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Abstract 8 

In this paper we evaluate the performance of using a family-specific low-density genotype 9 

arrays to increase the accuracy of pedigree based imputation. Genotype imputation is a widely 10 

used tool that decreases the costs of genotyping a population by genotyping the majority of 11 

individuals using a low-density array and using statistical regularities between the low-density and 12 

high-density individuals to fill in the missing genotypes. Previous work on population based 13 

imputation has found that it is possible to increase the accuracy of imputation by maximizing the 14 

number of informative markers on an array. In the context of pedigree based imputation, where 15 

the informativeness of a marker depends only on the genotypes of an individual’s parents, it may 16 

be beneficial to select the markers on each low-density array on a family-by-family basis. In this 17 

paper we examined four family-specific low-density marker selection strategies, and evaluated 18 

their performance in the context of a real pig breeding dataset. We found that family-specific or 19 

sire-specific arrays could increase imputation accuracy by 0.11 at 1 marker per chromosome, by 20 

0.027 at 25 markers per chromosome and by 0.007 at 100 markers per chromosome. These results 21 

suggest that there may be a room to use family-specific genotyping for very-low-density arrays 22 

particularly if a given sire or sire-dam pairing have a large number of offspring. 23 

  24 
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Introduction 25 

In this paper we evaluate the performance of using family-specific low-density genotyping 26 

arrays for pedigree based imputation. The use of genomic information in livestock breeding has 27 

risen substantially over the past decade, and has led to an increase in the accuracy of selection, 28 

particularly on traits with low heritability (Van Eenennaam et al., 2014), decreased the 29 

generational interval for some species (notably cattle; Wiggans et al., 2017), and increased the rate 30 

of genetic gain (Knol et al., 2016). Many of these gains have been made possible due to the use of 31 

low-cost genotypes obtained through genotype imputation. In the context of an animal or plant 32 

breeding program, genotype imputation allows most of the individuals in the population to be 33 

genotyped with a low-cost, low-density genotype array, while only a small number of individuals 34 

(e.g., the sires and top dams) are genotyped with a high-density array. The markers on the low-35 

density array are used to identify shared haplotypes between low-density and high-density 36 

individuals. The shared haplotype segments are then used to fill-in missing genotypes (Li and 37 

Stephens, 2003).  38 

High imputation accuracy is key for maximizing the rate of genetic gain in a population;  39 

low imputation accuracy decreases genomic prediction accuracy, which in turn decreases the 40 

response to selection. One of the primary factors that influences imputation accuracy is the total 41 

number of markers on a low-density genotyping array. If there are too few markers then it may be 42 

challenging to correctly identify the shared haplotypes between low-density and high-density 43 

individuals. Having more markers increases the specificity of detecting shared haplotypes. 44 

However, increasing the number of low-density markers also increases the cost, potentially 45 

limiting the number of individuals genotyped. An alternative way to increase accuracy is to keep 46 
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the total number of markers constant, but choose the markers to be as informative as possible 47 

(Aliloo et al., 2018; Boichard et al., 2012; Wu et al., 2016). 48 

Past work on population based imputation has found that selecting markers that have high 49 

minor allele frequency, are evenly spaced throughout the chromosome (Wu et al., 2016), or covary 50 

strongly with other markers can improve imputation accuracy (Aliloo et al., 2018). These three 51 

factors allow a population based imputation method to distinguish between high-density reference 52 

haplotypes and find the specific reference haplotype that the low-density individual carries. For 53 

example, markers with high minor allele frequency are likely to segregate between haplotypes, 54 

allowing similar haplotypes to be distinguished. In contrast, markers with a low minor allele 55 

frequency may be fixed in most of the haplotypes in the population and so provide limited 56 

information. 57 

We can also search for informative markers in the context of pedigree based imputation. 58 

Unlike for population based imputation methods, where we need to identify which haplotype an 59 

individual carries from all of the haplotypes in the population, in pedigree based imputation where 60 

an individual is imputed based on the genotypes of their parents, we only need to identify which 61 

parental haplotypes the individual inherited at each marker. This reduces the number of haplotypes 62 

that need to be considered from hundreds or thousands to just four (for diploid species). 63 

Informative markers are those that allow us to distinguish between the parental haplotypes. If the 64 

parents have high-density genotypes (potentially by having been imputed themselves) and are 65 

phased then the informative markers will be the markers that are heterozygous in the parents. To 66 

illustrate this, suppose there is a biallelic marker where both parents are genotyped and phased. If 67 

sire is AB and the dam is BB, then the marker is informative for distinguishing sire haplotypes. 68 

