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Abstract 

Recent advances in the development of single cell epigenomic assays have facilitated 

the analysis of  gene regulatory landscapes in complex biological systems.  Methods for 

detection of single-cell epigenomic variation such as DNA methylation sequencing and 

ATAC-seq hold tremendous promise for delineating distinct cell types and identifying 

their critical cis-regulatory sequences. Emerging evidence has shown that in addition to 

cis-regulatory sequences, dynamic regulation of 3D chromatin conformation is a critical 

mechanism for the modulation of gene expression during development and disease. It 

remains unclear whether single-cell Chromatin Conformation Capture (3C) or Hi-C 

profiles are suitable for cell type identification and allow the reconstruction of cell-type 

specific chromatin conformation maps. To address these challenges, we have 

developed a multi-omic method single-nucleus methyl-3C sequencing (sn-m3C-seq) to 

profile chromatin conformation and DNA methylation from the same cell. We have 

shown that bulk m3C-seq and sn-m3C-seq accurately capture chromatin organization 

information and robustly separate mouse cell types. We have developed a fluorescent-

activated nuclei sorting strategy based on DNA content that eliminates nuclei multiplets 

caused by crosslinking. The sn-m3C-seq method allows high-resolution cell-type 

classification using two orthogonal types of epigenomic information and the 

reconstruction of cell-type specific chromatin conformation maps. 
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Introduction 

Three-dimensional genome architecture is emerging as a critical feature of gene 

regulation in metazoan organisms 1–3. Chromatin conformation profiling using methods 

such as Hi-C provides experimental evidence of genomic features such as topologically 

associated domains (TADs) and enhancer-promoter interactions 4–9. Despite the 

increasing utility of these datasets, most existing chromatin conformation maps are 

generated from cell lines in vitro or from bulk tissues in vivo 4,8–11. While cell line data 

has enabled a greater understanding of the general principles of chromatin 

organization, it cannot fully represent the diversity of cell types that arise in vivo. 

Likewise, generation of chromatin interaction maps from bulk in vivo tissues precludes 

the analysis of cell-type specific chromatin organizations. Recent efforts using single-

cell “omics” technologies aims to resolve this challenge by generating single-cell data 

from complex tissues that are then partitioned into the relevant distinct cell types in 

silico using data dimensionality reduction and clustering algorithms 12–15. Single-cell 3C 

or Hi-C therefore represent attractive strategies to resolve cell-type heterogeneity 16–18. 

However, current single-cell Hi-C profiles from cultured cells primarily capture cell cycle 

patterns 16,19. In this sense, it remains unclear whether single-cell Hi-C profiles will be 

suitable for partitioning into constituent cell types in vivo. 

 

In contrast to single cell Hi-C data, single-cell DNA methylome datasets enable high-

resolution cell-type classification, allowing the reconstruction of epigenomic maps from 

cell types in primary human tissues 20,21. 3C or HiC methods capture chromatin 

configuration by performing proximity ligation with restriction digested genomic DNA in 
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crosslinked nuclei 22. DNA methylation (mC) is fully preserved in the chimeric DNA 

molecules produced by 3C or HiC. Therefore it is feasible to jointly detect both long-

range ligation junction and mC by analyzing DNA molecules generated by 3C or HiC 

using bisulfite sequencing. When applied to single-cell analysis, cell type identification 

using both chromatin conformation and mC signatures could provide superior resolution 

than using either feature alone. Joint analysis of chromatin conformation and mC can 

also facilitate the study of cross-talk between the two epigenomic features.  

 

Here we describe a method, single-nucleus methyl-3C sequencing (sn-m3C-seq), to 

jointly profile chromatin conformation and DNA methylation from the same cell. Bulk and 

single-cell m3C-seq profiles accurately recapitulate chromatin architectures of mouse 

embryonic stem cells (mESCs). Using a mixed species design, we show that current in-

situ single-cell 3C-seq or Hi-C method produce a significant amount of nuclei multiplets 

due to inter-nuclei crosslinking. By stringently sorting particles with 2n DNA content, we 

are able to eliminate nuclei multiplets during fluorescent-activated nuclei sorting 

(FANS). Finally, we show that sc-m3C-seq can allow for the unbiased analysis of 

distinct mouse cell types.  

