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Abstract

Nonlinearity in the genotype-phenotype relationship can take the form
of dominance, epistasis, or gene-environment interaction. The importance
of nonlinearity, especially epistasis, in real complex traits is controversial.
Network models in systems biology are typically highly nonlinear, yet the
predictive power of linear quantitative genetic models is rarely improved by
addition of nonlinear terms, and association studies detect few strong gene-
gene interactions. We find that complex traits satisfying certain conditions
can be well represented by a linear genetic model on an appropriate scale
despite underlying biological complexity. Recent mathematical results in
separability theory determine these conditions, which correspond to three
biological criteria (Directional Consistency, Environmental Compensability,
and Pathway Redundancy) together making up an Epistatic Boundary be-
tween systems suitable and unsuitable for linear modeling. For nonlinear
traits, we introduce a classification of types of nonlinearity from a systems
perspective, and use this to illustrate how upstream controlling genes, poten-
tially more important to explaining biological function, can be intrinsically
harder to detect by GWAS than their downstream controlled counterparts.

Keywords: epistasis, genotype-phenotype map, population genetics,
quantitative genetics

1. Introduction

The mathematical theory of separability, with roots in the work of Debreu
(1960) and Luce and Tukey (1964) in the social sciences, can be applied to
the problem of nonlinearity in the genotype-phenotype relationship.
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The simple linear model that assigns an additive effect to each allele, e.g.
‘Replacing allele a with allele A always increases the specimen’s expected
height by 0.3 cm,’ is understood to be an approximation. We replace the
assumptions of this model with the less restrictive, more biologically plausi-
ble assumption of the directional consistency of substitution, e.g. ‘Replacing
allele a with allele A always increases the specimen’s expected height.’ We
find that traits meeting this and some additional assumptions can nonethe-
less be treated by linear model, when the scale on which the trait is measured
is appropriately chosen. For such traits, which we call separable, apparent
epistasis is an artefact of the choice of scale; these contrast with traits ex-
hibiting essential epistasis, for which nonlinearity persists regardless of choice
of scale, and making assumptions of linearity, e.g. in a GWAS context, can
lead to directionally misleading results.

In translating the assumptions of separability theory to the genetic con-
text, we address specific phenomena of genetics, namely diploidy, epistasis
among loci, and the distinction between discrete genetic and possibly con-
tinuous environmental contributions.

1.1. The Epistasis Debate

It is a commonplace that the relationship between genotype and pheno-
type is complex and nonlinear. Models where the value of a trait is built
up from additive contributions from each gene are present in every are of
quantitative, statistical, and evolutionary genetic theory, and are often ef-
fective. Are such models merely convenient approximations, always wrong
but sometimes useful? We find that there are biologically plausible circum-
stances under which linear modeling is appropriate, so long as the trait is
expressed on an appropriate natural scale. A trait that satisfies a specified
set of conditions will have this property; conversely, if a trait cannot be effec-
tively represented by a linear model in our sense, that is, it exhibits essential
epistasis, it must violate one of these conditions. In this way we hope to ad-
dress the debate about the relative importance of epistasis in modelling the
genotype-phenotype relationship, by classifying traits into two groups, lin-
early separable and non-separable, divided by the conditions of the Epistasis
Boundary.

This debate touches on a fundamental question in genetics: can the effects
of genes be understood separately, or must we consider each gene within the
full complexity of its overall general genetic and environmental context? The

2

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2018. ; https://doi.org/10.1101/503466doi: bioRxiv preprint 

https://doi.org/10.1101/503466
http://creativecommons.org/licenses/by-nc-nd/4.0/


controversy can be traced to the Haldane (1964) defense of “Beanbag Genet-
ics,” the classical quantitative genetic models with simplifying assumptions
including additivity of genetic effects, against Mayr (1963). Haldane advo-
cated tractable idealized models, and analysis of deviations from idealized
assumptions, against Mayr’s insistence on biological realism and complex
models. Recent supporters of the linear approximation (e.g. Hill et al., 2008;
Mki-Tanila and Hill, 2014), point to the empirical effectiveness of additive
models in natural/evolutionary and artificial/agricultural selection and pre-
diction, the limited empirical evidence for strong interaction effects, and the
high fraction of variance captured by additive terms within a regression. Ad-
vocates of an important role for epistatic genetic variance (e.g. Zuk et al.,
2012), argue both from natural complexity of biological mechanisms and non-
linearities produced by constructed system biology models. The large body of
methods for detecting statistical epistasis in human populations (Wei et al.,
2014), both as individual gene-gene interactions and globally, produces few
positive results compared with model organisms (Huang et al., 2012; Mackay,
2014).

