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All summary statistics-based methods to estimate the heritability of SNPs (𝒉𝒈𝟐) rely on 34 

accurate linkage disequilibrium (LD) calculations. In admixed populations, such as 35 

African Americans and Latinos, LD estimates are influenced by admixture and can result 36 

in biased 𝒉𝒈𝟐 estimates. Here, we introduce covariate-adjusted LD score regression (cov-37 

LDSC), a method to provide robust 𝒉𝒈𝟐 estimates from GWAS summary statistics and in-38 

sample LD estimates in admixed populations. In simulations, we observed that 39 

unadjusted LDSC underestimates 𝒉𝒈𝟐 by 10%- 60%; in contrast, cov-LDSC is robust to all 40 

simulation parameters. We applied cov-LDSC to approximately 170,000 Latino, 47,000 41 

African American 135,000 European individuals in three quantitative and five 42 

dichotomous phenotypes. Our results show that most traits have high concordance of 43 

𝒉𝒈
𝟐 between ethnic groups; for example in the 23andMe cohort, estimates of 𝒉𝒈𝟐 for BMI 44 

are 0.22 ± 0.01, 0.23 ± 0.03 and 0.22 ± 0.01 in Latino, African American and European 45 

populations respectively. However, for age at menarche, we observe population specific 46 

heritability differences with estimates of 𝒉𝒈𝟐 of 0.10 ± 0.03, 0.33 ± 0.13 and 0.19 ± 0.01 in 47 

Latino, African American and European populations respectively. 48 

Introduction 49 

To date, genome-wide association studies (GWAS) have identified thousands of loci associated 50 

with hundreds of complex human traits and diseases1. However, the majority of GWAS, and the 51 

analytical tools developed to analyze GWAS data, have been focused on relatively homogenous 52 

continental populations, and in particular populations of European descent2. Non-European 53 

populations, particularly those with mixed ancestral background such as African Americans and 54 

Latinos, have been relatively understudied; diversifying GWAS data and analysis is important 55 

not only to ensure that the benefits of GWAS are shared beyond individuals of European 56 

ancestry but also because multi-population studies are valuable in detecting novel disease 57 
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associations, fine-mapping to causal variants, and exploring the extent to which the underlying 58 

genetic basis is shared across populations3.  59 

 60 

Investigators have developed statistical methods to estimate SNP-heritability (ℎ!
!), that is the 61 

proportion of phenotypic variance explained by genotyped variants, from GWAS data4–6 . 62 

Summary statistics-based methods to estimate heritability, such as Linkage Disequilibrium 63 

score regression (LDSC)5,7 and its extensions5,7–9, have become particularly popular due to their 64 

computational efficiency, relative ease of application, and the requirement of only GWAS 65 

summary statistics rather than raw genotype data10. These methods have proven to be powerful 66 

tools in defining the genetic architecture of common traits11, distinguishing polygenicity from 67 

confounding5, establishing relationships between complex phenotypes8 and defining key cell 68 

types and regulatory mechanisms of human diseases7,12,13. LDSC and other methods based on 69 

summary statistics, such as SumHer14 implicitly rely on the assumptions that below a given 70 

distance threshold, typically set to one centimorgan (cM), in-sample LD can be well-71 

approximated by reference panel LD, that beyond this threshold the in-sample LD between any 72 

two SNPs is independent of the distance between the SNPs and/or negligible, and that 73 

covariate adjustment does not have a large impact on in-sample LD. For studies of admixed 74 

populations, no reference panel has been shown to give a good representation of in-sample LD, 75 

LD continues to increase with distance well beyond 1-cM, and covariate adjustment has a large 76 

impact on in-sample LD. Thus, LDSC has not previously been applicable to admixed samples.  77 

Results & Discussion 78 

Overview of methods 79 

In this work, we first examined the performance of LDSC in admixed populations and 80 

demonstrated that LDSC does indeed yield severely downward biased estimates of SNP-81 
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heritability. Next, we extended the LDSC-based methods to admixed populations by introducing 82 

covariate-adjusted LDSC (cov-LDSC). Same as how summary statistics were computed, for 83 

each variant we regressed the global PCs, obtained within the GWAS samples, out of the raw 84 

genotype. LD scores were computed on the adjusted genotypes and used by LDSC to estimate 85 

heritability. Using covariate-adjusted in-sample LD to compute LD scores removes the issues of 86 

reference panel mismatch, long-distance admixture-LD, and covariate effects listed above, and 87 

produces robust estimates of heritability (Method, Figure 1).  88 

 89 

We demonstrated that cov-LDSC is robust to a wide range of simulation scenarios. We then 90 

applied it to approximately 8,000 Latinos from the Slim Initiative in Genomic Medicine for the 91 