 

Results 

Joint profiling of chromatin conformation and DNA methylation from the same 

DNA molecule 

Here we describe the development of a novel method for joint profiling of 3D chromatin 

structure and mC that we term in situ 3C followed by mC analysis by sequencing (m3C-
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seq). The outline of this method is described in Fig.1.  First, we perform restriction 

enzyme digestion and ligation on fixed nuclei, as is typically performed in an in situ 3C 

experiment 8,22. When performed as a bulk assay, the ligated 3C nuclei are subject to 

proteinase digestion and bisulfite conversion, and libraries are constructed similar to our 

previous snmC-seq2 method using a random primed DNA synthesis and addition of 

downstream adaptor using Adaptase20,23. The procedure is similar for single-nucleus 

reactions, except that single nuclei are dispensed into 384 well PCR plates using FANS  

(Fig.1).  

 

To evaluate the consistency of chromatin contact maps generated by m3C-seq, we first 

performed bulk m3C-seq experiments for mESC in parallel with conventional bulk in situ 

3C and Hi-C sequencing experiments. Both Hi-C/3C and bisulfite conversion can 

present challenges for proper read alignment. In the case of Hi-C, this is due to the 

presence of chimeric reads where the read covers the ligation junction site. In the case 

of bisulfite treated sequencing libraries, this is due to the conversion of unmethylated 

cytosines to uracils, which are read as thymines during sequencing. In order to ensure 

accurate alignment of the m3C-seq data, we developed TAURUS-MH (Two-step 

Alignment with Unmapped Reads Using read Splitting for Methyl-HiC), a mapping 

pipeline for m3C-seq data using a hybrid of ungapped and manual read splitting 

alignments (Fig. 2a). Sequencing reads were first mapped to a in silico bisulfite 

converted genome using Bismark calling an ungapped aligner (bowtie1)24. Unmapped 

reads were further processed using a read-splitting procedure, which split reads into 3 

segments followed by ungapped mapping of the split reads. To evaluate the 
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performance of our pipeline, we compared TAURUS-MH to a previously described 

pipeline using gapped alignment (BWA-MEM) using a reference Hi-C dataset 25. We 

also compared our pipeline with BWA-METH26, which is designed for bisulfite 

sequencing data using BWA-MEM. The comparison with BWA-METH was performed 

using simulated bisulfite converted Hi-C reads. When compared with BWA-METH, our 

pipeline showed 19.43% higher in mappability (86.12% vs. 66.69%, Fig. 2b), 3.64% 

higher in accuracy (97.86% vs. 94.22%, Fig. 2c), and 13.41% higher long-range cis 

contacts (42.79% vs. 29.38% from total fragments and 49.68% vs. 44.06% from 

mapped fragments, Fig. 2d). In summary, our pipeline showed improved performance 

both in accuracy and sensitivity, compared with current methods. 

 

Having developing a robust mapping pipeline, we then analyzed chromatin contacts 

from libraries generated from bulk m3C-seq with a matched 3C-seq library. Bulk m3C-

seq libraries showed a comparable fraction of long-range (>1kb) intra-chromosomal 

ligation events compared to the control 3C-seq library (26.6% in 3C-seq and 19.0% in 

m3C-seq) (Fig. 2e). Surprisingly, we observed much more frequent inter-chromosomal 

ligation events in m3C-seq than in 3C-seq libraries (12.24% in 3C-seq and 30.0% in 

m3C-seq) (Fig. 2e). Since snmC-seq2 is based upon random-primed DNA synthesis 23, 

we speculate that the inter-chromosomal ligation is an artifact caused by spurious 

hybridization and polymerase extension between products of random-primed DNA 

synthesis. Consistent with this conjecture, no inter-chromosomal ligation events were 

found if we use reads that are aligned within 200bp of DpnII restriction sites, supporting 

