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Abstract. A central principle in motor control is that the coordination strategies learned by our 8 

nervous system are often optimal. Here we combined human experiments with computational 9 

reinforcement learning models to study how the nervous system navigates possible movements 10 

to arrive at an optimal coordination. Our experiments used robotic exoskeletons to reshape the 11 

relationship between how participants walk and how much energy they consume. We found that 12 

while some participants used their relatively high natural gait variability to explore the new 13 

energetic landscape and spontaneously initiate energy optimization, most participants preferred 14 

to exploit their originally preferred, but now suboptimal, gait. We could nevertheless reliably 15 

initiate optimization in these exploiters by providing them with the experience of lower cost gaits 16 

suggesting that the nervous system benefits from cues about the relevant dimensions along which 17 

to re-optimize its coordination. Once optimization was initiated, we found that the nervous 18 

system employed a local search process to converge on the new optimum gait over tens of 19 

seconds. Once optimization was completed, the nervous system learned to predict this new 20 

optimal gait and rapidly returned to it within a few steps if perturbed away. We model this 21 

optimization process as reinforcement learning and find behavior that closely matches these 22 

experimental observations. We conclude that the nervous system optimizes for energy using a 23 

prediction of the optimal gait, and then refines this prediction with the cost of each new walking 24 

step.  25 
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INTRODUCTION 26 

People often learn optimal coordination strategies. That is, the nervous system tracks a cost for 27 

movement and it adapts its coordination to minimize this cost. This optimization principle 28 

underlies theories on the control of reaching, grasping, gaze and gait, although the nervous 29 

system may seek to minimize different costs for each of these tasks [1-9]. It has provided insight 30 

into healthy and pathological behaviour [10-12], as well as the functions of different brain areas 31 

[13]. While there is a growing body of evidence that preferred behaviour in these various tasks 32 

indeed optimizes sensible cost functions [1-9,14,15], how the nervous system performs this 33 

optimization is largely unknown [2,16].  34 

The optimization of movement is a challenge for the nervous system. To perform a movement, 35 

the nervous system has thousands of motor units at its disposal, and it can finely vary each motor 36 

unit’s activity many times per second. This flexibility results in a combinatorially huge number 37 

of candidate control strategies for performing most movements—far too many for the nervous 38 

system to simply try each one to evaluate its cost [17,18]. The nervous system must instead 39 

efficiently search through its options to seek optimal solutions within usefully short periods of 40 

time. A second consequence of the large number of control strategies available to the nervous 41 

system is that it can never know whether it has truly converged to the best of all possible options. 42 

But if it is indeed at an optimum, continuously searching for better options will itself be sub-43 

optimal because all other executed coordination patterns will be more costly [19]. Thus, the 44 

nervous system must determine when to initiate optimization and explore new coordination 45 

patterns, and when to exploit previously learned strategies [20-22].  46 
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Here we use human walking to understand how the nervous system initiates and performs the 47 

optimization of its motor control strategies. Human walking is a system well suited for studying 48 

these questions because the primary contributor to the nervous system’s cost—metabolic energy 49 

expenditure—is both well established and measurable in this task. Decades of experiments that 50 

used respiratory gas analysis have established that our preferred gait parameters—from walking 51 

speed [23-26] to step frequency [24,27-29] and step width [30]—minimize energetic cost. While 52 

some optimal motor control strategies may be established over relatively long periods of time, 53 

we recently discovered that the nervous system can re-optimize aspects of gait within minutes 54 

[31]. This is a second reason why human walking is well suited for studying optimization—we 55 

can observe energy optimization within a lab setting and within a reasonably short period of 56 

time. Studying optimization in tasks such as reaching or saccades is less straightforward as the 57 

relevant cost to the nervous system appears to include a term not only for task effort, but also for 58 

the task error, and with some unknown weighting between these two contributors [2,5,32,33]. 59 

Furthermore, motor learning in these tasks appears to, at least initially, prioritize reducing error 60 

over optimizing cost, requiring creative experiments to decouple error-based learning from 61 

reward-based learning [10,34].  62 

To study how the nervous system performs energy optimization in human walking, we leveraged 63 

our previously-developed experimental design within which people reliably optimize their gait to 64 

minimize energetic cost [31]. In brief, we used lightweight robotic exoskeletons capable of 65 

applying resistive torques at the knee joints during walking (Fig 1). The exoskeleton controller 66 

applies a resistance, and therefore an added energetic penalty, that is minimal at low step 67 

frequencies and increases as step frequency increases. Our past experiments demonstrated that 68 

this control function reshapes the relationship between step frequency and energetic cost—which 69 
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we term the cost landscape—creating a positively sloped energetic gradient at subjects’ initial 70 

preferred step frequency, and an energetic minimum at a lower step frequency. When given 71 

sufficient experience with the new cost landscape, subjects in our past experiments learned to 72 

decrease their step frequency to converge on the new energetic minimum. We use the term 73 

optimization to refer to the process of adapting coordination towards new patterns that minimize 74 

cost. This might alternatively be called reward-based adaptation [10,34]. We also distinguish 75 

between optimization and prediction, where the former is the process of trying new coordination 76 

patterns as the nervous system converges towards the minimum cost, and the latter is the nervous 77 

system storing and recalling previously experienced coordination patterns [35,36]. For our 78 

purposes we consider prediction, because it involves the storing of a coordination pattern, as 79 

commensurate with learning.  80 
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 81 

Fig 1. Experimental design. (A-B) By controlling a motor attached to the gear train of our 82 
exoskeletons, we can apply a resistance to the limb that is proportional to the subject’s step 83 
frequency. (C) Design of the penalize-high (green) control function. (D) Schematic energetic 84 
cost landscapes. Adding the energetic cost of the penalize-high control function to the original 85 
cost landscape (grey) produces a new cost landscape with the optimum shifted to lower step 86 
frequencies (green curve). (E) Measured energetic cost landscapes, reproduced from Selinger et 87 
al. (2015), for the penalize-high (green) control function and controller off condition (grey). The 88 
lines are 4th order polynomial fits, and the shading their 95% confidence intervals, shown only 89 
for illustrative purposes. The dashed grey arrow illustrates the direction of adaptation from initial 90 
preferred (green square) to final preferred step frequencies (green triangle). On average subjects 91 
decreased their step frequency by approximately 6% to converge on the energetic minima and 92 
reduce cost by 8%. (F) The penalize-high control function creates a positively sloped energetic 93 
gradient about the subjects’ initial preferred step frequency. (G) Subjects adapted their step 94 
frequency to converge on the energetic minima. Error bars represent 1 standard deviation. 95 
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Asterisks indicate statistically significant differences in energetic cost when compared to the cost 96 
at the initial or final preferred step frequency (0%). 97 