Contemporary reviews addressing the controversy (Cordell, 2002; Phillips,
2008; de Visser et al., 2011) emphasize the variety of concepts described
by term epistasis, starting with the classical difference between biological
epistasis (Bateson et al., 1905), the modification of the effect of an allele by
an allele at another locus, and statistical epistasis (Fisher, 1918), defined in
terms of residuals after subtracting effects explained by linear model.

2. General Nonlinearity and the Combinatorial Approach

Epistasis is one form of nonlinearity in the genotype-phenotype relation-
ship; the others are dominance and gene-environment interaction. Our ap-
proach is directly applicable to dominance, and more easily demonstrated in
that simpler context. More surprisingly, we will find that the general model
incorporating environmental effects with epistasis is more tractable than the
epistasis-only model, whether or not dominance is considered.

The general genotype-phenotype relationship

Phenotype = f (Genotype, Environment)

can be specialized by the assumption of no Gene-Environment interaction,
or the additive separability of contributions from genotype and environment,

Phenotype = fG (Genotype) + fE (Environment)
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Further, the assumption of no epistasis implies additive separability over loci:

Phenotype =
∑

locus l

fGl ((Genotype)l) + fE (Environment) (1)

The assumption of no dominance deviation is equivalent to additive sep-
arability of the two diploid alleles within the same locus. Diploid symmetry
implies that the functions mapping the two alleles at the same locus to their
real-valued contributions are the same:

fGl ((Genotype)l) = fAl (Allele1l) + fAl (Allele2l)

Such additive separability depends on the scale of measurement of the trait. If
we observe a trait T without epistasis or dominance, measuring on a different
scale, say lnT or T 3, would violate additivity for any nontrivial choice of T ,
producing a biologically equivalent trait with epistasis or dominance. For a
general scale transformation S, we cannot have both 1 and

S (Phenotype) =
∑

locus l

S (fGl ((Genotype)l))

+ S (fE (Environment))

Thus some forms of nonlinearity are a mathematical artefact of the choice
of scale, as opposed to an inherent biological property. Ideally, the question
of whether epistasis or dominance exists as a biological phenomenon should
be considered by a method invariant to monotonic transformation.

2.1. Natural Scale

This perspective leads us to consider ordinal, rather than quantitative,
traits. By specifying traits as an ordering relation or ranking over genotypes,
we can ask questions about traits without reference to the scale on which they
are measured. In particular, can we choose a natural scale on which the trait
is additive, that is, on which dominance and epistasis do not exist? Under
what assumptions can such a scale be chosen, exactly or approximately?

Here we have formulated the natural scale problem in terms of biologi-
cal epistasis, or nonlinearity within the genotype-phenotype relationship. In
??, we illustrate statistical epistasis from the population perspective, which
manifests as a nonlinearity in the correlation function between relatives as
a function of fraction of genome shared, under several models of genome
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sharing. We derive several generative models of gene-gene interaction that
have this kind of nonlinearity as a signature. In statistical or population con-
text, epistasis manifests as nonlinearity in the relationship between fraction
of genome shared and trait correlation; in the biological or individual con-
text, as nonlinearity in the genotype-phenotype relationship. In both cases,
a transformation to the natural scale, if such a transformation is possible,
eliminates epistasis. We will call such epistasis removable or non-essential,
emphasizing the distinction between nonlinearity that is an artifact of the
way we measure the trait, and the essential epistasis which is a biological
phenomenon.

2.2. The Genotype Ordering Problem

Our method is based on the ordering of genotypes according to their
representative phenotypic values. Such a ranking is not always possible to
express unambiguously. A complete genotype-phenotype map incorporating
all environmental inputs is deterministic, and each combination of genotype
and environmental inputs corresponds to a single, and therefore rankable,
phenotype. Likewise, we may treat a disease risk associated with a geno-
type, a single number, as a latent phenotype, and rank genotypes by disease
risk. The problem arises with a classical quantitative trait like height, in
which a genotype maps to a mean with a standard deviation associated with
environmental variability. The straightforward solution would be to use the
genotypic value defined as the average of the phenotype values for a given
genotype, taken over potential realizations of the trait under environmental
variability. However, this approach is problematic when we are consider-
ing nonlinear transformations of the measurement scale of the phenotype.
There is no guarantee that order of genotypic values is preserved under such
transformations. Table 1 illustrates this effect. We observe four phenotype
values for each genotype; or, alternatively, the phenotype distribution given
each genotype is discrete and consists of four equiprobable values. Three
genotypes are ranked AA � AB � BB based on average trait value before
transformation (upper table). The ordering is reversed to BB � AB � AA
by logarithmic transformation (lower table).