the hypothesis that they are generated by a different mechanism from restriction 
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digestion and ligation. We further hypothesized that  spurious inter-chromosomal 

ligation is dependent on DNA concentration, which is positively correlated with the 

frequency of intermolecular interaction. Therefore, we expected sn-m3C-seq data to 

show reduced inter-chromosomal ligation since the random-primed DNA synthesis 

reaction for sn-m3C-seq contains a much lower DNA concentration. Indeed, we found a 

background level (15.11%) of inter-chromosomal ligation in sn-m3C-seq datasets, which 

is similar to what was observed in a regular 3C-seq experiment (12.24%). Finally, we 

compared the contact maps and DNA methylation profiles generated by our bulk m3C-

seq with conventional Hi-C and MethylC-seq data generated from mESC (Fig. 2f,g)27. 

We observed strong agreement in the contact maps (Fig. 2f). Consistent with visual 

examination, the matrices showed high correlation with bulk Hi-C data as measured 

using the HiCrep tool (Pearson correlation = 0.979) 28. HiCrep is a tool designed to 

compare Hi-C datasets using stratum adjusted correlation coefficients in order to 

account for unique features of Hi-C datasets that can lead to artificially high correlation 

coefficients when using conventional metrics like Pearson or Spearman correlation. 

Similarly, we observed strong concordance of methylation profiles from bulk m3C-seq 

with existing MethylC-seq datasets for mESC (Fig. 2g, Pearson correlation = 0.977). 

 

Fluorescent-activated nuclei sorting by DNA content excludes nuclei multiplets 

caused by inter-nuclei crosslinking 

 

To generated sn-m3C-seq profiles, fluorescent-activated nuclei sorting (FANS) was 

applied to in situ 3C treated nuclei preparation to dispense single nuclei into 384 well 
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PCR plates followed by snmC-seq2 single-cell methylome library preparation. We 

speculated that the crosslinking step of 3C or HiC may lead to the crosslinking of 

randomly interacting nuclei and cause more frequent nuclei multiplets compared to 

regular single-cell methylome preparation. In order to quantify the frequency of nuclei 

multiplets, we designed a mixed species experiment to crosslink an mixture of mESC 

and human GM12878 nuclei (Table S1). Consistent with our speculation, we found 

evidence of nuclei multiplets in 22.8% of PCR plate wells, using a threshold that 

requires more than 10% of reads mapped to both mouse and human genomes (Fig. 

3a). This is despite performing strict singlet gating using forward scatter and trigger 

pulse width. We found that the species multiplets were due to formaldehyde cross-

linking, as experiments where mouse and human cells were crosslinked separately and 

then combined for the subsequent experimental steps eliminated wells showing reads 

mapped to both species (Fig. 3b), supporting our hypothesis that nuclei multiplets are 

caused by inter-nuclei crosslinking instead of FANS steps or sequencing barcode 

crossover.  

 

To reduce the formation of nuclei multiplets, we first tested a strategy in which  

crosslinking is carried out with a nuclei preparation diluted 10-folds,  potentially reducing 

random interactions between nuclei. Performing crosslinking at a diluted condition 

substantially reduced the frequency of nuclei multiplets to 7.4% of the wells compared 

to 22.8% of wells for the undiluted condition (Fig. 3c). We also tested a strategy in which 

sort nuclei are stringently selected during FANS with a 2n genomic DNA content to 

exclude particles containing more than one nucleus (Fig. 3d). Applying this strategy to 
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the mixed species design effectively excluded nuclei multiplets with only 1% of wells 

showing reads mapped to both mouse and human genomes (Fig. 3e). Thus we 

concluded that FANS with stringent gating for 2n DNA content is the most effective 

approach for excluding nuclei multiplets from downstream single-nuclei analysis.  