The resulting child will either be AB or BB. If the child is AB we know that the child inherited the 69 
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A allele from the sire and since the sire is phased we know which haplotype the child inherited at 70 

that marker. Alternatively if the child is BB, we know it inherited the B allele from the sire and 71 

the corresponding haplotype. If both parents are heterozygous at a marker (AB and AB), then the 72 

marker will be informative for both parents in half of the time, i.e. when the child is either AA or 73 

BB. If the child is AB the marker will not be informative since we cannot determine the parent of 74 

origin for each allele. We illustrate these conditions in Figure 1.  75 

The fact that the marker informativeness for pedigree based imputation is based only on 76 

the genotypes of the sire and dam of an individual suggests selecting the markers on the low-77 

density array on a family-by-family basis, by targeting markers that are heterozygous in one, or 78 

both parents. In this paper we use simulation to evaluate the performance of four family-specific 79 

low-density marker selection strategies and three population based strategies.  In each simulations 80 

we used a marker selection strategy to construct a series of low-density arrays. These arrays were 81 

then used to mask high-density genotype data taken from a commercial pig population. We used 82 

multi-locus iterative peeling (Whalen et al., 2017) to re-impute each individual to high-density. 83 

We found that although family-specific genotyping arrays greatly increased the accuracy of 84 

imputation at very low marker densities (5-10% gains at < 25 markers per chromosome) but that 85 

the gains at low-density arrays with more markers were small (<1%, at >100 markers per 86 

chromosome). 87 

Materials and Methods 88 

Genetic data 89 

In this study, we used genotypes for 1,000 focal individuals and their ancestors from a large 90 

commercial pig breeding program. The focal individuals were selected to have been genotyped on 91 

a high-density array (~50k markers across 18 chromosomes), and to have had 5 generations of 92 
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(potentially low-density) genotyped ancestors. In total, we extracted the genotypes for 2,405 93 

animals (1,000 focal individuals and 1,405 ancestors). We have then performed several simulations 94 

where the genotypes of the focal individuals were masked according to a low-density marker 95 

selection strategy (explained below) and imputed using AlphaPeel. AlphaPeel is a pedigree based 96 

imputation method based on multi-locus peeling (Whalen et al., 2017; 97 

https://alphagenes.roslin.ed.ac.uk/wp/software/alphapeel/). We have run AlphaPeel with default 98 

parameters. 99 

Marker selection strategies 100 

 We evaluated two sets of marker selection strategies where the markers on the low-density 101 

array were either optimized for the whole population, or for a specific family. For all methods, we 102 

split the chromosome into k bins, where k is the number of low-density markers, and used a marker 103 

selection strategy to select a marker from each bin. For each marker selection strategy, we varied 104 

the number of low-density markers per chromosome between 1 and 700 in 16 increments, using 105 

either 1,2, 3, 5, 10, 15, 25, 50, 100, 150, 200, 300, 400, 500, 600, or 700 markers. 106 

We evaluated three population based marker selection strategies. We selected either the 107 

middle marker from each bin (midpoint), the marker in the bin that had the highest minor allele 108 

frequency (maf), or the marker that was simultaneously central and had a high minor allele 109 

frequency (combined). The combined centrality and minor allele frequency was based on the 110 

method of Wu et al. (2016). For each marker we calculated a score: 111 

𝑠𝑐𝑜𝑟𝑒& = −(1 − 𝑑&)(𝑝& log1(𝑝&) + (1 − 𝑝&) log1(1 − 𝑝&)), 112 

where di is the distance (in number of markers) between the marker and the center of the bin, and 113 

pi is the minor allele frequency for marker i. The term (1-di) gives higher weight to markers that 114 

are close to the center of the bin. The term (𝑝& log1(𝑝&) + (1 − 𝑝&) log1(1 − 𝑝&)) is the Shannon 115 
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information content of the marker based on the minor allele frequency and is highest for markers 116 

with minor allele frequency close to 0.5 (Wu et al. 2016). Unlike Wu et al. (2016) we did not 117 

perform a global optimization of the location of each markers, but instead selected the marker for 118 

each bin independently.  119 

Previous work has found that selecting two markers from the first and last bins on the 120 

chromosome can improve accuracy (Boichard et al., 2012) due to the higher-than normal 121 

recombination rate at the ends of the chromosome. Due to the small number of markers used in 122 

our study (in some cases, only 1 marker was used) we only selected a single marker from each bin, 123 

even for the first and last bins. 124 

We evaluated four family-specific marker selection strategies. We selected the marker 125 

closest to the center of the bin that was either heterozygous in both parents (Het/Het), heterozygous 126 

in one parent and homozygous in the other (Het/Hom), heterozygous in at least one parent 127 