Americas (SIGMA) Type 2 Diabetes (T2D) Consortium15 and approximately 162,000, 47,000 92 

and 135,000 Latino, African Americans, and Europeans research participants, respectively, from 93 

the personal genetics company 23andMe. We analyzed three quantitative (body mass index, 94 

height and age at menarche), and five dichotomous phenotypes (type 2 diabetes (available in 95 

the SIGMA cohort only), left handedness, morning person, motion sickness and 96 

nearsightedness). 97 

Robustness of LD score estimation 98 

To demonstrate the effect of admixture on the stability of LD score estimates, we first calculated 99 

LD scores with genomic window sizes ranging from 0-50 cM in both European (EUR, N=503) 100 

and admixed American (AMR, N=347) populations from the 1000 Genomes Project16. As 101 

window size increases, we expect the mean LD score to reach a plateau because LD metrics 102 

should be negligible beyond a large enough genomic distance. If the mean LD score does not 103 

reach a plateau, but instead continues to increase with increasingly large window sizes, it may 104 

indicate one of two possibilities. Either (1) the window is too small to capture all of the LD or (2) 105 

the LD scores are capturing long-range pairwise SNP correlations arising from admixture; if this 106 
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increase is non-linear then there is non-negligible distance-dependent LD, violating LDSC 107 

assumptions. Examining unadjusted LD scores, we observed that in the EUR5, the mean LD 108 

score estimates were stable with windows beyond 1-cM in size, as previously reported. 109 

However, in the AMR population the mean LD score estimates continued to increase concavely 110 

with increasing window size. In contrast, when we applied cov-LDSC with 10 PCs to calculate 111 

covariate adjusted LD scores, we observed that LD score estimates plateaued for both EUR 112 

and AMR at a 1-cM and 20-cM window size respectively (<1% increase per cM, 113 

Supplementary Table 1). This suggests that cov-LDSC is able to correct the long-range LD 114 

due to admixture and yield stable estimates of LD scores (Method, Supplementary Figure 1), 115 

and also that cov-LDSC is applicable in homogeneous populations (Supplementary Table 1). 116 

The larger window size for the AMR population is needed due to residual LD caused by recent 117 

admixture. We next tested the sensitivity of the LD score estimates with regard to the number of 118 

PCs included in the cov-LDSC. We observed that in the AMR panel, where the top two PCs 119 

capture 60.4% of variability in the data, LD score estimates are robust to different additional 120 

numbers of PCs and different window sizes 20-cM (Supplementary Figure 2). 121 

Simulations with simulated genotypes 122 

To assess whether cov-LDSC produces unbiased estimates of ℎ!
!, we first simulated 123 

genotypes of admixed individuals (Methods). We simulated genotypes of 10,000 unrelated 124 

diploid individuals for approximately 400,000 common SNPs on chromosome 2 in a coalescent 125 

framework using msprime17. First, we tested LDSC and cov-LDSC with different admixture 126 

proportions between two ancestral populations, and a quantitative phenotype with a ℎ!
! of 0.4 127 

using an additive model (Methods). We observed that as the proportion of admixture increases, 128 

ℎ!
!
 for LDSC increasingly underestimates true ℎ!

! by as much as 18.6%. In marked contrast, 129 
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cov-LDSC produced consistently unbiased estimates regardless of admixture proportion 130 

(Supplementary Figure 3a).  131 

 132 

Second, we varied the percentage of causal variants from 0.01% to 50% in a polygenic 133 

quantitative trait with ℎ!
! = 0.4 in a population with a fixed admixture proportion of 50%. LDSC 134 

again consistently underestimated ℎ!
! by 12%-18.6%. In contrast, cov-LDSC yielded unbiased 135 

estimates regardless of the percentage of causal variants (Supplementary Figure 3b).  136 

 137 

Third, we assessed the robustness of LDSC and cov-LDSC for different assumed total ℎ!
! 138 

(0.05, 0.1, 0.2, 0.3, 0.4 and 0.5). At each ℎ!
! value, LDSC underestimated by 11.5%-19.6%. 139 

Using cov-LDSC, while standard error increases with ℎ!
!, the point estimates remain unbiased 140 

(Supplementary Figure 3c).  141 

 142 

Fourth, we included an environmental stratification component aligned with the first PC of the 143 

genotype data (Methods), and concluded that cov-LDSC is also robust to confounding 144 