 

Bulk m3C-seq and sn-m3C-seq profiles recapitulate chromatin conformation 

contact maps 

We compared chromatin contacts and DNA methylation patterns generated from sn-

m3C-seq with that from bulk Hi-C, m3C-seq, and bulk MethylC-seq. We generated 192 

mouse ES cells sn-m3C-seq DNA methylation and chromatin conformation profiles 

(Table S1). The data from the 192 single cells was then merged to reconstruct bulk 

contact maps and methylation profiles. The merged sn-m3C-seq contact maps were 

highly consistent with contact maps from conventional Hi-C and from bulk m3C-seq 

experiments (Fig. 4a,b). We quantitatively assessed the similarity of the sn-m3C-seq 

and Hi-C contact maps using HiCrep 28. We compared our pooled sn-m3C-seq and Hi-C 

maps with existing public mouse ES cell Hi-C data. In addition, we used bulk Hi-C data 

recently generated from Bonev et al. from neural progenitor cells (NPC) and cortical 

neurons (CN) to act as an outgroup for comparison 9. Performing hierarchical clustering 

on a matrix of correlation coefficients generated by HiCrep, we observed that our sn-

m3C-seq clustered with previous Hi-C data from mouse ES cells as well was with Hi-C 

data generated as part of this study, while the CN and NPC datasets clustered 

separately (Fig. 4c). In addition, we were able to observe ES cell specific contacts that 

were consistent between pooled sn-m3C-seq and Hi-C data, such as the ES cell 
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specific enhancer-promoter contacts at the Sox2 locus (Fig. 4c). Lastly, we also 

compared the methylation profiles generated in the m3C-seq and sn-m3C-seq with 

existing MethylC-seq profiles in mouse ES cells, NPCs, CNs, and frontal cortex 

datasets. We observed a high correlation of the methylation profiles generated by 

pooled sn-m3C-seq with previously generated bulk MethylC-seq experiments (Pearson 

correlation = 0.89, sn-m3C-seq vs. mESC Lee 2014) (Fig. 4d) 27. We were also able to 

observe characteristic hypomethylated regions in the promoters of cell-type specific 

genes, such as the pluripotency genes Dppa4 and Dppa2 (Fig. 4d). In summary, these 

results demonstrate that the contact maps and methylation profiles generated by sn-

m3C-seq and bulk m3C-seq are consistent with published Hi-C and MethylC-seq data. 

 

sn-m3C-seq profiles separate mouse cell types 

To test the feasibility of cell type identification using sn-m3C-seq profiles, we analyzed 

sc-m3C-seq data from mESCs and a mouse mammary gland cell line, NMuMG. We 

sorted 192 cells for each sample and processed the samples for sn-m3C-seq, and 

sequenced the libraries to obtain on average 1.4 million read pairs per cell for mESC, 

and 1.7 million reads pairs for NMuMG (Table S1). After filtering for cells containing at 

least 100,000 uniquely mapped reads, our dataset consisted of 152  mouse mESCs and 

96 mouse mammary gland NMuMG cells. 68.77% of mESC and 66.49% of NMuMG 

read pairs can be uniquely mapped to mouse genome. The mESC sn-m3C-seq dataset 

contains on average 1,229,602 (standard error s.e.=126,534) uniquely mapped reads 

per cell, with 15% (s.e=0.31%) of reads indicating long-range (>1kb) chromatin 

interactions. The NMuMG dataset contains on average 1,433,470 (s.e.=125,560) 
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uniquely mapped reads per cell, with on average 8.64% (s.e.=0.35%) of reads indicating 

long-range (>1kb) chromatin interactions.  

 

To partition cells into separate cell types, we used CpG methylation patterns from single 

cells, analogous to what we have done previously in human and mouse neurons  20. We 

binned the genome into 100kb bins and calculated the average CpG methylation level in 

each bin for each cell. Principal component analysis (PCA) of the resulting single cell 

CpG methylation patterns resulted in two clear clusters, one corresponding of NMuMG 

cells and the other nearly entirely composed of ES cells (Fig. 5a). Having partitioned the 

single cells into constituent clusters, we then pooled the sc-m3C-seq data from ES and 

NMuMG cells and analyzed the chromatin contact maps for differences. We were able 

to identify chromosomes in each lineage with distinct A/B compartment signatures 

between the two cell types (Fig. 5b) as well as identifying local differences in Hi-C 

contacts (arrows in Fig. 5c,d).  