(Het/Any), or heterozygous in the sire (Het/Sire). In the Het/Hom condition we used 3
1
 bins and 128 

separately selected markers in each bin that were informative for the sire or the dam (if the number 129 

of markers was odd, the sire received 345
1

 bins, and the dam received 365
1
	bins). If a bin did not 130 

contain an acceptable marker for the family-specific strategy, we used the combined population 131 

strategy to select the marker for that bin. This occurred primarily in the Het/Het condition when 132 

there were no markers that were heterozygous in both parents, or when the number of low-density 133 

markers was large. In all family-specific strategies, we restricted the pool of potential markers to 134 

markers that were genotyped in the real dataset (i.e., not missing) in the sire, dam, and offspring.  135 

Imputation accuracy measurement 136 

Imputation accuracy was measured as the correlation between an individual’s imputed 137 

genotype and their true genotype, corrected for their parent average genotype: 138 
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accuracy = cor(Gimputed – Gparent_average, Gtrue – Gparent_average). 139 

This measure of imputation accuracy is designed specifically for pedigree based imputation. It is 140 

0 if no genotype information is available on a focal individual (leading the individual to be imputed 141 

as the parent average genotype), and is 1 if the individual is imputed perfectly. The goal of this 142 

metric is to assess the accuracy of imputing within-family (Mendelian sampling) genotype 143 

variation. In simulations we have found a close relationship between this measure of imputation 144 

accuracy and the accuracy of the breeding value estimates. In addition, this measure does not rely 145 

on using the population minor allele frequency (as opposed to correcting for minor allele 146 

frequency, as in Calus et al., 2014), which may not be representative of the allele frequencies in 147 

specific families. In cases where the genotypes of the parents were missing in the real dataset, we 148 

used the imputed values from AlphaPeel to calculate the parent average genotype. This was 149 

primarily done to fill in spontaneous missing genotypes, and to impute dams that were genotyped 150 

at a lower density. 151 

Imputation accuracies were calculated separately for each chromosome and then averaged 152 

across all 18 chromosomes. 153 

Results 154 

 In Figure 2, we present the performance of using either a population strategy or a family-155 

specific strategy, for both the (a) absolute imputation accuracy, or (b) imputation accuracy relative 156 

to the combined population strategy. We found that the combined  strategy was the highest 157 

performing population strategy, followed by the maf strategy, and then by the midpoint strategy. 158 

The difference between the combined strategy and the maf strategy was less than 0.001 at above 159 

25 markers per chromosome. Of the family-specific strategies, we found that the Het/Hom strategy 160 

was the highest performing strategy, followed by the Het/Any strategy, and finally the Het/Het 161 
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strategy. The Het/Sire strategy performed better than the Het/Het strategy with fewer than 5 162 

markers, but worse with 5 or more markers. For all marker densities, the family-specific strategies 163 

outperformed the combined strategy. 164 

 The combined strategy gave high imputation accuracies across a range of marker densities. 165 

Imputation accuracy was 0.312 at 1 marker per chromosome (18 markers total), 0.796 at 10 166 

markers per chromosome (180 markers total), 0.903 at 25 markers per chromosome (450 markers 167 

total), 0.945 at 50 markers per chromosome (900 markers total), and 0.985 at 500 markers per 168 

chromosome (9,000 markers genome wide). 169 

Using a family-specific strategy further increased imputation accuracy. When the Het/Any 170 

strategy was used, we obtained an 0.111 gain in imputation accuracy compared to the combined 171 

strategy at 1 marker per chromosome. This dropped to 0.058 at 10 markers per chromosome, 0.027 172 

at 25 markers per chromosome, 0.014 at 50 markers per chromosome, and 0.010 at 500 markers 173 

per chromosome. The gains for the other family-specific strategies were similar.  174 