(Supplementary Figure 3d).  145 

 146 

Finally, to assess the performance of cov-LDSC in polygenic binary phenotypes, we simulated 147 

studies of a binary trait with a prevalence of 0.1 using simulated genotypes and a liability 148 

threshold model (Methods). We showed that cov-LDSC provided robust estimates in case-149 

control studies with the same four simulation scenarios (Supplementary Figure 4). In contrast, 150 

LDSC underestimated heritability for binary phenotypes in the same way as it did for 151 

quantitative phenotypes.  152 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/503144doi: bioRxiv preprint 

https://doi.org/10.1101/503144
http://creativecommons.org/licenses/by/4.0/


 

Simulations with real genotypes 153 

We next examined the performance of both unadjusted LDSC and cov-LDSC on real genotypes 154 

of individuals from admixed populations. We obtained data from the SIGMA cohort, which 155 

includes 8,214 Mexican and other Latino individuals. Using ADMIXTURE18 and populations from 156 

the 1000 Genomes Project as reference panels, we observed that each individual in the SIGMA 157 

cohort has a varying degree of admixture proportion (Supplementary Figure 5). As in the AMR 158 

panel, we observed that using a 20-cM window, LD score estimates plateaued in SIGMA 159 

(Supplementary Figure 6, Supplementary Table 2), and were robust to different number of 160 

PCs (Supplementary Figure 7). We subsequently used a 20-cM window and 10 PCs in all 161 

simulations. We observed that cov-LDSC yielded unbiased estimates in traits with different 162 

polygenic genetic architectures by varying the number of causal variants and varying the total 163 

heritabilities (Figure 2a-b). In contrast LDSC underestimated heritability by as much as 62.5%. 164 

To examine the performance of cov-LDSC in the presence of environmental confounding 165 

factors, we simulated an environmental stratification component aligned with the first PC of the 166 

genotype data, representing European v.s. Native American ancestry. In this simulation 167 

scenario, cov-LDSC still provides unbiased ℎ!
! estimates (Figure 2c). Intercepts of all the 168 

simulation scenarios are close to 1, suggesting that we had adequately controlled for 169 

confounding from population stratification and cryptic relatedness (Supplementary Figure 8a-170 

c). 171 

 172 

Thus far, we have used cov-LDSC by calculating LD scores on the same set of samples that 173 

were used for association studies (in-sample LD scores). In practical applications, computing LD 174 

scores on the whole data set can be computationally expensive and difficult to obtain, and so 175 

we investigated computing LD scores on a subset of samples. To investigate the minimum 176 

number of samples required to obtain accurate in-sample LD scores, we computed LD scores 177 
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on subsamples of 100, 500, 1,000 and 5,000 individuals from a GWAS of 10,000 simulated 178 

genotypes. We also tested out-of-sample LD scores from 1,000 samples with a perfectly 179 

matching demographic history in the simulated genotypes. cov-LDSC yielded unbiased 180 

estimates for in-sample LD scores calculated using 1,000 samples (>10% of the total sample 181 

size) and also using 1,000 samples in an out-of-sample reference panel with a perfectly 182 

matching population structure (Supplementary Figure 9). We repeated these analyses in 183 

simulated phenotypes in the SIGMA cohort. We subsampled the SIGMA chort, and obtained 184 

unbiased estimates when using as few as 1,000 samples (Figure 2d). When using the AMR 185 

panel as a reference panel for the SIGMA cohort, we observed an unbiased ℎ!
! estimate ( 186 

𝑝 = 0.33, Figure 2d). This suggests that the AMR panel included in the 1000 Genomes Project 187 

has similar demographic history compared to the SIGMA cohort (Supplementary Figure 5). 188 

However, as the number of samples included in the subsampling decreased, the cov-LDSC 189 

regression intercepts deviated further from 1 (Supplementary Figure 8d), probably due to 190 

attenuation bias from noisily estimated LD scores at N<1,000. We therefore caution that when 191 

using 1000 Genomes or any out-of-sample reference panels for a specific admixed cohort, 192 

users should ensure that the demographic histories are shared between the reference and the 193 

study cohort. We recommend computing in-sample LD scores on a randomly chosen subset of 194 

at least 1,000 individuals from a GWAS.  195 

Application to SIGMA and 23andMe cohorts 196 

We next estimated ℎ!
! of height, BMI and T2D phenotypes included in the SIGMA cohort of 197 

8,214 samples and 943,244 variants (Methods) using cov-LDSC (Table 1). We estimated ℎ!
! 198 

of height, BMI and T2D to be 0.38 ± 0.08 , 0.25 ± 0.06 and 0.26 ± 0.08 respectively. These 199 

results are similar to what has been reported in the UK Biobank19 and other studies4,20 for 200 