 

We also analyzed the ability to partition sc-m3C-seq into the relevant cell types using 

DNA-methylation patterns compared with Hi-C based contacts. As stated previously, 

DNA-methylation profiles could easily distinguish between ES and NMuMG cells using 

the first principal component (PC) alone, which explains 52.1% of total variance (Fig. 

5a). In contrast, PCA of genome wide Hi-C contacts could not distinguish between  ES 

and NMuMG cells using the first two PCs (Fig. 5e), but the third PC did clearly separate 

these two cell types (Fig. 5f). We also carried out PCA using Hi-C based contacts 

separated by less than 2 Mb in the genome, as we reasoned that the matrices were less 
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sparse for these local interactions. In this case, we were able to distinguish the two cell 

types using the first two PCs (Fig. 5g), where the ability to distinguish the two cell types 

was determined by the second PC. We also observed that the first PC was highly 

correlated with the per cell sequence coverage (Fig. 5h), such that the samples with 

higher coverage were more reliably separated by the second PC. This suggest that 

using PCA based cell type identification using Hi-C contacts is highly dependent on per 

cell sequence coverage. In contrast, DNA methylation profiles easily distinguish 

between the two cell types using PC1 values alone (Fig. 5a), indicating the robustness 

of cell type classification from DNA-methylation profiles. These results underscore the 

importance of jointly profiling DNA-methylation along with chromatin conformation to 

reliably distinguish cell types in single cell experiments. 

 

Discussion 

Cell-type specific chromatin conformation maps  can potentially provide a valuable 

addition to other single cell modalities for the creation of cell type atlases 29. This 

information complements single-cell transcriptomes and the annotation of regulatory 

elements using single-cell epigenomic profiles, to provide a more comprehensive 

description of gene regulatory activities. However, it is currently unclear how well single-

cell Hi-C/3C methods alone can distinguish unique cell-types in a heterogenous 

population. To enhance the cell-type signature in single-cell chromatin conformation 

data, we devised a method to allow jointly profiling of chromatin interaction and DNA 

methylation from a single nucleus. Consistent with previous single-cell methylome 
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studies, sn-m3C-seq allows unequivocal clustering of cell types, which can then guide 

the reconstruction of high-quality cell-type specific chromatin conformation maps.  

 

Our results indicate that single cell contact profiles alone can distinguish between 

drastically different cell types such as mESC and NMuMG. However, the confidence of 

cell type separation is highly dependent on sample coverage and downstream 

processing. It is unclear how well these contact map may be able to distinguish between 

highly related cell types (such as different sub-types of neurons) present in complex 

tissue samples. In contrast, single-cell DNA methylation profiles can easily distinguish 

constituent cell types.by examining DNA methylation profiles associated with various  

well-known marker genes/loci.  

 

Our study also made a critical improvement to current single-cell Hi-C/3C methods by 

excluding nuclei multiplets using FANS with 2n DNA gating strategy. Cell or nuclei 

multiplets are a major source of noise in single-cell studies and can lead to the 

identification of artifactual cell populations. Our modified FANS method will  enable  the 

generation of high quality single cell chromatin conformation maps. Similar to snmC-

seq2, sn-m3C-seq is compatible with high throughput approaches, allowing analysis of 

thousands of single nuclei in a single experiment. Sn-m3C-seq is thus well suited for 

large-scale cell atlas projects and can contribute to a comprehensive analysis of gene 

regulatory activity with cell-type specificity.  

 

Data availability 
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Raw data and processed data are available from NCBI GEO accession GSE124391.  