A sufficient condition for the ranking to be consistent is for the environ-
mental variability to be homoscedastic, or additively independent. That is,
on some scale, not necessarily the scale on which the trait is additive, the
phenotype P can be decomposed into P = G + E, where G is the genotypic
value and E is the environmental contribution, a random variable with a
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Phenotype Values Average Rank
AA 80 90 100 132 100.5 1
AB 80 100 100 120 100.0 2
BB 94 100 100 104 99.5 3

Log Phenotype Values Average Rank
AA 4.382 4.500 4.605 4.883 4.592 3
AB 4.382 4.605 4.605 4.787 4.595 2
BB 4.543 4.605 4.605 4.644 4.600 1

Table 1: Counterexample to rank consistency of genotypic values under monotonic trans-
formation.

distribution that does not depend on G. Without this condition, genotypes
cannot generally be ranked in a consistent scale-invariant way using average
phenotypic value.

If, contrary to convention, we define genotypic value as the median, rather
than mean, phenotypic value, we will not encounter this problem for continu-
ous traits. The median would not be appropriate for discrete traits encoded
as continuous variables, such as diseases with binary (0 or 1) status. For
discrete traits, a genotypic value ranking can be associated with a risk or
hazard rate, parameters which, though subject to nonlinear transformation
with respect to e.g. time scale, maintain a consistent ranking.

3. Combinatorial Methods: Dominance in Small Diploid Systems

The choice of a natural scale is an assignment of real trait values to each
genotype that maintains a given ordering of genotypes according to their
representative phenotype values. Consider a single diploid locus with alleles
A,B,C,D. The system is additive if the phenotypic value of genotype AB
can be written as the sum of two allelic effects, e.g. TAB = A + B. Several
implications of additivity have a biological interpretation but are invariant
to a monotonic transformation of the trait’s scale.

1. No overdominance (no cases such as AA ≺ BB ≺ AB)

2. No complete dominance (no AA ≺ AB ≈ BB)

3. Directional consistency of substitution (CA ≺ CB implies DA ≺ DB)

Each of these features is implied by additivity, and therefore necessary
for the trait to be additive on some scale, but they are not sufficient. A
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A B C D E

A 1 2 3 5 8
B 2 4 5 7 10
C 3 5 6 8 11
D 5 7 8 9 12
E 8 10 11 12 13

Table 2: Trait with directional consistency of substitution, which provably cannot be
transformed to additivity.

transformation to additivity is not always possible; consider trait Tij for five
alleles with ranking given by Table 2, which satisfies all three conditions.
Suppose the trait was linearizable; then A+D = B+C and C +D = A+E;
adding the two equations and subtracting A + C, we obtain 2D = B + E
and therefore f (9) = f (10). We cannot find an additive solution with an
increasing function f, though this particular contradiction does not prevent
us from finding a non-decreasing solution, with f (t) increasing over t < 9
and t >10 and constant for 9 ≤ t ≤ 10.

The ordering constraint on the genotypes of a single locus system im-
posed by non-overdominance or directional consistency of substitutionforms
a directed acyclic graph (DAG). Any complete traversal of this DAG is an
ordering of the nodes (genotypes) consistent with the ordering constraint,
and therefore a trait architecture. For example,

AA ≺ AD ≺ AC ≺ AB ≺ BB ≺
BC ≺ BD ≺ CC ≺ CD ≺ DD

is an ordering that satisfies non-overdominance, but not directional con-
sistency of substitution (e.g. AC ≺ AB but BB ≺ BC). The methods of
Sverdlov and Thompson (in press) explicitly find transformations to the nat-
ural scale for separable or approximately separable traits. We applied these
to all possible orderings for single locus systems satisfying the three criteria
for up to 6 alleles. For systems up to 4 alleles all but two possible order ar-
chitectures are solvable, that is, have a natural scale that respects the strict
inequalities of the ordering constraints. We tabulated results for higher num-
bers of alleles as Table 3; the fraction of possible architectures that have an
additive solution falls rapidly with number of alleles.
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n Total Architectures Solvable Architectures
1 1 1 (100%)
2 1 1 (100%)
3 2 2 (100%)
4 12 10 (83%)
5 286 114 (39%)
6 33592 2608 (7%)