Although our prior experiment was the first to provide direct experimental evidence for 98 

continuous energy optimization [31], it did not allow us to decipher what experience with a novel 99 

cost landscape is critical for optimization to be initiated and what process is used to converge on 100 

optima. To understand these mechanisms, here we used a series of experiments that controlled 101 

the type of initial experience subjects received with a new energetic cost to determine what gait 102 

experience was sufficient for the nervous system to stop exploiting a previously optimal solution 103 

and initiate a new optimization. Once the nervous system initiated optimization, we studied how 104 

it explored new gaits, in order to understand the nervous system’s algorithms for converging on 105 

new energetic optima. Using the results of our experiments that examined both the initiation and 106 

process of optimization, we then developed computational models based on reinforcement 107 

learning that explain how the nervous system may optimize energy during walking. 108 

RESULTS 109 

High natural gait variability may spontaneously initiate optimization   110 

We first sought to determine whether the nervous system could spontaneously initiate 111 

optimization and converge on new energetic optima. All subjects first walked for 12 minutes 112 

while wearing the exoskeletons, but with the controller turned off (Fig 2A, Baseline). This meant 113 

that while there was some small inertial and frictional torques from the exoskeleton, there was no 114 

additional resistive torque added by the robotic motor [31]. All walking took place on an 115 

instrumented treadmill at 1.25m/s and we measured step frequency from treadmill foot contact 116 

events [37]. All subjects appeared to settle into a steady state step frequency within 9 minutes 117 
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and we used the final 3 minutes of walking data to determine subjects’ ‘initial preferred step 118 

frequency’. On average, subjects walked at 1.8 ± 0.1 Hz (mean ± SD). To guard against the 119 

possibility that in future trials subjects could be unaware they are able to alter, or fearful to alter, 120 

their step frequency when walking on a treadmill at a constrained speed, we next habituated 121 

subjects to walking at a range of step frequencies (Fig 2B, Habituation). During this habituation, 122 

the controller remained off; therefore, subjects did not gain experience with the new cost 123 

landscape. We then turned the controller on, resulting in an applied resistance that was dependent 124 

on step frequency, and the subjects walked at a self-selected step frequency for an additional 12 125 

minutes (Fig 2C, First experience). During this first experience period, 6 of the 36 subjects 126 

displayed gradual adaptations in gait and converged to lower, less costly, step frequencies 127 

consistent with the energetic optima (Fig 3A-B). These subjects, whom we refer to as 128 

‘spontaneous initiators’, had to meet two criteria. First, during the final 3-minutes of the first 129 

experience period their average step frequency was required to fall below 3 SD in steady state 130 

variability, determined from the final 3-minutes of the baseline period. For most subjects, this 131 

equates to a minimum decrease in step frequency of approximately 5%. Second, the change in 132 

step frequency could not be an immediate and sustained mechanical response to the exoskeleton 133 

turning on. Subjects’ final step frequency had to be significantly lower than the step frequency 134 

measured in the 10th to 40th second after the exoskeleton turned on (one-tailed t-test, p<0.05). 135 

See Supporting Information Fig S1 for discrimination plot and additional discussion of these 136 

criteria.  On average, the spontaneous initiators converged toward the optima with an average 137 

time constant of 65.7 seconds (exponential fit 95% CI [60.5, 70.8]), or about 120 steps. As 138 

determined by our criteria, these spontaneous initiators settled on a step frequency that is 139 

indistinguishable from the location of the expected optima from our previous experiments [31] 140 
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(one sample t-test, t(5)=-0.46,  p = 0.66), while  the other subjects, or non-spontaneous initiators, 141 

remained at their initial preferred step frequency (0.8 ± 2.7 %, Fig 3D). We hypothesized that 142 

high natural gait variability, which results in a more expansive and therefore more clear sampling 143 

of the new cost landscape, would be a predicator of spontaneous initiation. To test this, we 144 

analyzed individual subjects’ step-to-step variability prior to the controller even being turned on 145 

and found that spontaneous initiators displayed higher variability in step frequency than non-146 

spontaneous initiators (1.5 ± 0.3 % and 1.1 ± 0.3 %, respectively, two sample t-test, t(34)=6.06,  147 

p = 1.8×10-2, Fig 3C). This finding that spontaneous initiation was correlated with higher 148 

variability, even before the adaptation itself, was in no way predetermined by our criteria. As a 149 

second test of the role of step frequency variability in promoting spontaneous initiation, we 150 

regressed the amount of adaptation an individual exhibited during the First Experience period 151 

against their step frequency variability from the Baseline period (final 3-minutes), for all 36 152 

subjects, and found a weak but significant correlation (R2=0.22, p =4.0×10-3). We expect other 153 

factors that vary across individuals, such as the gradient of their cost landscape and their levels 154 

of sensory and motor noise, to additionally effect the saliency of the cost landscape, and in turn 155 

the likelihood of spontaneous initiation. 156 
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 157 

Fig 2. Experimental protocol. Each subject completed four testing periods. The first three, 158 
Baseline (A), Habituation (B), and First Experience (C), were the same for all subjects. For the 159 
Second Experience period, subjects were assigned to either the metronome-guided perturbations 160 
to discrete cost points (D), metronome-guided broad experience with the cost landscape (E), or 161 
self-guided exploratory experience of the cost landscape (F). Rest periods of 5-10 minutes were 162 
provided between each testing period. For all periods, regions of red shading illustrate the time 163 
windows during which we assessed steady-state step frequencies. Data shown in A-C and E are 164 
from one representative subject, while data in D and F are from two other representative 165 
subjects. 166 
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 167 

Fig 3. Non-spontaneous and spontaneous initiators. A) Self-selected step frequency during the 168 
final 3 minutes of the Baseline testing period for representative non-spontaneous initiator and 169 
spontaneous initiator (blue and red, respectively). (B) Step frequency data during the First 170 
Experience period for the same two representative subjects. The horizontal bar indicates when 171 
the controller is turned on (green fill) and off (white fill). (C) Across all subjects, spontaneous 172 
initiators displayed greater average step frequency variability than non-spontaneous initiators 173 
during the Baseline testing period. (D) By the final 3 minutes of the First Experience period, 174 
spontaneous initiators appeared to adapt their step frequency to converge on the energetic 175 
minima, while non-spontaneous initiators did not. Error bars represent 1 standard deviation. 176 
Asterisks indicate statistically significant differences for t-tests. 177 