 

Code availability 

The source code used is publicly available at https://github.com/dixonlab/Taurus-MH 
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Material and Methods 

Cell culture 

Mouse ES cells (E14TG2a) were purchased from American Type Culture Collection 

(ATCC CRL-1821). ES cells were grown in DMEM media (Corning 10-013-CV) 

supplemented with 10% HyClone FBS (Fisher SH3007003E), 1X MEM Non-essential 

amino acids (ThermoFisher 11140050), 1X Glutamax supplement (ThermoFisher 

35050061), 1X ß-mercaptoethanol (Millipore ES-007-E), 100U/mL Penicillin-

Streptomycin (ThermoFisher 15140122), and 1000U/mL Leukemia Inhibitory Factor 

(Millipore ESG1107). ES cells were cultured in feeder free conditions on 0.5% gelatin 

coated plates.  
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GM12878 cells were obtained from Coriell Institute for Medical Research. GM12878 

cells were grown in RPMI-1640 medium (ThermoFisher 11875093) supplemented with 

15% Fetal Bovine Serum (Corning 35-010-CV) and 100U/mL Penicillin-Streptomycin 

(ThermoFisher 15140122). 

 

NMuMg cells (RBRC-RCB2868) were obtained from the RIKEN BioResource Center. 

NMuMg cells were grown in DMEM (Corning 10-013-CV) with 10% Fetal Bovine Serum 

(Corning 35-010-CV), 10𝝻g/mL Insulin (ThermoFisher 12585014), and 100U/mL 

Penicillin-Streptomycin (ThermoFisher 15140122).  

 

All cell lines were routinely tested for mycoplasma contamination and tested negative. 

 

in situ Hi-C and 3C 

in situ Hi-C was performed as previously described using the MboI restriction enzyme 8. 

in situ 3C experiments were performed based on the in situ Hi-C protocol with minor 

modifications. Briefly, prior to fixation, adherent cells were trypsinized, counted, and 

collected by centrifugation, and suspension cells were counted and collected by 

centrifugation. Cells were resuspended in culture media at a concentration of 1x106 

cells per mL of media and fixed in 1% formaldehyde for 10 minutes at room temperature 

with shaking. For standard species mixture experiments, equal numbers of mouse and 

human cells were combined into a single tube prior to fixation. For the 1:10 dilution 

species mixture experiment, cells were resuspended at a concentration of 1x105 cells 
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per mL of media prior to fixation. For the species mixture experiments where samples 

were mixed after fixation, each cell type was fixed independently as described above 

and combined at later stages in the protocol. in situ Hi-C samples were digested with 

the MboI restriction enzyme and processed as described previously. For in situ 3C 

experiments, samples were digested with DpnII enzyme overnight at 37ºC with gentle 

mixing. The following day, the sample was incubated at 62ºC for 10 minutes to 

inactivate the restriction enzyme. The typical biotin fill in step in the Hi-C protocol is 

omitted. The sample is then ligated for 4 hours at room temperature with T4 DNA ligase 

in the same manner as in in situ Hi-C experiments. The sample is then stained with 

Hoechst (0.1µg/µL) for the final 30 minutes of the ligation step. The sample is then 

passed through a 40 µM nylon cell strainer (Corning 431750) into a FACS tube prior to 

sorting. As a quality control step, 10% of the sample is taken for conventional library 

preparation and sequenced using shallow sequencing on a MiSeq. 

 

Fluorescent-activated nuclei sorting (FANS) 

FANS was performed at the Salk Institute Flow Cytometry Core Facility using a BD 

Influx cell sorter. A 100 micron nozzle tip was used, with 1 x  PBS as sheath fluid 

(sheath pressure was set to 18.5PSI) with sample and collection cooling set to 4 

degrees. The gating strategy for selecting intact, single, Hoechst labelled nuclei from 

debris was as follows: nuclei were first gated based on Forward Scatter (FSC) and Side 

Scatter (SSC) pulse height, then multiplet exclusion gating was applied (forward scatter 

and side scatter pulse width). Finally, nuclei of specific DNA content were selected (e.g. 

2N) by virtue of Hoechst fluorescence intensity. Individual nuclei were deposited into 
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wells of 384-well plate using the Single Cell (1-drop) mode. In preparation for 384-well 

plate deposition, 20-30 particles (e.g. calibration beads) were sorted onto a transparent 

plastic plate cover for alignment calibration. 20-30 particles are then directly sorted into 

the wells for final visual confirmation of alignment precision. 