European populations. Although estimates differ in different studies (Methods),  we noted that 201 
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without cov-LDSC, we would have obtained severely deflated estimates (Table 1). To confirm 202 

that our reported heritability estimates are robust under different model assumptions, we applied 203 

an alternative approach based on REML in the linear mixed model framework implemented in 204 

GCTA21. To avoid biases introduced from calculating genetic relatedness matrices (GRMs) in 205 

admixed individuals, we obtained a GRM based on an admixture-aware relatedness estimation 206 

method REAP22 (Methods). GCTA-based results were similar to reported ℎ!
! estimates from 207 

cov-LDSC, indicating our method is able to provide reliable ℎ!
! estimates in admixed 208 

populations (Table 1). 209 

 210 

We then applied both LDSC and cov-LDSC to 161,894 Latino, 46,844 African American and 211 

134,999 European research participants from 23andMe, analyzing three quantitative and four 212 

dichotomous phenotypes (Methods). In this setting, using summary statistic methods to 213 

estimate heritability was essential since the dataset was too computationally expensive to apply 214 

genotype-based strategies. We used a 20-cM window and 10 PCs in LD score calculations for 215 

both populations (Supplementary Figure 10). LDSC and cov-LDSC produced similar 216 

heritability estimates in the European population, whereas in the admixed populations, LDSC 217 

consistently provided low estimates of ℎ!
! (Supplementary Table 3). For each phenotype, we 218 

estimated ℎ!
! using the same population-specific in-sample LD scores. For most phenotypes, 219 

the reported ℎ!
! is similar among the three ethnic groups with a notable exception for age at 220 

menarche (Figure 3), suggesting possible differences (𝑝 = 7.1×10!! between Latinos and 221 

Europeans) in the genetic architecture of these traits between different ethnic groups. It has 222 

been long established that there is population variation in the timing of menarche23,24. Early 223 

menarche might influence the genetic architecture of other medically relevant traits since early 224 

age at menarche is associated with a variety of chronic diseases such as childhood obesity, 225 

coronary heart disease and breast cancer25,26. These results highlight the importance of 226 
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including diverse populations in genetic studies in order to enhance our understanding of 227 

complex traits that show differences in their genetic heritability. 228 

Conclusion 229 

As we expand genetic studies to explore admixed populations around the world, extending 230 

statistical genetics methods to make inferences within admixed populations is crucial. This is 231 

particularly true for methods based on summary statistics, which are dependent on the use of 232 

LD scores, which we showed to be problematic in admixed populations. In this study, we 233 

demonstrated that original LDSC and other summary statistics-based methods, such as 234 

PCGCs27 and SumHer28,  that were originally designed for homogenous populations, potentially 235 

severely underestimated heritability in admixed populations. We introduced cov-LDSC which 236 

regresses out global PC on individual genotypes during the LD score calculation, and showed it 237 

can yield robust LD score and heritability estimates in both homogenous and admixed 238 

populations.  239 

 240 

By applying cov-LDSC to Europeans, African Americans, and Latin Americans in the 23andMe 241 

cohort, we observed evidence of heritability differences across different populations. These 242 

differences highlight the importance of studying diverse populations. How these differences may 243 

correspond to differences in biological mechanisms may lead to mechanistic insights about the 244 

phenotype. One strategy to do this, which we will explore in the future is to extend cov-LDSC to 245 

partition heritability by different functional annotations and cell types to dissect the genetic 246 

architecture in admixed populations.  247 

 248 

Although our work provided a novel approach to estimate genetic heritability using summary 249 

statistics in admixed populations, it has a few limitations (Methods). First, covariates included in 250 

the summary statistics should match the covariates included in the covariate-adjusted LD score 251 
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calculations (Supplementary Figure 11), and ℎ!
! estimates in admixed populations are more 252 

sensitive to their matching LD reference panels. Unmatched reference panels are likely to 253 

produce biased estimates29,30. We therefore advise to compute in-sample LD scores from the 254 

full or a random subset of data (N>1,000) used to generate the GWAS summary statistics when 255 

possible. Second, when applying cov-LDSC to imputed variants, particularly those with lower 256 

imputation accuracy (INFO <0.99), we caution that the heritability estimates can be influenced 257 

by an imperfect imputation reference panel, especially in Latino populations31,32. To limit the bias 258 

in varying genotyping array and imputation quality in studied admixed cohorts, we recommend 259 

restricting the heritability analyses to common HapMap3 variants. And any extension to a larger 260 

set of genetic variants, especially across different cohorts should be performed with caution. 261 