Experience with lower cost gaits can initiate optimization 178 

We next sought to determine how optimization could be initiated in the non-spontaneous 179 

initiators. The non-spontaneous initiators were assigned to one of three experiments (Table S1) 180 

in which a second experience period included either metronome-guided experience with discrete 181 

cost points on a new cost landscape (Fig 2D), metronome-guided experience with many costs 182 

along a new cost landscape (Fig 2E), or self-guided experience with many costs along a new cost 183 

landscape (Fig 2F). To gain insight into the progress of optimization during this period, 1-minute 184 

probes of subjects’ self-selected step frequency occurred at the 6th, 10th, and 14th minute, along 185 
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with a final 6-minute probe at the 18th minute. We found that if, just prior to the first probe, 186 

subjects were walking at low step frequencies, and thus experienced lower energetic costs, they 187 

appeared to initiate optimization and adapt toward the new optima (Fig 4). Yet, if they were 188 

walking at high step frequencies, and thus experienced higher energetic cost, they rapidly 189 

returned to the initial preferred step frequency (Fig 4). This finding was consistent regardless of 190 

whether the experience was self-guided (t-test, t(7)=-2.25, p = 0.03) or metronome-guided (t-test, 191 

t(7)=-2.33, p = 0.03). Moreover, if immediately before the probe subjects were returned to the 192 

initial preferred step frequency, as was the case with the metronome-guided experience of many 193 

cost points, they showed no adaptation (Fig 4; t-test, t(7)=0.12, p = 0.55). This was despite them 194 

having broad experience with the cost landscape. It appears that providing subjects with 195 

experience at a low-cost gait and then allowing them to self-select their gait following these new 196 

initial conditions is sufficient for initiating optimizing, while expansive experience with the 197 

landscape is not. Importantly, the energy cost at the low-cost gait is lower relative to the energy 198 

cost at the initially preferred step frequency under the new cost landscape, but not the original 199 

cost landscape (Fig 1E) indicating that the nervous system is updating its expectation of the 200 

energetic consequences of its gaits.  201 

 202 

Fig 4. Effect of experience direction on initiation of optimization. For each subject, we 203 
averaged data from the final 30 seconds of the first step frequency probe, and then averaged 204 
across subjects. Error bars represent 1 standard deviation. Asterisks indicate statistically 205 
significant differences for paired t-tests. 206 
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A local search strategy is used to converge on energetically optimal gaits  207 

To investigate the interaction between high and low cost experience, as well as the order of the 208 

experience, we next compared the behaviour during the first and final probes following 209 

experience with the highest (+10%) and lowest (-15%) step frequencies (Table S1). We 210 

performed a two-way ANOVA and found that both experience direction (high and low cost) and 211 

probe order (first and last) had significant effects (F(1, 17) = 13.25, p = 2.7×10-3; F(1, 17) = 4.93, 212 

p = 0.04; respectively), as well as their interaction (F(1, 17) = 5.30, p = 0.04).  A two-sample t-213 

test revealed that step frequencies were significantly different following the first experience with 214 

high and low costs (t(7)=6.1, p = 4.8×10-4). Following the first experience with high step 215 

frequencies subjects appeared to use prediction to rapidly move away from this high cost step 216 

frequency (Fig 5A, Fig S2A). But, their prediction was erroneous—having not yet experienced 217 

lower costs gaits, they returned to their initial preferred step frequency (Fig 5B, Fig S2A). They 218 

did so with an average time constant of 2.0 seconds (exponential fit 95% CI [1.5 2.5]) or about 4 219 

steps. Following the first experience with low step frequencies subjects more slowly descended 220 

the cost gradient, with an average time constant of 10.8 seconds (exponential fit 95% CI [9.2 221 

12.5]), about 20 steps, and eventually converged on the new optima (Fig 5A). Because this was 222 

the first probe, all of which followed experience at -15% step frequency, these subjects had no 223 

prior explicit experience with the new optima yet could converge to it (Fig 5B)—prior explicit 224 

experience with the new optima was not necessary for convergence. Subjects’ gradual and 225 

sequential convergence to the new optima is consistent with a local search process, and 226 

inconsistent with alternative optimization methods such as actively sampling from a broad range 227 

of new gaits. 228 
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 229 

Fig 5. Effect of experience direction during first and last step frequency probe. Step 230 
frequency time-series data, averaged across subjects, for the first (A) and last (C) probes 231 
following experience either high (blue) or low (red) step frequencies. The light blue and red lines 232 
represent 1standard deviation in step frequency for each time point. The horizontal bars indicate 233 
when the controller is turned on (green fill) and off (white fill), and the yellow lines indicate the 234 
prescribed metronome frequencies. Steady state step frequencies, averaged across subjects, 235 
during the final 30 seconds of the probe for the first (B) and last (D) perturbations toward either 236 
high or low. Error bars represent 1 standard deviation. Asterisks indicate statistically significant 237 
differences for t-tests. 238 

Optimization leads to new predictions of energy optimal gaits 239 

During the last probe, subjects rapidly converge on the new optima, with an average time 240 

constant of two to three seconds, regardless of the direction of prior experience (experience high: 241 

2.8 seconds, exponential fit 95% CI [2.3 3.2]; experience low: 2.5 seconds, exponential fit 95% 242 

CI [1.9 3.1]; Fig 5C-D, Fig S2B). A two-sample t-test revealed that step frequencies were now 243 

indistinguishable following the last experience with high and low costs (t(7)=0.77, p = 0.47). 244 

Following the last experience at low step frequencies, subjects no longer display slow 245 

adaptations consistent with optimization, but instead rapidly predict the optimal gait. And, 246 
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following the last experience at high step frequencies, subjects’ erroneous predictions have been 247 

corrected and they rapidly converge to the new cost optimum. This indicates that optimization 248 

culminates in the formation of new predictions about optimal movements and the abolishment of 249 

old. On average, subjects’ ‘final preferred step frequency’ was -4.8 ± 3.1 %, which was lower 250 

than initial preferred (t-test, t(8)=-4.74, p = 1.5×10-3) and consistent with the expected optima. 251 

The high inter-subject variability following the final probe (Fig 5D) may in part be due to that 252 

fact that each subject will have a different energy optimal step frequencies. When the controller 253 

was turned off, returning subjects to the original cost landscape, they slowly unlearned this new 254 

prediction. They gradually, with a time constant of 10.5 seconds (exponential fit 95% CI [8.8 255 

12.2]), returned to a step frequency indistinguishable from their initial preferred step frequency 256 

when the controller was turned off (-0.8 ± 3.0 %). 257 

Energy optimization as reinforcement learning 258 

The experimental behaviours we observed, where in a new environment subjects iteratively learn 259 

and then rapidly predict the energy optimal gait, resemble the behaviours produced by classic 260 

reinforcement learning algorithms [19,38]. As a proof-of-principle for human motor learning, 261 

reinforcement learning algorithms have found the optimal control policies for robots and 262 

physics-based simulations that walk, reach, and do other movement tasks [39-41]. And, the 263 

necessary components to perform reinforcement learning for human movements, including 264 

reward prediction and sensory feedback, are present in our nervous systems and well-studied for 265 

learning non-motor tasks [42]. Here we test if a simple reinforcement learning model can indeed 266 

reproduce the experimental behaviours observed during energy optimization (Fig 6A). 267 

Reinforcement learning, applied to our context, allows the nervous system to iteratively learn a 268 
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value-function (Q) that stores the predicted relationship between step frequency and energetic 269 

cost. For each new step, the nervous system selects a step frequency, or action (a), in accordance 270 

with its policy (p): ‘choose the energy minimal step frequency’. Each time the nervous system 271 

executes a frequency, it measures the resulting energetic cost, or reward (r), and updates its 272 

predicted cost for that frequency. However, since the reward can’t be measured perfectly due to 273 

measurement noise (nm) nor the action executed perfectly due to execution noise (ne), the 274 

nervous system doesn’t simply replace the old predicted value with the new reward. Instead it 275 

updates the old value by some fraction of the measured reward, referred to as the learning rate 276 