In Figure 3(a), we plot the imputation accuracy with the Het/Any strategy by chromosome, 175 

and in Figure 3(b) by chromosome length. We found that imputation accuracy decreased as the 176 

chromosome length increased, but that this difference was small even for large chromosomes. To 177 

quantify these differences in imputation accuracy, we used a linear model to measure the effect of 178 

the number of markers and chromosome length (in cM) on accuracy. Chromosome lengths were 179 

taken from Tortereau et al. (2012). The linear model fitted chromosome length as a linear covariate 180 

nested within the number of markers as a categorical variable to account for the non-linear effect  181 

that number of markers has on accuracy. We found a significant effect of chromosome length on 182 

accuracy (regression coefficients decreased from -0.0012 loss of accuracy per cM at 2 marker per 183 
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chromosome to 0.0001 loss of accuracy per cM at 100 marker per chromosome, p<0.001) and the 184 

interaction between the number of markers and chromosome length (p<0.001). 185 

Discussion 186 

In this paper we evaluate the performance of using family-specific low-density marker 187 

selection strategies to increase the accuracy of pedigree based imputation. We found that using 188 

parental genotype information to select markers on a low-density genotype array could increase 189 

imputation accuracy, with the largest gains occurring at very low marker densities (between a 0.11 190 

and 0.05 increase in accuracy for between 1 and 25 markers per chromosome). The gains were 191 

more limited at higher marker densities (under a 0.01 increase in accuracy at more than 100 192 

markers per chromosome). In addition, we quantified the influence that chromosome length had 193 

on imputation accuracy, and found that increasing chromosome length had a near-linear impact on 194 

imputation accuracy when the number of informative markers per chromosome was held constant. 195 

In the remainder of the discussion we will highlight the performance of each family-specific 196 

marker selection strategy, compare our results to past work on optimizing the design of low-density 197 

arrays for population based imputation, and discuss the commercial viability of using family-198 

specific genotype arrays. 199 

 200 

Performance of family-specific  marker selection strategies 201 

 In this paper we found that selecting the markers on a low-density genotype array based on 202 

parental information increased accuracy in all cases compared to using the same set of markers for 203 

every individual in the population. We evaluated four marker selection strategies, and found that 204 

selecting markers that were heterozygous in one parent, and homozygous in the other (Het/Hom, 205 

Figure 1a) yielded the highest imputation accuracies. Selecting markers that were heterozygous in 206 
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both parents (Het/Het, Figure 1b) resulted in much lower imputation accuracies than the Het/Hom 207 

strategy, particularly at very low marker densities. This effect is caused by the lack of informative 208 

markers when low-density individuals have heterozygous genotypes in the Het/Het condition 209 

(Figure 1b). 210 

 In addition to the strategies presented in Figure 1, we also investigated two hybrid 211 

strategies. The first was to select markers that were heterozygous in either (Het/Any). The 212 

second was to select markers that were heterozygous in the sire (Het/Sire). We found that the 213 

Het/Any strategy performed in between the Het/Hom and Het/Het strategies, reflecting the fact 214 

that markers chosen were split between being heterozygous in one parent and homozygous in the 215 

other, and being heterozygous in both parents. We found that the Het/Sire condition performed 216 

well at a few markers per chromosome, but that the gain in imputation accuracy declined more 217 

rapidly compared to the alternative strategies. This is likely due to the Het/Sire strategy placing 218 

most of its weight on finding markers that are informative for the sire, resulting in few markers 219 

that were informative for the dam. Even so, the Het/Sire strategy outperformed all of the 220 

population strategies tested, making it a potentially useful strategy when a single sire produces a 221 

large number of offspring. 222 

One of the advantages of studying family-specific marker selection strategies is that 223 

because they focus all of their genotyping efforts on informative loci, they also provide anupper 224 

bound on the performance any population-specific strategy. We found that the difference between 225 

all of the family-specific strategies and the worst performing population strategy was less than 226 

0.01 at 100 markers, suggesting that for pedigree based imputation there are limited gains for 227 

optimizing the design for low-density arrays if more than 100 markers per chromosome are used 228 

(1,800 markers in total for the 18 pig autosomal chromosomes in our study population).  229 
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 230 

Comparison to population based imputation 231 

 The results in this paper align closely with the previous work on optimizing low-density 232 

genotyping arrays for population based imputation. Similar to both Aliloo et al. (2018) and Wu et 233 

al. (2016), we find that the gains in imputation accuracy for an optimized array were highest at 234 

low marker densities and diminished at higher densities. We were also able to replicate the primary 235 

finding of Wu et al. (2016), that simultaneously optimizing the low-density markers for both high 236 

minor allele frequency and even spacing improved imputation accuracy particularly at low-237 

densities. 238 

Consistent with past work on population and pedigree based imputation (Antolín et al., 239 

