Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Build-up of serial dependence in color working memory

View ORCID ProfileJoão Barbosa, Albert Compte
doi: https://doi.org/10.1101/503185
João Barbosa
Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for João Barbosa
Albert Compte
Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: acompte@clinic.cat
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Serial dependence, how recent experiences bias our current estimations, has been described experimentally during delayed-estimation of many different visual features, with subjects tending to make estimates biased towards previous ones. It has been proposed that these attractive biases help perception stabilization in the face of correlated natural scene statistics as an adaptive mechanism, although this remains mostly theoretical. Color, which is strongly correlated in natural scenes, has never been studied with regard to its serial dependencies. Here, we found significant serial dependence in 7 out of 8 datasets with behavioral data of humans (total n=760) performing delayed-estimation of color with uncorrelated sequential stimuli. Moreover, serial dependence strength built up through the experimental session, suggesting metaplastic mechanisms operating at a slower time scale than previously proposed (e.g. short-term synaptic facilitation). Because, in contrast with natural scenes, stimuli were temporally uncorrelated, this build-up casts doubt on serial dependencies being an ongoing adaptation to the stable statistics of the environment.

Footnotes

  • In this revised version we added a dataset from CamCan, which substantially increased our total n=760. In this dataset we also found significant build-up of serial dependence in the course of an experimental session. Additionally, we show that serial dependence build-up was not associated with trends in performance dynamics as a result of subjects getting familiar with the task or tiredness.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted June 09, 2019.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Build-up of serial dependence in color working memory
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Build-up of serial dependence in color working memory
João Barbosa, Albert Compte
bioRxiv 503185; doi: https://doi.org/10.1101/503185
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Build-up of serial dependence in color working memory
João Barbosa, Albert Compte
bioRxiv 503185; doi: https://doi.org/10.1101/503185

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4119)
  • Biochemistry (8828)
  • Bioengineering (6532)
  • Bioinformatics (23484)
  • Biophysics (11805)
  • Cancer Biology (9223)
  • Cell Biology (13336)
  • Clinical Trials (138)
  • Developmental Biology (7442)
  • Ecology (11425)
  • Epidemiology (2066)
  • Evolutionary Biology (15173)
  • Genetics (10453)
  • Genomics (14056)
  • Immunology (9187)
  • Microbiology (22199)
  • Molecular Biology (8823)
  • Neuroscience (47626)
  • Paleontology (351)
  • Pathology (1431)
  • Pharmacology and Toxicology (2493)
  • Physiology (3736)
  • Plant Biology (8090)
  • Scientific Communication and Education (1438)
  • Synthetic Biology (2224)
  • Systems Biology (6042)
  • Zoology (1254)