(a). Our aim here is to demonstrate how a simple reinforcement model of energy optimization 277 

can capture the key behavioral features demonstrated by subjects. Our model is not designed to 278 

predict or explain individual subjects’ behavior or action histories.  279 
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 280 

Fig 6. Reinforcement learning model of energy optimization. (A) A simple model describing 281 
the behavior of spontaneously initiating subjects. (B) A more complex logic for updating the 282 
value function that prioritizes learning a reference cost and can describe the behavior of non-283 
spontaneously initiating subjects. (C) The simulated energetic cost landscapes when the 284 
controller is turned off (Q*off) and on (Q*on). Behavior of the simple model of spontaneous 285 
initiators (red) and reference cost model of non-spontaneous initiators (blue) during the First 286 
Experience period when the controller is first turned on (D) and the final de-adaptation period 287 
when the controller is turned off (E). Behavior of the reference cost model of non-spontaneous 288 
initiators during the first (F) and last (G) probes following experience with high (blue) and low 289 
(red) step frequencies. The horizontal bars indicate when the controller is turned on (green fill) 290 
and off (white fill), and the thick yellow lines indicate the prescribed frequencies prior to the 291 
probe. 292 
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In this model, we specify the following: i) Q* is initially a representation of the dependence of 293 

energetic cost on step frequency during natural walking when the controller is turned off—the 294 

original cost landscape (Q*off, Fig. 6C); ii) to simulate the controller turning on, we change Q* to 295 

an accurate representation of the dependence of energetic cost on step frequency under our 296 

control function—the new cost landscape (Q*on, Fig. 6C); iii) we represent possible actions as 297 

discrete step frequencies; and iv) we set the level of execution noise, measurement noise and 298 

learning rate such that the resulting variability in step frequency and rate of convergence to the 299 

optimum are comparable to that observed experimentally (See Methods, Model Details). 300 

Importantly, the qualitative findings we present below are not particularly sensitive to these 301 

specific parameter settings (Fig S3).  302 

This very simple model can well describe the behaviour of our spontaneous initiators. We find 303 

that over about the same number of steps as our human subjects, the model can converge on new 304 

energetically optimal gaits to achieve small cost savings (Fig 6D). It also learns to predict the 305 

new cost landscape, rapidly returning to new cost optima when perturbed away, just as we have 306 

found in our human experiments. When returned to the original and previously familiar cost 307 

landscape, it doesn’t instantly remember old optima but instead has to unlearn its new prediction 308 

(Fig 6E). Notably, our model does not provide insight into individual subject’s behavior, but 309 

rather the general behavioural features of energy optimization. 310 

This simple reinforcement learner cannot however explain the behaviour of our non-spontaneous 311 

initiators. Unlike the majority of our experimental subjects, the above model will always 312 

spontaneously initiate optimization and begin converging on the optimal gait (even if the 313 

learning rate is adjusted such that past predictions are much more heavily weighted over new 314 

measures, Fig S3A). Our experimental findings suggest that non-spontaneous initiators may 315 
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heavily favour exploitation over exploration [19] until sufficient experience with a low-cost gait 316 

signals to the nervous system that the current action is suboptimal (See Methods, Model Details).  317 

One model that can capture this more complicated behaviour of the nervous system is a 318 

reinforcement learner that prioritizes the learning of a reference cost [43-45] that equals the cost 319 

at the predicted optimum step frequency (Fig 6B). This model continuously relearns the value of 320 

the reference cost and then shifts the costs associated with all frequencies by this value. The 321 

algorithm only recognizes a change to the shape of the cost landscape when it detects a cost 322 

saving with respect to this continuously updated reference cost. It then initiates optimization and 323 

updates the cost associated with the individual frequencies that it executes, thereby learning the 324 

shape of the new cost landscape. Prioritizing the learning of a reference cost, rather than 325 

constantly exploring new gaits, is perhaps a better general strategy for cost optimization in real-326 

world conditions. Energetic cost continuously varies as conditions change in the real world, but 327 

unlike our experiment, only some conditions may benefit from the adoption of a new gait and 328 

exploring gaits away from the optimal gait comes with an energetic penalty. The continuous 329 

updating of a reference cost allows the nervous system to detect when there are reliable costs 330 

savings to be gained relative to the predicted optimal gait. It also allows the nervous system to 331 

compare differences between the two gaits and understand which walking adjustments led to the 332 

lower cost [10,46]. This may allow the nervous system to learn the dimension along which 333 

exploration should proceed and quickly converge on the new optimal gait [9,10,47]. 334 

It is possible that high natural gait variability, as displayed by our spontaneous initiators, is in 335 

fact also triggering initiation through the updating of a reference cost because it provides 336 

sufficient experience with a low-cost gait. If treated as so, all subjects’ behaviour could be 337 
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explained by the reference cost model. However, deciphering an exact low-cost experience 338 

criterion that fits all subject’s behaviour, is difficult, and perhaps not possible, as it likely varies 339 

across subjects and is affected by additional factors such as the gradient of their cost landscape, 340 

their levels of sensory and motor noise, and their weighting of newly experienced costs.  341 

This reference cost learning algorithm captures many key behavioral features of our non-342 

spontaneously initiating subjects. First, it does not spontaneously initiate optimization (Fig 6D). 343 

Second, it only initiates after experience in the new cost landscape with a frequency that has a 344 

lower cost than that at the initially preferred frequency. Third, after initiation, the algorithm 345 

gradually converges on the new optimum (Fig 6F). Finally, much like our original model of 346 

spontaneous initiators, after convergence it can leverage prediction to rapidly return to the new 347 

optimum after a perturbation (Fig 6G) but must slowly unlearn this optimum if returned to the 348 

original cost landscape (Fig 6E).  349 

Overall, our computational models demonstrate that the nervous system may optimize for energy 350 

using algorithms consistent with a reinforcement learning framework—leveraging predictions of 351 

the optimal gait, and then refining this prediction with the cost of each new walking step. Our 352 

experiments and models allow us to describe three key features of energy optimization during 353 

gait. First, initiation of optimization appears to be preferentially triggered by experience with low 354 

costs gaits, consistent with a prioritization of the learning of a reference cost [43-45]. Second, 355 

during optimization the cost of each new walking step results in an updating of the expected cost 356 

landscape. And third, this expected cost landscape allows for rapid prediction, and slow 357 

unlearning, of energy optimal gaits.  358 
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DISCUSSION  359 