Third, recent studies have shown that heritability estimates can be sensitive to the choice of the 262 

frequency-dependent heritability model6,9,14. However, this is unlikely to impact the main 263 

conclusions of the current study9 and how to incorporate ancestry-dependent frequencies in the 264 

LD-dependent annotation remains a subject of future study (Methods).   265 

 266 

Despite these limitations, in comparison with other methods, such as those based on restricted 267 

maximum likelihood estimation (REML)21 with an admixture-aware GRM, for estimating ℎ!
! in 268 

admixed populations or those with intra-population structure, cov-LDSC has a number of 269 

attractive properties. First, covariate-adjusted in-sample LD scores only need to be calculated 270 

once per cohort and can be obtained with a subset of samples. This is particularly useful in 271 

large cohorts such as 23andMe and UK Biobank33, where multiple phenotypes have been 272 

collected per individual. In this setting, per-trait heritability can be estimated based on the same 273 

LD scores. Second, as a generalized form of LDSC, it is robust to population stratification and 274 

cryptic relatedness in both homogenous and admixed populations. Third, similar to the original 275 

LDSC methods, cov-LDSC may be extended to perform analyses such as estimating genetic 276 
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correlations, partitioning ℎ!
!

 by functional annotations, identifying disease-relevant tissues and 277 

cell types and multi-trait analysis7,34,35.  278 

 279 

Methods 280 

Mathematical framework 281 

The main LD score regression5 draws a linear model between  statistics and heritability ℎ!
! : 282 

𝐸[𝜒!!]  =  
𝑁ℎ!

!

𝑀
𝑙! + 𝑁𝑎 + 1 

 283 

where N is number of samples; M is number of SNPs; 𝑎 measures the confounding biases 284 

including cryptic relatedness and population stratification; and 𝑙! is LD score of variant 𝑗. 285 

measured as:  286 

. 287 

Let 𝑋!! be the genotype of individual i at SNP j, standardized that 𝑋!" has mean 0 variance 1 for 288 

each SNP. In the original LD score regression, the in-sample correlation  between SNP 𝑗 and 289 

SNP 𝑘 is defined as:  290 

. 291 

We introduced cov-LDSC for admixed populations. The intuition of cov-LDSC is to regress out 292 

the ancestral or any other fix effects for each SNP j from its genotype. Define 𝐶! as the covariate 293 

or top principal components of individual i. We adjusted the standardized 𝑋matrix to  by 294 

continuously subtracting the projection of covariate from raw genotypes  295 

𝑋′ = 𝑋 −  𝐶𝐶!𝑋. 296 
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We then standardized  to be mean 0 and variance 1 for each SNP, denoted as . Based on 297 

the adjusted genotypes , we measure in-sample cov-LD score  in admixed populations:  298 

 299 

Window size and number of PCs in LD score calculations 300 

To determine the optimal window size for estimating LD scores, we examined the effect of 301 

varying the genomic widow size for both simulated and real data sets. We concluded that LD 302 

score estimates were robust to the choice of window size if the increase in the mean LD score 303 

estimates was less than 1% per cM beyond a given window. Using this criterion, we used 304 

window sizes of 5-cM and 20-cM for the simulated and real genotypes respectively 305 

(Supplementary Table 2, 4-5). We also calculated the squared correlations between LD score 306 

estimates using the chosen window size and other LD score estimates with window sizes larger 307 

than the chosen window. The squared correlations were greater than 0.99 in all cases 308 

(Supplementary Table 6-8) indicating the LD score estimates were robust at the chosen 309 

window sizes. 310 

 311 

Similarly, to determine the number of PCs needed to be included in the GWAS association tests 312 

and cov-LDSC calculations, we examined the effect of varying the genomic window size using 313 

different numbers of PCs. The number of PCs that needs to be included for covariate 314 

adjustment depends on the population structure for different datasets. In practice, we 315 

recommend using the same number of PCs to adjust for the GWAS association tests and for LD 316 

score calculations (Supplementary Figure 11). 317 

 318 

Genotype simulations 319 
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We used msprime17 version 0.6.1 to simulate population structure with mutation rate 2×10!! 320 

and recombination maps from the HapMap Project36. The demographic model was adapted 321 

from Mexican migration history37 and the parameters were previously inferred from the 1000 322 