Table 3: Solvability of Dominance Systems for n = 1 . . . 6.

n Possible orders (2n!) Up to symmetry
1 2 1
2 24 3
3 40320 840
4 2.09× 1013 5.45× 1010

5 2.63× 1035 6.85× 1031

6 1.27× 1089 2.75× 1084

7 3.86× 10215 5.98× 10209

Table 4: Counts of general n× n epistatic order combinations.

4. Discrete Separability Theory for Dominance and Epistasis

Separability, or additive utility, theory, concerns the conditions under
which a weak order over tuples can be expressed as the order of sums of real-
valued functions of the components of the tuples. The key early result in
separability theory are due to Debreu (1960), in the context of a topological
method with continuous variables applied to economic utility theory, and
Luce and Tukey (1964) applied to measurement theory. Modern research
efforts on the subject include those of Wakker (1989) and Gonzales (1996).

Our first interest is in additivity over finite, discrete sets. Theorems 1 and
2 (see Appendix A) follow Fishburn (1970), in the utility theory context,
and we adapt the terminology to the genetic setting. An analogous but
broader result, Theorem 4.1 in Fishburn (1970) has three forms (A, B, and
C), which apply to different equivalence relations within the partial order
(equality, equivalence, and indifference). The proof of this result can be
based on, equivalently, the Theorem of the Alternative, Farkas’ Lemma, or
the Separating Hyperplane Theorem.

Translating the notation to our setting, consider genotypes as multisets
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of alleles. This covers all cases of interest: single locus diploid as in the
dominance model, and haploid or diploid multi-locus epistasis model. Each
locus i = 1...L has a disjoint set of alleles Vi. A diploid genotype over L
loci contains 2L alleles, two from each Vi, possibly the same allele repeated
twice. The genotypic value function is given by a ranking over all realizable
genotypes, without ties. The additivity question takes the form: under what
circumstances can we assign real values to the alleles via a map f(), so that
for all genotypes X and Y,X � Y iff

∑
x∈X f (x) >

∑
y∈Y f (y). Applying

Theorem 1, a linear solution f() exists if and only if there does not exist a
paired list of genotypes A1 ...An,B1 ...Bn such that

1. the multiset unions of the two lists are the same

2. all Ai < Bi and at least one Ai � Bi

We can state the principle in several different ways.

1. A trait possesses essential, non-removable epistasis if and only if, there
is a finite population of individuals for which, by moving alleles between
individuals without adding or removing any, the trait values of some
individuals can be increased with none decreased.

2. In the non-epistatic case, if two populations have identical total gene
content, one cannot dominate the other.

3. For an additive trait, reshuffling genotypes among individuals cannot
increase the average trait value in a population.

4. For an additive trait, any population is Pareto optimal with respect to
exchange of genes.

5. Continuous Separability Theory with Epistasis and Environ-
mental Effects

A general genotype-phenotype relationship has the form

X = f
(
e1, e2, . . . , eNe , g1, g2, . . . , gNg

)
where X is a quantitative trait (e.g. plant weight), the ei are real valued envi-
ronmental inputs (e.g. amounts of nutrients) and and gi encode the genotype.
Theorems 3 and 4 (see Materials and Methods) describe the conditions un-
der which a function of both real and discrete parameters is separable, i.e.
transformable to the form S (X) =

∑Ne

i=1 Ei(ei) +
∑Ng

i=1 Gi(gi). We translate
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these conditions into three principles interpretable in the context of our ge-
netic and environmental variables. For expository purposes we will neglect
mathematical detail and use a concrete example, referring to environmen-
tal inputs as nutrients, and to the trait as growth. The three principles
are: Directional Consistency, Environmental Compensability, and Pathway
Redundancy. Together these make up an Epistatic Boundary between sepa-
rable traits, suitable to linear modeling, and non-separable traits, for which
epistasis is present regardless of scale.

Under Directional Consistency, if a gene or nutrient is pro-growth, it’s
always pro-growth in other environmental conditions and under any other
genetic background. We consider directional consistency for substitutions of
one gene or one environmental input at a time; that is, we change the value
of one gi or ei. We do not require that a group substitution (e.g. turn off
gene A and turn on gene B at the same time) have directionally consistent
effect, though this more stringent condition is implied by separability.