Here we used energy minimization in human walking to understand how the nervous system 360 

initiates and performs the optimization of its motor control strategies. We found that some 361 

people tend to explore, through naturally high gait variability, leading them to spontaneously 362 

initiate optimization. Others are more likely to exploit their current prediction of the optimal gait 363 

and require experience with lower cost gaits to initiate optimization. When optimization was 364 

initiated, people gradually adapted their gait, in a manner consistent with a local search strategy, 365 

to converge on the new optima. Given more time and experience, this slow optimization was 366 

replaced by a new and rapid prediction of the optimal gait. Our reinforcement learning models 367 

reproduce these behaviours, suggesting that the nervous system may use similar mechanisms to 368 

optimize gait for energy in walking, and perhaps optimize other movements for other cost 369 

functions.  370 

Principles of energetic optimality may also determine the nervous system’s balance between 371 

exploration and exploitation. Variability can aid with initiation by allowing the nervous system 372 

to locally sample a more expansive range of the cost landscape, clarify its estimate of the cost 373 

gradient, and identify the most promising dimensions along which to optimize [21,48,49]. This 374 

variability may simply be a consequence of noisy sensorimotor control that fortuitously benefits 375 

the exploration process, or it may reflect intentional motor exploration by the nervous system 376 

[21,48]. Recent work suggesting that humans actively reshape the structure of their motor output 377 

variability to elicit faster learning of reaching tasks, is evidence of the latter [48]. Learning rate 378 

also affects variability because new cost measurements are imperfect. The higher the learning 379 

rate, the greater the influence of the new and noisy cost measurements on the predicted optimal 380 
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movement, resulting in more volatile predictions of the optimal gait and therefore more variable 381 

steps. This can speed learning of new optimal strategies in new contexts, reducing the penalty 382 

due to the accumulated cost of suboptimal movements during learning. But, there is also a 383 

penalty to this high motor variability—once the new optimal strategy is learned, motor 384 

variability around this optimum means most movements are suboptimal. The optimal solution to 385 

this trade-off depends on how quickly the context is changing (Fig 7). It is better to learn quickly 386 

and suffer steady state variability about the new optimum when the context is rapidly changing. 387 

But, when the context changes infrequently, it is better to learn slowly and more effectively 388 

exploit the cost savings at the new optimum. Interestingly, the learning rate in our models, which 389 

we chose to match our experimental constraints, is optimal for a cost landscape that is changing 390 

approximately every 10-15 minutes, a rate of change not dissimilar from that applied in our 391 

experiment protocol. In humans, the nervous system likely has control over the learning rate and 392 

the amount of exploration, and may adjust both based on its confidence in the constancy of the 393 

energetic conditions. This suggests exploration, and potentially faster learning, could be 394 

promoted not through consistent experience in an energetic context, but rather by experimentally 395 

alternating energetic contexts. 396 

  397 
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 398 

Fig 7. Energetically optimal learning rates for varying frequency of cost landscape change. 399 
Measurement and execution noise were set at 2.0% and 1.5%, respectively.  400 

Identifying the dimension of an optimization problem may be the trigger for initiation. The 401 

coordination of walking is a task of dauntingly high dimension [17,50]. Various gait parameters, 402 

including walking speed, step frequency, and step width must be selected, and numerous 403 

combinations of muscle activities can be used to satisfy any one desired gait. When presented 404 

with new contexts, the nervous system must identify which parameters, if any, to change in order 405 

to lower cost. The difficultly of this task may partly explain why non-spontaneous adaptors do 406 

not initiate optimization when the exoskeletons are turned on and they are immediately shifted to 407 

a higher cost gait. Although it may be clear to the nervous system that costs are higher, it may 408 

remain unclear how it should change movement to lower the cost. This could also explain why in 409 

some past experiments, by our group [31] and others [27,51], people did not initiate optimization 410 

and discover new energy optimal coordination strategies. Experience with lower step 411 

frequencies, and therefore lower costs, may allow the nervous system to identify that this is the 412 

relevant dimension along which to optimize. This behavioural phenomenon is captured by the 413 

addition of a reference cost to our simple reinforcement learning algorithm, and has parallels in 414 

classic feedback control models as well as neurophysiological habituation [13,52,53]. Our 415 
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experiments have demonstrated how the nervous system rapidly solves a one-dimensional 416 

optimization problem—where we alter the energetic consequences of a single gait parameter and 417 

apply targeted experience along this dimension of gait. How the identified mechanisms extend to 418 

optimizing higher dimension movement problems, like those often encountered in real-world 419 

conditions, remains an open question for future work.  420 

Unveiling the mechanisms that underlie the real-time learning of optimal movements may 421 

indicate how this process can be accelerated. This has direct applications in the development of 422 

rehabilitation programs, the control of assistive robotic devices, and the design of sport training 423 

regimes. A stroke patient faced with a change to their body, a soldier adapting to the new 424 

environment created by an exoskeleton, and an athlete attempting to learn a novel task, all seek 425 

new optimal coordination strategies. Our findings indicate that eliciting exploration through high 426 

motor variability, as well as targeted experience along the relevant movement dimension could 427 

rapidly accelerate motor learning in these circumstances by cueing the nervous system to initiate 428 

optimization. Therapists and coaches may commonly be doing just this, based on years of 429 

accumulated knowledge about effective learning strategies. In this view, a more mechanistic 430 

understanding of the nervous system’s internal algorithms could aid therapists and coaches in 431 

setting a course for a patient or athlete to navigate through various possible movement strategies.  432 

  433 
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METHODS 434 

Subjects. Testing was performed on a total of 36 healthy adults (body mass: 63.9 ± 9.8 kg; 435 

height: 1.69 ± 0.10 cm; mean ± SD) with no known gait or cardiopulmonary impairments (Table 436 

S1). Simon Fraser University’s Office of Research Ethics approved the protocol, and participants 437 

gave their written, informed consent before experimentation.  438 

Initially, 27 subjects were randomly assigned to one of three experiments (9 subjects per 439 

experiments) in which their second experience period included either included either 440 

metronome-guided experience with discrete cost points on a new cost landscape (Fig 2D), 441 

metronome-guided experience with many costs along a new cost landscape (Fig 2E), or self-442 

guided experience many costs along a new cost landscape (Fig 2F). A preliminary analysis 443 

revealed that 5 of the 27 subjects (1 from the metronome-guided discrete experience experiment, 444 

1 from the metronome-guided broad experience experiment, and 3 from the self-guided broad 445 

experience experiment) appeared to gradually adapt their gait toward the optima during the first 446 

experience period, prior to second experience period (Fig 2C). These subjects, whom we refer to 447 

as ‘spontaneous initiators’, were therefore not included in the analysis for the second experience 448 

periods and were instead analyzed as a separate group. To be considered a spontaneous initiator 449 

subjects had to meet two criteria. First, during the final 3-minutes of the first experience period 450 

their average step frequency (final step frequency) was required to fall below 3 SD in steady 451 

state variability, determined from the final 3-minutes of the baseline period. For most subjects, 452 

this equates to a minimum decrease in step frequency of approximately 5%. Second, the decrease 453 

in step frequency could not be an immediate and sustained mechanical response to the 454 

exoskeleton turning on. The final step frequency had to be significantly lower than the step 455 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 25, 2018. ; https://doi.org/10.1101/503433doi: bioRxiv preprint 

https://doi.org/10.1101/503433


 25 

frequency measured in the 10th to 40th second after the exoskeleton turned on (one-tailed t-test, 456 

p>0.05). To rebalance experiments, an additional 2 subjects, both of whom were non-457 

spontaneous initiators, were added to the self-guided broad experience experiment.  458 