 

Bulk and single-cell methylome library preparation 

Libraries for bulk and single-cell methylomes were generated using snmC-seq2. A 

detailed step-by-step bench protocol for snmC-seq2 is provided as Supplement 

Methods in Luo et al. (2018) 23. Bulk methylome libraries were prepared manually using 

individual tubes. Single-cell methylome libraries were prepared using a Tecan Evo 100 

robotic platform as described in Luo et al. (2018) 23. Sequencing libraries were 

sequenced using Illumina MiSeq and HiSeq 4000 instruments in PE150 mode.  

 

Data Processing 

Raw reads were trimmed first 25bp and last 3bp of both read1 and read2 to remove 

random primer sequence and adaptase low complexity tails. For the alignment, Bismark 

is used24. C to T converted and G to A converted reference genomes are prepared for 

mm10 and hg38 using bismark_genome_preparation. Each read end is mapped 

separately using Bismark with Bowtie1 with read1 as complementary (always G to A 

converted) and read2  (always C to T converted) as original strand. After first alignment, 

unmapped reads are retained and splitted into 3 pieces by 40bp, 32bp, and 40bp after 

removing 5bp of both ends results in having 6 reads (read1 and read2). Six reads 

derived from unmapped reads are mapped separately using Bismark Bowtie1. All 
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aligned reads are merged into BAM using picard that is query name sorted. The 

fragments with all the mapped reads aligned to the same positions are considered as 

duplicates and removed and DNA methylation tracks are generated. For each fragment, 

the outermost aligned reads are chosen for the chromatin conformation map generation.  

 

Cell type identification using DNA methylation signature 

CG methylation levels (mCG) are computed for every non-overlapping 100kb bins 

across the genome in each single cell. The bins with more than 20 CG basecalls in 

more than 95% of cells were selected for further analysis. Bin-level mCG levels were 

normalized by global mCG of each cell. We imputed the mCG in each bin with less than 

20 CG basecalls by using the mean mCG of that bin across all the cells having more 

than 20 CG basecalls in the bin. 

  

Cell type identification using 3D genome structure 

We generated contact map using 100kb bin in each cell (152 mESC and 96 NMuMG). 

The interaction frequency of each bin is normalized by dividing average interaction 

frequency of the bins at the same distance interactions. The bins that are covered with 

more than 100 cells were filtered (n=19357) and used for first PCA analysis (Fig. 5e,f). 

The bins with interaction distance of less than 2Mb are filtered and used for the second 

PCA analysis (n=18004)(Fig. 5g,h). 

 

Figure legends 
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Figure 1. Outline of the single-nucleus methyl-3C sequencing (sn-m3C-seq) 

method. Samples are crosslinked with formaldehyde in a typical in situ 3C/Hi-C 

experiment. The nuclei are isolated and permeabilized. Chromatin is then digested with 

a restriction enzyme of interest and ligated to preferentially join regions that were 

originally in close 3D space. Importantly, the digestion and ligation reactions are 

occurring inside intact nuclei. Nuclei are then sorted into 384 well PCR plates and 

subjected to bisulfite conversion. Single-cell DNA methylome libraries were prepared 

using snmC-seq2 method. Briefly, DNA in each well is then labeled by random primers 

which contain a specific barcode. After pooling of wells with unique random primer 

barcodes,  the 3’-end of random-primed DNA synthesis products are then modified 

using an Adaptase reaction to attach a 3’-adaptor.  