2017) we found that the accuracy of pedigree based imputation was higher than that of population 240 

based imputation at similar marker densities. This is expected because population based imputation 241 

has to compare an individual’s low-density genotype to all of the population haplotypes, while 242 

pedigree based imputation has to match it to the four parental haplotypes. When the number of 243 

low-density markers is small it is hard to distinguish among population haplotypes, but much easier 244 

to distinguish among parental haplotypes. When the number of markers increases, distinguishing 245 

population haplotypes becomes easier. Therefore, in the context of optimizing the low-density 246 

arrays, family-specific strategies will be relevant only at low marker densities. For example, Aliloo 247 

et al. (2018) obtained a gain in imputation accuracy of 0.10 at ~125 markers per chromosome using 248 

an optimized set of markers and a population based imputation algorithm (absolute imputation 249 

accuracy rose from 0.69 to 0.79). In contrast, we observed an accuracy of 0.97 at 100 markers per 250 

chromosome with pedigree based imputation, obtained a gain in imputation accuracy of 0.10 at 3 251 

markers per chromosome (going from 0.55 to 0.65 accuracy) in the Het/Any condition. 252 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/502989doi: bioRxiv preprint 

https://doi.org/10.1101/502989
http://creativecommons.org/licenses/by-nc-nd/4.0/


Increasing accuracy via family-specific genotype arrays 13 

  253 

Commercial feasibility of family based imputation 254 

The primary question of using family-specific genotype arrays revolves around the cost 255 

and the complexity of deploying such arrays in the context of a genetic improvement program. 256 

There are two primary issues: First, in order for a family-specific array to be beneficial, the density 257 

of the array needs to be low. Second, the use of a family-specific array may require the construction 258 

of a large number of arrays, which may be prohibitively expensive. We discuss both of these issues 259 

in more detail below. 260 

 On the question of marker densities, we find that in order for a family-specific genotype 261 

array to be beneficial, the underlying marker density has to be much smaller than what is traditional 262 

used in an animal improvement program (<25 markers per chromosome), and will result in lower 263 

absolute values of imputation accuracy than a traditional low or medium density array. This limits 264 

the use case for family-specific arrays into the situation where having imperfect genetic 265 

information is acceptable, i.e., to cases where the accuracy of selection can be low, or when 266 

selection decisions are not directly made on the genotyped individual. Such situations might 267 

include genotyping individuals in a non-nucleus environment to establish flow of phenotypic 268 

information to individuals in the nucleus, or performing genetic improvement in breeding 269 

programs where very low-density arrays are used to genotype a very large number of offspring. 270 

This might have potential in aquaculture (Lillehammer et al., 2013; Tsai et al., 2017) and  crop 271 

breeding (Gonen et al., 2018; Jacobson et al., 2015). 272 

 On the question of the number of arrays, because the family-specific genotype arrays 273 

depend on the genotypes of both the sire and the dam, the number of different arrays individuals 274 

in the population need to be genotyped at may be large. This will be particularly the case when a 275 
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single dam has a limited number of offspring (most notably in cattle and small ruminants, but also 276 

in pigs). In these cases it may be possible to reduce the number of arrays needed by using a sire-277 

specific genotype array. Alternatively, there may be situations where a single sire-dam pair may 278 

produce a large number of offspring as is the case in aquaculture and crop breeding, or where a 279 

more flexible genotyping method could be deployed (Thomson et al., 2012).  280 

Conclusion 281 

Overall this paper evaluates the utility of family information to select markers on a low-282 

density array. Although we find minimal gains at the densities currently used in modern breeding 283 

programs (over 100 markers per chromosome), we find high increases in accuracy at very low 284 

marker densities (between 1-25 markers per chromosome), and may be particularly useful when 285 

expanding genotyping efforts to individuals that are not traditionally genotyped. 286 
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 327 

Figure 1. A graphical representation of informative markers for pedigree based 328 

imputation. 329 
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 331 

Figure 2. Imputation accuracy as a function of the number of markers per chromosome 332 

and the marker selection strategy. Panel (a) provides the absolute imputation accuracy (measured 333 

as correlation between the true and imputed genotypes of an individuals corrected for parent 334 

average genotype), while panel (b) provides comparison relative to the combined strategy.  335 

  336 
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 337 

Figure 3. Imputation accuracy by (a) chromosome and (b) chromosome length. In both 338 

panels the Het/Any strategy was used to select the markers on the low-density arrays. 339 
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