
Tested Total Number of Cells Total number of shapes in the tested image

Normalised Sum of distances : average distance of mis-labelled pixels by the automated method from the border of the reference shape in GT (lower values are better) 

Number of detected shapes in the tested image which overlap with more than one GT shape (at least 25 % of detected shape volume). This can encompass merged 
or split events
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Table S5: Nessys processing time details with increasing image plane size or plane number

 
Table S6: Primary antibodies used in this study

Movie S1 Examples of Nessys Segmentation outputs  Plane by plane animation of the Nessys

segmentation outputs shown in Fig. 1B and C. The LaminB1 signal is overlaid in cyan.

Movie S2  Illustration of the Ridge Following Procedure  This movie is a slow motion of the

ridge following procedure. The movie starts by a display of the final tree as described in the

legend of figure 2. The green portion of the tree represents the pair of leaves selected as the

most  probable  valid  shape  according  to  the  ranking  performed  by  the  classifier.  Then  a

sequence shows how the tree was grown. The green dot represents the location of the ridge

following procedure at a given time and the blue lines highlight the ridges that have already

been identified. Finally the leaves, the root and the ‘winning’ ridge are highlighted before the

segmented area is drawn.

Movie S3  Time lapse of double colour reporter cells during neural differentiation.  Movie of

the time lapse experiment shown in Fig. 7. Green: NE-mKate2 signal, Red: Sox1-GFP. 1 sec = 38

min in real time.
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Image Size Image Properties Processing time (Sec.)
Image X Y Z Mpx Cell Number Cells/Mpx Steer RBS Linkage Total Mvx/Sec Cells/Sec
A1 472 359 145 24,56996 4511 183,6 3 105 21 129 0,190 35,0
A2 665 505 145 48,694625 7956 163,4 6 172 34 212 0,230 37,5
A3 940 715 145 97,4545 15280 156,8 12 276 63 351 0,278 43,5
A4 1330 1011 145 194,97135 23542 120,7 24 428 104 556 0,351 42,3
A5 1881 1430 145 390,02535 35443 90,9 48 649 165 862 0,452 41,1
A6 2660 2022 145 779,8854 61540 78,9 102 1080 327 1509 0,517 40,8
A7 3763 2860 145 1560,5161 81284 52,1 199 1550 502 2251 0,693 36,1
B1 1024 1024 24 25,165824 4032 160,2 6 81 21 108 0,233 37,3
B2 1024 1024 48 50,331648 7892 156,8 10 158 42 210 0,240 37,6
B3 1024 1024 96 100,6633 15485 153,8 21 302 72 395 0,255 39,2
B4 1024 1024 192 201,32659 30676 152,4 41 602 144 787 0,256 39,0
B5 1024 1024 384 402,65318 61108 151,8 81 1270 281 1632 0,247 37,4
B6 1024 1024 580 608,17408 92250 151,7 113 1827 556 2496 0,244 37,0
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Epitope Host Dilution Suplier Reference
Lamin B1 Rabbit 1/1000 Abcam ab16048
Gamma-TubuliMouse 1/250 Abcam ab11316
GFP Chicken 1/1000 ?? Abcam Ab 13970
Oct6 Goat 1/200 Santa Cruz sc-11661
Nuclear Pore Mouse 1/1000 Abcam ab24609
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