 

Figure 2. Data processing and analysis of m3C-seq sequencing reads. (A) 

Overview of 3C-seq mapping. Reads are aligned using Bismark calling ungapped 

aligner bowtie1. To rescue reads that did not align due to the presence of a ligation 

junction within the reads, we split unmapped reads into 3 equal segments and these are 

realigned. Successfully aligned reads are then manually paired, deduplicated, and then 

processed for DNA methylation and chromatin contact profiles. (B) Percent of aligned 

reads as a pair. Reads derived from non-bisulfite treated regular Hi-C sequencing are 

converted C to T (read1) and G to a (read2) in silico and aligned using BWA-meth, 

Bismark (bowtie1), and Bismark (bowtie1) followed by split-read alignment. Alignment of 

non-converted reads using conventional alignment pipeline is used as a standard. (C) 

Alignment accuracy of different alignment strategies compared with conventional Hi-C 
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alignment using in silico converted reads. (D) Fraction of read pairs with cis short-range 

reads (cis < 1kb), cis long-range interactions (cis > 1kb), and trans interactions (trans) 

using different alignment strategies. (E) Similar to panel (D), but showing cis short-

range reads (cis < 1kb), cis long-range interactions (cis > 1kb), and trans interactions 

(trans) for actual 3C-seq (without conversion), bulk m3C-seq (with conversion, from the 

same sample as bulk 3C-seq), and single-nucleus m3C-seq results. (F) Contact maps 

from chromosome 17 for conventional bulk Hi-C and bulk m3C data. (G) DNA-

methylation profiles near the Pou5f1 gene for conventional bulk MethylC-seq as well 

bulk m3C-seq. 

 

Figure 3. FANS by DNA content excludes nuclei multiplets. (A) Single-nuclei FANS 

following standard in situ 3C procedure using an mixture of mESC and GM12878 

results in a high fraction of wells containing both mouse and human nuclei. (B) Separate 

crosslinking of mESC and GM12878 nuclei followed by pooling and FANS eliminated 

wells containing both mouse and human nuclei. (C) Crosslinking under diluted condition 

reduced nuclei multiplets. (D) FANS selecting for 2N genomic content. (E) FANS 

selecting for 2N genomic content excluded the vast majority of nuclei multiplets.  

 

Figure 4. Bulk and single-nucleus m3C-seq recapitulate the chromatin 

architecture of mouse embryonic stem cells.  (A) HiC and bulk m3C-seq profiles 

show consistent chromosome level chromatin architectures. Green bar plot shows CpG 

methylation level from m3C-seq. (B) Reconstructed mESC chromatin conformation map 

from sn-m3C-seq profiles is highly consistent with the maps generates using Hi-C or 
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bulk m3C-seq. Red bar plot shows CpG methylation level from sn-m3C-seq. (C) Bulk 

and single-nucleus m3C-seq identify the mESC specific chromatin conformation 

surrounding Sox2 locus. (D) Bulk and single-nucleus m3C-seq recapitulate the mESC 

specific depletion of DNA methylation at Dppa2/4 locus.  

 

Figure 5. Single-nucleus m3C-seq reconstructs cell-type specific chromatin 

conformation maps. (A) Principal component analysis of single cell DNA-methylation 

profiles of mouse ES cells and NMuMG cells reliably distinguishes the two cell 

populations. (B) Chromosome wide Pearson correlation matrix from pooled sc-m3C-seq 

maps for ES cells and NMuMG cells demonstrates cell type specific patterns, 

corresponding to cell type specific A/B compartment signals. (C) Contact profiles from 

sc-m3C-seq data in a 6.4Mb stretch of chromosome 15 show cell type specific contacts 

in both ES and NMuMg cells. (D) Heat map of differential interaction frequencies 

between mESC and NMuMG cells shown in panel C. Regions in green are stronger in 

ES cells, regions in red are stronger in NMuMG. (E) Principal component analysis of 

whole genome contact matrices from sc-m3C-seq fails to distinguish ES from NMuMG 

cells using PC1 and PC2. (POV: Percentage of variance) (F) Principal component 

analysis of whole genome contact matrices from sc-m3C-seq distinguishes ES from 

NMuMG cells using PC3. (G) Principal component analysis of local interactions (<2Mb) 

sc-m3C-seq distinguishes ES from NMuMG cells using PC1 and PC2. (H) Correlation of 

PC1 and per cell contacts demonstrates that PC1 largely corresponds to coverage. 
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