Genomes Project16 . We assumed the admixture event happened approximately 500 years ago 323 

to mirror the European colonization of the Americas. We set different admixture proportions to 324 

reflect different admixed populations. In each population, 10,000 individuals were simulated 325 

after removing second degree related samples (kinship>0.125) using KING38.  326 

 327 

We applied single-variant linear models for quantitative traits and logistic models for binary trait 328 

both with 10 PCs as covariates in association analyses using PLINK 1.90.  329 

Phenotype simulations  330 

We used two phenotype simulation strategies implemented in the GCTA21 and the baseline 331 

model7 respectively. These two strategies assume different genetic architectures of complex 332 

traits. In the GCTA model, all variants are equally likely to be causal independent of their 333 

functional or minor allele frequency (MAF) structure. On the other hand the baseline model 334 

incorporates functionally dependent architectures. Briefly, it includes 53 annotations overlapping 335 

genome-wide functional annotations (e.g. coding, conserved, regulatory). All causal variants 336 

were generated among common observed variants with MAF >5% (~40,000 SNPs in simulated 337 

genotypes and 943,244 SNPs in SIGMA cohort).   338 

 339 

Both models assume an additive genetic model 𝑌! = 𝑊!"𝛽! + 𝜖!, where 𝑌! is the phenotype for 340 

the 𝑗!!individual; 𝑊!" =
!!"!!!!
!!!(!!!!!)

 is the standardized genotype of 𝑋!" for the 𝑖!! causal variant 341 

(with MAF ≥ 5%) of the𝑗!! individual and 𝑝! being the frequency of the 𝑖!! causal variant. 𝛽! is 342 

the allelic effect of the standardized genotype of the 𝑗!! causal variant and 𝜖! is the residual 343 
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effect generated from a normal distribution with mean 0 and variance 𝜎!!. In the GCTA model, 344 

the standardized casual effect size variance is constant, i.e. 𝑣𝑎𝑟(𝛽!) = ℎ!
!/𝑀, whereas in the 345 

baseline model 𝑣𝑎𝑟(𝛽!) = 𝑎!  (𝑗)! 𝜏!, where 𝑎! (𝑗) is the value of annotation 𝑎! at variant 𝑗 and 346 

𝜏! represents the per-variant contribution, of one unit of the annotation 𝑎! , to heritability.  347 

 348 

We used recommended parameters in both strategies and applied it in all simulation scenarios 349 

in the SIGMA cohort and observed no significant differences in heritability estimates 350 

(Supplementary Table 9). In all simulations, we restricted ourselves to genotyped SNPs with 351 

MAF ≥ 5% as recommended in previous studies6,7. We concluded that the total genetic 352 

heritability estimated using cov-LDSC is robust under both models in all simulation scenarios. 353 

 354 

For case-control simulations, we adopted a liability threshold model with disease prevalence 355 

0.1. 5,000 cases and 5,000 controls were obtained for each simulation scenario. To represent 356 

environmental stratification, similar to previously described5, we added 0.2 * standardized first 357 

principal component to the standardized phenotypes. .  358 

LD score estimates 359 

We calculated in-sample LD scores using both a non-stratified LD score model and baseline 360 

model7. We used the 53 non-frequency dependent annotations included the baseline model to 361 

estimate ℎ!
! in the 23andMe research database and the SIGMA cohort. ℎ!! estimates of three 362 

quantitative traits and five binary traits were robust when using different LD models 363 

(Supplementary Table 3). We recognized recent studies have shown that genetic heritability 364 

can be sensitive to the choice of LD-dependent heritability model6,9. However, in the admixed 365 

population, it is complicated to create LD-related annotations that are independent from 366 

admixture-LD. We would need a larger and denser admixed sequencing panel to evaluate the 367 
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performance of baseline-LD model in admixed populations. Regardless, this should not impact 368 

the result of current study, where we reported the total phenotypic variation that can be 369 

explained by common HapMap3 variants9. 370 

 371 

Slim Initiative in Genomic Medicine for the Americas (SIGMA) 372 

Type 2 Diabetes (T2D) cohort  373 

8,214 Mexican and other Latin American samples were genotyped with Illumina HumanOmni2.5 374 

array. The genotyped data were pre-phased using SHAPEIT239. IMPUTE240 was then used to 375 

impute genotypes at untyped genetic variants using the 1000 Genomes Project Phase 316 376 

dataset as a reference panel. We merged genotyped SNPs and imputed variants with INFO 377 

>0.99. Merged sets of SNPs were further filtered to be HapMap3 variants with MAF >5% and 378 