An analysis of data from the second experience periods indicated that the experience with either 459 

high and low step frequencies, and therefore costs, prior to the probe had a lasting effect on the 460 

subjects’ self-selected step frequency during the probe. To investigate the interaction between 461 

high and low cost experience, as well as the order of the experience, we wanted to compare the 462 

time course of adaptation during the first and final probes. To achieve the statistical power 463 

necessary to do so, we added an additional 7 subjects to the metronome-guided discrete 464 

experience experiment. For the added subjects the experience prior to the first or last probes were 465 

set to be either the highest (+10%) or lowest (-15%) step frequency, with all other step 466 

frequencies assigned in random order. One of the added subjects met the criteria for a 467 

spontaneous initiator and was therefore not included in this investigation between experience 468 

direction and time. In total for the analysis, 5 subjects experienced +10% and 4 experienced -469 

15% prior to the first probe. Prior to the last probe, 4 subjects experienced +10% and 5 470 

experienced -15%. While these subject numbers are low, to detect an across subject average 471 

difference in step frequency of at least 5%, given across subject average standard deviation in 472 

step frequency of 2.5%, we calculated that we required only 4 subjects per group to achieve a 473 

power of 0.8. In addition, we see clear trends in individual subject data (Fig S2).  474 

In total, 6 of the 36 tested subjects were identified as spontaneous initiators (body mass: 60.8 ± 475 

10.6 kg; height: 1.68 ± 0.11 cm; mean ± SD), while 14 were included in the analyses for the 476 

metronome-guided discrete experience experiment (body mass: 63.0 ± 10.7 kg; height: 1.69 ± 477 
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0.11 cm; mean ± SD), 8 for the metronome-guided broad experience experiment (body mass: 478 

67.7 ± 9.1 kg; height: 1.71 ± 0.09 cm; mean ± SD), and 8 for the self-guided broad experience 479 

experiment (body mass: 64.2 ± 8.6 kg; height: 1.67 ± 0.07 cm; mean ± SD). 480 

Detailed Experimental Protocol. Each subject completed one testing session, lasting three 481 

hours with no more than two and half hours of walking to reduce fatigue effects. All subjects 482 

experienced the penalize-high control function, which has previously been shown to shift 483 

energetic optima to low step frequencies [31] (Fig 1C-G). Subjects were given between 5-10 484 

minutes of rest in between each of the walking periods, including baseline, habituation, first 485 

experience, and one of the three assigned second experience periods (Fig 2A-F respectively, 486 

described in detail below).  487 

At the beginning of testing, we instrumented subjects with the exoskeletons and indirect 488 

calorimetry equipment (VMax Encore Metabolic Cart, VIASYS®). We then determined their 489 

resting energetic cost during a 6-minute quiet standing period. Following this, during the 490 

baseline period (Fig 2A), subjects were simply instructed to walk for 12-minutes.  491 

Next, subjects completed a habituation period where they were familiarized with walking at a 492 

range of step frequencies (Fig 2B). This trial was included to reduce the possibility that in future 493 

trials subjects could be unaware they are able to alter, or fearful to alter, their step frequency 494 

when walking on a treadmill at a constrained speed (Fig 2B). During this habituation, the 495 

controller remained off; therefore, subjects did not gain experience with the new energetic 496 

landscape. We explained to the subjects that for a given walking speed it is possible to walk in a 497 

variety of different ways, including with very long slow steps or very short fast steps. They were 498 

encouraged to explore these different ways of walking during the habituation period. They were 499 
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also informed that at times a metronome would play different steady state tempos, or slowly 500 

changing tempos, and that they should do their best to match their steps to the tempos. During 501 

the habituation period, three different steady state tempos were played for three minutes each. 502 

These tempos included +10%, -10%, and -15% of the initial preferred step frequency. The 503 

sinusoidally varying metronome tempo had a range of ±15% of the initial preferred step 504 

frequency and a period of 3 minutes.  505 

Prior to the first experience period, we explained to subjects that they would next walk for 6 506 

minutes with the exoskeleton turned off, at which point the exoskeleton would turn on and they 507 

would walk for a remaining 12 minutes (Fig 2C). They were given no other directives about how 508 

to walk and at no point during testing were subjects provided with any information about how 509 

the controller functioned, or how step frequency influenced the resistance applied to the limb.  510 

For the second experience period, subjects completed one of the three experiments: metronome-511 

guided experience with discrete cost points on a new cost landscape (Fig 2D), metronome-512 

guided experience with many costs along a new cost landscape (Fig 2E), or self-guided 513 

experience many costs along a new cost landscape (Fig 2F). All subjects were informed that they 514 

would be walking for 30 minutes and that the exoskeleton would be on for the first 24 minutes 515 

and off for the final 6 minutes. To gain insight into the progress of optimization under each 516 

experiment, 1-minute probes of subjects’ self-selected step frequency occurred at the 6th, 10th, 517 

and 14th minute, along with a final 6-minute probe at the 18th minute (Fig 2D-F). 518 

Those assigned to the metronome-guided discrete experience experiment were informed that at 519 

times the metronome would be turned on, during which they should match their steps to the 520 

steady-state tempo, and that when the metronome turned off, they no longer had to remain at that 521 
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tempo (Fig 2D). Besides these instructions, subjects were given no further directives about how 522 

to walk. The metronome was turned off at four different time points, each serving as a probe of 523 

subjects self-selected step frequency. Prior to each probe, different metronome tempos were 524 

played, including -15%, -10%, +5% and +10% of initial preferred step frequency. We chose 525 

these tempos such that they spanned the energetic landscape but did not include step frequencies 526 

explicitly at the expected optima or the preferred step frequency (approximately -5% and 0%, 527 

respectively). Order of the tempos was randomized. The exception to this was that for the 7 528 

subjects added to this experiment, either the first or last tempo was randomly assigned as either 529 

+10% or -15%, with the remaining 3 step frequencies assigned in random order. 530 

Those assigned to the metronome-guided broad experience experiment were given the same 531 

instructions as those in the metronome-guided discrete experience experiment, except that they 532 

were informed that the metronome tempo would change slowly over time (Fig 2E). A 533 

sinusoidally varying metronome tempo was played for 3 minutes, 4 separate times, which were 534 

once again separated by probes of self-selected step frequency. The sinusoidal tempo had a range 535 

of ±15% of the initial preferred step frequency, a period of 3 minutes, and began and therefore 536 

ended at 0% of the initial preferred step frequency. These subjects were therefore guided through 537 

the complete landscape but always returned to their preferred gait prior to a probe. 538 

Those assigned to the self-guided broad experience experiment were informed that at times the 539 

experimenter would verbally give them the command ‘explore’, at which point they should 540 

explore walking at a range of different step frequencies (Fig 2E). They were informed that they 541 

should continue to do so until given the command ‘settle’, at which point that should settle into a 542 

steady step frequency. They were given no directives about what their steady state step 543 
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frequency should be. Subjects were instructed to explore four separate times, each lasting three 544 

minutes and once again separated by probes of self-selected step frequency. When the command 545 

settle was given subjects could be at any self-selected step frequency, therefore the experience 546 

direction, at high or low cost, was not predetermined. 547 

Experimental Outcome Measures. Each subject’s initial preferred step frequency was 548 

calculated as the average step frequency during the final 3 minutes of the baseline period. 549 

Individual subject’s variability in step frequency, calculated as a coefficient of variation, was 550 

also assessed during this time period. Similarly, the average step frequency was calculated 551 

during the final 3 minutes of the first experience period. During this period, the spontaneous 552 

initiators were found to adapt toward the optima. To determine the average rate at which they did 553 

so, step frequency time series data from the 6th to the 18th minute for the subjects was grouped 554 

together and fit with a single term time-delayed exponential. Prior to fitting, data was down-555 

sampled to a step rate of 1.8Hz, so as not to overestimate data points and inflate calculated 556 

confidence intervals. We used one-tailed t-tests with a significance level of 0.05 to compare the 557 

step frequency, as well as variability in step frequency, of the spontaneous and non-spontaneous 558 

initiators (Fig 3C-D). We used one-tailed t-tests because we expected the spontaneous initiators 559 

to present with lower steady-state step frequencies and higher variability.  560 

During the second experience periods, 1-minute probes of subjects’ self-selected step frequency 561 

occurred at the 6th, 10th, and 14th minute, along with a final 6-minute probe at the 18th minute. 562 

When statistical comparisons were made between first and last probes following high and low 563 

experience, data from the 30th to the 60th second of each of the self-selected step frequency 564 

probes were used for analysis. We used t-tests with a significance level of 0.05 (Fig 4, Fig 5B 565 
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and Fig 5D). When investigating the rate at which subjects adapted their step frequency, step 566 

frequency time series data from the first 60 seconds of the probes from subjects of the same 567 

experiment were once again fit with a single term time-delayed exponential, using the same 568 

process steps as previously described. For plotting purposes, we averaged across subjects of the 569 

same experiment and calculated the across subject standard deviation at each time point.  570 

Because there was no effect of experience direction during the last probe, subjects from the high 571 

and low experience were grouped. The final preferred step frequency was calculated as the 572 

average step frequency during the 21st to 24th minute of the second experience period, just prior 573 

to the controller being turned off. The re-adaptation step frequency was calculated as the average 574 

step frequency during the final 3 minutes of the second experience period, when the controller 575 

was turned off. When investigating the rate at which subjects re-adapted their step frequency 576 

back to the initial preferred, step frequency time series data from the entire re-adaptation period 577 

were once again fit with a single term time-delayed exponential and the average and standard 578 

deviation profiles were calculated for plotting purposes. 579 

Model Details. The range of possible actions (ai, ai+1, … an) were set to be discrete integer step 580 

frequencies, ranging between -15% and +15%. The simulated energetic cost landscape (Q*), 581 

before the controller was turned on, was modelled as a quadratic function of the form: 582 

Q*off(ai) = 10 x (ai/100)2 + 1, 583 

having a normalized cost of 1 at the optimum and a curvature that well approximates our 584 

experimentally measured landscape.  After the controller was turned on, the simulated landscape 585 

was modelled as: 586 
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Q*on(ai) = Q*off(ai) + (ai/60 + ¼), 587 

where the cost added to Q*off(ai) well approximates the energetic effect of our controller, again 588 

creating a landscape similar in shape to that which we measure experimentally.  589 

The parameters that describe the behavior of the reinforcement learner include: the standard 590 

deviation in step frequency execution noise (ne), the standard deviation in energetic cost 591 

measurement noise (nm), and the weighting parameter, or learning rate (a). On any given step, 592 

the levels of measurement and execution noise are drawn from a Gaussian distribution with mean 593 

zero and standard deviation determined from the value of the parameter.  594 

We performed a sensitivity analysis to determine feasible parameter ranges that are consistent 595 

with experimentally measured rates of convergence to the optimum and variability in step 596 

frequency. Similar to the design of our experimental first experience period, we simulated a 597 

protocol that lasts 1440 steps (approximately 12 minutes) in which the landscape changed from 598 

Q*off to Q*on after 720 steps (approximately 6 minutes). Using our simple reinforcement leaning 599 

model that spontaneously initiates optimization, we varied the execution noise (between 1 and 600 

3% of the initial preferred step frequency), measurement noise (between 0.1 and 6% of the 601 

energetic cost at the initial preferred step frequency during natural walking), and learning rate 602 

(between 0.01 and 1). Model simulations were repeated 1000 times for each possible 603 

combination of parameter settings.  604 

We then determined the resulting rates of convergence to the optimum by averaging step 605 

frequency data across repeats and then fitting the final 720 steps with a single process 606 

exponential model. As expected, higher learning rates, which put greater weight on new 607 
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measurements as opposed to past measurements, lead to faster convergence to the optimum (Fig 608 

S3A). This rate of convergence is largely unaffected by measurement noise, and is only 609 

minimally affected by execution noise, where higher execution noise can slow convergence to 610 

the optimum. In our experiments, the convergence to the optimum typically occurred with a time 611 

constant of less than 100 steps. This experimental constraint leaves us with a wide range of 612 

possible learning rate parameter settings, from 0.5-1.0 for any simulated combination of 613 

measurement and execution noise. For the purposes of our simulations, we set the learning rate 614 

to be 0.5.  615 

Given our chosen learning rate, we next selected measurement and execution noise levels that 616 

generated variability in step frequency that well approximated that which we observed 617 

experimentally during steady state behavior (1.0-1.5%). For each simulation repeat, we 618 

calculated the standard deviation in step frequency during the first 720 steps. During this time, 619 

the learner is at the Q*off optimum and the landscape is unchanging, leading to steady state 620 

behavior. We then averaged this value across repeats to get an average measure of variability in 621 

steady state step frequency for each possible combination of measurement noise and execution 622 

noise. Once again, our experimental constraints left us with a wide range of possible parameter 623 

settings (Fig S3B). For the purposes of our simulations, we set the measurement noise to be 624 

2.0% and the execution noise to be 1.5%. Importantly, within the ranges deemed reasonable by 625 

our experimental constraints, the qualitative behaviours generated by our model are not 626 

particularly sensitive to the specific learning rate, measurement noise, and execution noise 627 

parameter settings we chose. 628 
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Our reference cost model only initiates optimization after sufficient experience with a lower cost 629 

gait. It is unclear from our experiments exactly what constitutes sufficient experience with a low-630 

cost gait. For example, it may require a substantially lower cost, a sufficient number of steps at a 631 

lower cost, or some combination of these criteria.  For the purposes of modelling, we assume that 632 

the criteria have been met during the experience with low cost prior to the first probe, in keeping 633 

with our experimental findings. 634 

Principles of energetic optimality may also determine the choice of learning rate. It is possible to 635 

solve for a learning rate that minimizes energy expenditure; however, the optimal learning rate is 636 

dependent on how frequently the energetic landscape is changing. To demonstrate this, we 637 

simulated protocols where the landscape changes from Q*off to Q*on with a period varying 638 

between 1 minute and 12 hours, at a duty cycle of 50%. We simulated 24 hours of walking and 639 

evaluated learning rates ranging between (between 0.01 and 1). Model simulations were repeated 640 