SNPs in high LD regions were removed. After QC, 8,214 individuals and 943,244 SNPs 379 

remained. We examined three phenotypes from the SIGMA cohort: height, BMI, and type 2 380 

diabetes. For each phenotype, we included age, sex, and the first 10 PCs as fixed effects in the 381 

association analyses.  382 

 383 

We removed high LD regions (Supplementary Table 10) and used a 20-cM window and 10 384 

PCs in all scenarios. ℎ!
! estimates were robust at a 20-cM window with 10 PCs when using 385 

cov-LDSC (Supplementary Figure 12) with an assumed prevalence of 0.14415. Intercepts of all 386 

described simulated scenarios are shown in Supplementary Figure 8.  387 

23andMe cohort 388 

All participants were drawn from the customer base of 23andMe, Inc., a direct to consumer 389 

genetics company. Participants provided informed consent and participated in the research 390 
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online, under a protocol approved by the external AAHRPP-accredited IRB, Ethical & 391 

Independent Review Services (www.eandireview.com). Samples from 23andMe were then 392 

chosen from consented individuals who were genotyped successfully on the v5 platform, an 393 

Illumina Infinium Global Screening Array (~640,000 SNPs) supplemented with ~50,000 SNPs of 394 

custom content. Participants were restricted to a set of individuals who have European, African 395 

American, or Latino ancestry determined through an analysis of local ancestry41. 396 

 397 

To compute LD scores, both genotyped and imputed SNPs were used. Genotype variants were 398 

filtered to have genotype call rate > 90%, self-chain score = 0, further restricted to eliminate 399 

those with strong evidence of Hardy Weinberg disequilibrium (𝑝 > 10!!"), and passing a parent-400 

offspring transmission test. Imputed variants used a reference panel that combined the May 401 

2015 release of the 1000 Genomes Phase 3 haplotypes16 with the UK10K imputation reference 402 

panel42. Imputed dosages were rounded to the nearest integer (0, 1, 2) for downstream 403 

analysis. Variants were filtered to have imputation r-squared > 0.9. Both genotyped and imputed 404 

variants were also filtered for batch effects and sex dependent effects. To minimize rounding 405 

inaccuracies, genotyped SNPs were prioritized over imputed SNPs in the merged SNP set. The 406 

merged SNP set were further restricted to HapMap3 variants with MAF ≥ 0.05. We have 407 

measured LD scores in a subset of African Americans (61,021) and Latinos (9,990) on 408 

chromosome 2 with different window sizes from 1-cM to 50-cM (Supplementary Table 5) and 409 

squared correlation between different window sizes (Supplementary Table 8). All LD scores 410 

were computed with a 20-cM window.  411 

 412 

In genome-wide association analyses, for each population, a maximal set of unrelated 413 

individuals was chosen for each analysis using a segmental identity-by-descent (IBD) estimation 414 

algorithm43. Individuals were defined as related if they shared more than 700-cM IBD.  415 

 416 
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All association tests were performed using linear regression model for quantitative traits and 417 

logistic regression model for binary traits assuming additive allelic effects. We included 418 

covariates for age, sex and the top 10 PCs to account for residual population structure. Details 419 

of phenotypes and genotypes are listed in Supplementary Table 11. 420 

ℎ!
! versus ℎ!"##"$

! 421 

The quantity (ℎ!
!) we reported in the main analysis is defined as heritability tagged by HapMap3 422 

variants with MAF ≥5%, including tagged causal effects of both low-frequency and common 423 

variants. This quantity is different from ℎ!"##"$
!, the heritability causality explained byall 424 

common SNPs excluding tagged causal effects of low-frequency variants, reported in the 425 

original LDSC5. When applying LDSC to Europeans and other homogeneous populations, it is 426 

recommended to use an appropriate sequenced reference panel, such as 1000 Genome 427 

Project, which includes >99% of the SNPs with frequency >1%16, which allows for the estimation 428 

of ℎ!"##"$
!.   However, in-sample sequence data is usually not available for an admixed GWAS 429 

cohort, and so cov-LDSC can only include genotyped SNPs in the reference panel, and thus 430 

can only estimate the heritability tagged by a given set of genotyped SNPs. In order to compare 431 

the same quantity across cohorts, we recommend to use common HapMap3 SNPs (MAF ≥ 5%) 432 

for in-sample LD reference panel calculation, since most of them should be well imputed for a 433 

genome-wide genotyping array. To quantify the difference between ℎ!
! and ℎ!"##"$