100 times for each possible combination of parameter settings. We then determined the average 641 

energetic cost across all steps (before measurement noise was applied), and then averaged across 642 

repeats to get an average energetic cost for each combination of period and learning rate. Next, 643 

we solved for the learning rate that minimized energetic cost for each period (Fig 7).  644 

Alternative Models. Although our reinforcement learning model is quite simple in form, it is 645 

reasonable to ask if even simpler algorithms could capture our experimental behaviour. We first 646 

considered models that lacked two key features of our final model—the storing of the entire 647 

value function and the need to update a reference cost prior to initiation of optimization. 648 

A simplified model that forgoes the storing of the entire value function can reproduce the key 649 

features of our experimental data. This simplified no-value function model only stores the 650 
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optimal gait and its associated cost, rather than the costs at all experienced gaits (i.e. the value 651 

function). Yet, it can initiate optimization after experience with a lower cost, converge on a new 652 

energetic optimum using a local search, and learn to rapidly predict this optimum when 653 

perturbed away. Despite this, we prefer the slightly more complex value-function model because 654 

we suspect it will better generalize to learning in the real world. We suspect this for two reasons. 655 

First, storing information about non-optimal gaits seems valuable given that at times one may be 656 

constrained from using the globally optimal gait. For example, the no-value function model 657 

would need to relearn the optimal walking speed when constrained by a slow crowd that prevents 658 

walking at the globally optimal speed. In contrast, the value function model, which has memory 659 

of past non-optimal walking experience, could rapidly predict the new cost optimal speed in the 660 

face of this constraint [54]. Ignoring this potentially useful past experience seems unlikely on the 661 

part of the nervous system, given that there will be times when it is energetically beneficial to 662 

recall it. Second, the simpler model avoids a value function only in the case where the learning 663 

task has one dimension, such as in our experimental paradigm. If instead, for example, the 664 

nervous system had to learn the optimal speed and step frequency it would need to store the 665 

optimal step frequency, and its cost, at each speed. This is a one-dimensional value function for a 666 

two-dimensional optimization problem. As the nervous system can’t know a priori the 667 

dimensionality of the optimization problem, it may benefit from learning a high dimensional 668 

value function and then constraining the optimization problem depending on the constraints of 669 

the task.  670 

A simplified model that forgoes the updating of a reference cost prior to initiation of 671 

optimization cannot reproduce key features of our experimental data. In our model of non-672 

spontaneous initiators, prior to initiation of optimization, the learner only updates a reference 673 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 25, 2018. ; https://doi.org/10.1101/503433doi: bioRxiv preprint 

https://doi.org/10.1101/503433


 35 

cost (Fig 1B). Without this feature, direct and gradual convergence to the new energetic 674 

optimum after forced experience with a low cost is not produced. Instead, because the reference 675 

cost has not been updated and therefore is expected to be that experienced under the controller 676 

off condition (Q*off), this model will first rapidly shoot back to the old cost optimum after 677 

experience with a low cost. Only after updating this cost estimate, to its now higher cost value 678 

under Q*on, will it then gradually adapt to the new optimum. This updating of a reference cost 679 

prior to initiating optimization is not only necessary to reproduce our experimental findings, but 680 

also has many parallels in neurophysiological habituation [13,52,53].  681 

In all our models, we chose to discretize the possible actions, or step frequencies. This enforces 682 

local learning, where actions at distinct step frequencies have no effect on the expected value of 683 

others. It is entirely possible, if not likely, that the nervous system does not discretize its action 684 

space in this way but may rather store a function. In other words, the value function may not be a 685 

lookup table, as we have modeled it, but rather some representative equation, such as a 686 

polynomial. However, it still seems likely that the nervous system updates its value function in 687 

some localized way, as global function approximations are known to produce highly variable 688 

behavior away from the local area of learning [55]. 689 
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SUPPORTING INFORMATION CAPTIONS 832 

Table S1. Subject numbers per experiment. We initially tested 9 subjects in each of the three 833 
Second Experience testing periods. To account for a high number of spontaneous initiators in the 834 
self-guided broad experience condition we added an additional 2 subjects to this group to 835 
rebalance our conditions. To achieve the statistical power necessary to investigate the interaction 836 
between high and low cost experience, as well as the order of the experience, we added an 837 
additional 7 subjects to the metronome-guided discrete experience experiment, one of which we 838 
found to be a non-spontaneous initiator. In total, we tested 36 subjects, 6 of which were 839 
classified as spontaneous initiators and 30 which were non-spontaneous initiators. 840 

Second experience 
Initial subjects Added to  

rebalance 
Added to 

explore high low  Total subjects 

Spont. Non-
Spont. Spont. Non-

Spont. Spont. Non-
Spont. Spont. Non-

Spont. All 

Metronome-guided discreet 1 8 0 0 1 6 2 14 16 
Metronome-guided broad 1 8 0 0 0 0 1 8 9 

Self-guided broad 3 6 0 2 0 0 3 8 11 
Total 5 22 0 2 1 6 6 30 36 

 841 

 842 

Fig S1. Discrimination plot of spontaneous and non-spontaneous initiators.  We defined 843 
spontaneous initiators as having a first experience final step frequency consistent with the 844 
expected optima (-3SD from the initial preferred step frequency, or approximately -5%, x-axis), 845 
as well as displaying a significant change in step frequency from that displayed immediately 846 
after the exoskeleton was turned on (significantly different from 0%, y label). Although the 847 
above statistics, and not simple thresholds, were used for each criteria, the dashed lines illustrate 848 
roughly how each criteria divided the data.  849 
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 850 

Fig S2. Individual subject effect of experience direction during first and last step frequency 851 
probe. Step frequency time-series data for the first (A) and last (B) probes following experience 852 
either high (blue) or low (red) step frequencies for individual subjects. The horizontal bars 853 
indicate when the controller is turned on (green fill) and off (white fill), and the yellow lines 854 
indicate the prescribed metronome frequencies.  855 

 856 

Fig S3. Sensitivity analysis of model parameters. (A) Effect of varying the learning rate 857 
parameter on the rate of converge to the energetic optimum for different measurement and 858 
execution noise levels. The shaded region represents a reasonable convergence rate given that 859 
observed experimentally (maximum 100 steps), while the asterisk and dashed vertical line 860 
represents the chosen learning rate parameter value used in simulation (0.5). (B) Effect of 861 
varying measurement and execution noise on variability in steady state step frequency. Learning 862 
rate was kept constant at 0.5. Each line and the associated italic number represents a constant 863 
value of steady state step frequency. The shaded region represents reasonable steady state step 864 
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frequencies given that observed experimentally (1.0%-1.5%). The asterisk represents the chosen 865 
measurement and execution noise parameter values used in simulation (2.0% and 1.5%, 866 
respectively).  867 
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