!, we used 434 

all well imputed (INFO>0.99, Methods) SNPs (~6.9 million) in SIGMA cohort as reference panel 435 

and reported ℎ!"##"$
!, to approximate what the estimate of ℎ!"##"$

! would have been with a 436 

sequenced reference panel (Supplementary Table 12). The difference that we observed is 437 

consistent with the previous discovery that the low frequency variants (0.5%<MAF<5%) explains 438 

6.3 ± 0.2× (15.87%) of heritability less than common variants (MAF≥5%) on average44. 439 
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URLs 440 

cov-LDSC software and tutorials, https://github.com/immunogenomics/cov-ldsc 441 

msprime, https://pypi.python.org/pypi/msprime; 442 

GCTA, http://cnsgenomics.com/software/gcta/; 443 

LDSC, https://github.com/bulik/ldsc/; 444 

PLINK 1.90, https://www.cog-genomics.org/plink2; 445 

REAP v1.2, http://faculty.washington.edu/tathornt/software/REAP/download.html; 446 

ADMIXTURE v1.3.0, http://www.genetics.ucla.edu/software/admixture/download.html; 447 
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Figure and table legends 569 

Figure 1. Overview of the covariate-adjusted LD score regression. (a) As input, cov-LDSC 570 

takes raw genotypes of collected GWAS samples and their global principal components. (b) 571 

cov-LDSC regresses out the ancestral components from the LD score calculation and corrects 572 

for long-range admixture LD. Black and red lines indicate estimates before and after covariate 573 

adjustment respectively (c) Adjusted heritability estimation based on GWAS association 574 

statistics (measured by 𝜒!) and covariate-adjusted LD scores.  575 

 576 
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Figure 2. Estimates of heritability (ℎ!!) under different simulation scenarios using the 577 

SIGMA cohort. LDSC (orange) underestimated ℎ!
! and cov-LDSC (blue) yielded robust ℎ!! 578 

estimates under all settings. Each boxplot represents the mean LD score estimate from 100 579 

simulated phenotypes using the genotypes of 8,214 unrelated individuals from the SIGMA 580 

cohort. For cov-LDSC, a window size of 20-cM with 10 PCs were used in all scenarios. A true 581 

polygenic quantitative trait with ℎ!
! = 0.4 is assumed for scenarios (a), (c) and (d) and 1% 582 

causal variants are assumed for scenarios (b)-(d). (a) ℎ!
! estimation with varying proportions of 583 

causal variants (0.01% - 30%). (b) ℎ!
! estimation with varying heritabilities (0, 0.05, 0.1, 0.2, 584 

0.3, 0.4 and 0.5). (c) ℎ!
! estimation when ann environmental stratification component aligned 585 

with the first PC of the genotype data was included in the phenotype simulation. (d) ℎ!
! 586 

estimation when using a subset of the cohort to obtain LD score estimates and using out-of-587 

sample LD score estimates obtained from Admixed Americans included in the 1000 Genomes 588 

Project. 589 

 590 
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Figure 3. Estimates of heritability (ℎ!!) of three quantitative and four dichotomous traits 591 

in two admixed population in the 23andMe research cohort. For seven selected non-592 

disease phenotypes (body mass index (BMI), height, age at menarche, left handedness, 593 

morning person, motion sickness and nearsightedness) in the 23andMe cohort, we reported 594 

their estimated genetic heritabilities and intercepts (and their standard errors) using the baseline 595 

model. LD scores were calculated using 134,999, 161,894, 46,844 individuals from 23andMe 596 

European, Latino and African American individuals respectively. For each trait, we reported 597 

sample size used in obtained summary statistics used in cov-LDSC. For BMI and height, we 598 

also reported the ℎ!
! estimates from the SIGMA cohort.  599 

 600 
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Table 1. 𝒉𝒈𝟐 estimates of height, body mass index (BMI) and type 2 diabetes (T2D) using 601 

different heritability estimation methods. Reported values are estimates of ℎ!
!(with standard 602 

errors in brackets) from LDSC using a 20-cM window, cov-LDSC using a 20-cM window and 10 603 

PCs, and GCTA using REAP to obtain the genetic relationship matrix with adjustment by 10 604 

PCs. The final column provides reported ℎ!
! estimates in European populations from various 605 

studies4,19,20. 606 

Phenotype LDSC 

(baseline) 

cov-LDSC (baseline) GCTA (REAP w/ 10pc)  Public 

Height 0.159 (0.037) 0.379 (0.079) 0.450 (0.042) 0.45-0.6854,19 

BMI 0.113 (0.030) 0.248 (0.061) 0.235 (0.041) 0.246-0.2719 

T2D 0.121 (0.035) 0.263 (0.073) 0.376 (0.046) 
0.139-0.41419,20 
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