Environmental Compensability is the ability to select a nutrient level
that achieves any phenotype that is achievable through some other gene-
environment combination. For example, if we remove a gene that contributes
to growth, we can make up for that deficiency with additional nutrient. This
is biologically plausible under midrange conditions of a complex system, but
not in extreme conditions where a set of genetic substitutions changes the
function of a pathway qualitatively rather than quantitatively.

Pathway Redundancy means we can achieve a trait value by multiple
environmental means, or that environmental compensability applies to sev-
eral environmental inputs. Three substitutable nutrient-type variables are
sufficient; if there are only two, there are additional technical requirements
about the tradeoff relationship between the two, and with only one the the-
orem provides no guarantees about separability.

Together, Environmental Compensability and Pathway Redundancy are
the features of complex systems which are robust and redundant, and can
smoothly make up for one input or capability by using up another resource.
All three principles characterize maximization traits (e.g. speed, strength),
traits for which it would be evolutionarily preferable to have even more if
it didn’t involve tradeoffs of resources needed for other useful objectives, as
opposed to traits with saturation or moderate-optimum properties.

The three principles (plus technical conditions) are sufficient for separa-
bility. Conversely, if the system is not separable, and there is non-removable
epistasis that exists regardless of the scale, at least one of the three princi-
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ples must be violated. A violation of directional consistency implies a logical
switch, where a gene that is pro-growth in one set of circumstances becomes
anti-growth in others. A violation of environmental compensability would
occur if a genetic configuration leads to a trait outside the typical range of
variability. An archetypal violation of pathway redundancy would be a bot-
tleneck effect, where one input becomes a limiting reagent, and the system
becomes highly sensitive to that input and indifferent to others. The hypoth-
esis that individual genetic effects strong enough change the structure of the
overall system will produce observable epistasis, associated with Crow (1990),
corresponds to this kind of large scale change changing the critical path of
the system. Analogously, the decanalization hypothesis (Gibson, 2009) holds
that many genotype-environment combinations lead to normal phenotypes
as biological systems stabilize a range of inputs, whereas disease phenotypes
are attained either by extreme inputs or by breaking the system’s capability
to stabilize, e.g by knocking out a hypothetical robustness gene.

6. Violations of Epistatic Boundary Principles and the Robustness
Gene

Consider general ordinal traits, unconstrained by the epistatic boundary
principles. The simplest such case is 2×2 tables, assigning rank values to the
2-locus, haploid system {A, a}×{B, b}. There are 4! = 24 possible orderings
of the 4 cells of the 2 × 2 table. Without loss of generality, within-locus
allelic types can be assigned to make ab the lowest ranked value, leaving
3! = 6 orderings. Likewise the labeling of A and B can ensure Ab ≺ aB.
Only 3!/2 = 3 distinct rankings remain. For 2 loci, this problem has a de-
composition into 3 cases; but with even 3 loci, the number of cases increase
to 840. Table 4 illustrates this phenomenon. For a system with n (biallelic
haploid) loci, there are 2n genotypes, and therefore 2n! possible orders. Elim-
inating patterns equivalent up to symmetry, within-locus allelic types can be
assigned to make ab . . . the lowest ranked value, and the labeling of A,B, . . .
chosen to ensure Ab · · · ≺ aB . . . . This reduces this count of distinct patterns
by a factor of 2nn!.

Table 5 illustrates the 3 patterns within the 2 locus system, named after
the appearance of their orderings on a 2-by-2 table:

1. Pattern Z, directional consistency: ab ≺ Ab ≺ aB ≺ AB

2. Pattern Π, one-way inversion: ab ≺ Ab ≺ AB ≺ aB
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3. Pattern X, two-way inversion: ab ≺ AB ≺ Ab ≺ aB

Pattern Z is the previously considered directionally consistent form. a ≺
A and b ≺ B, regardless of the state of the other gene. In Pattern X,
switching either gene affects the other. The asymmetric character of pattern
Π is the biologically interesting case, where one gene appears to control the
action of another; this corresponds to the “robustness gene” hypothesis. One
of the genes, A, can switch the direction of its estimated effect in the GWAS
context, depending on the population frequency of B.

Consider a robustness gene R controlling a downstream client gene C.
When the robustness gene is in the active state, the phenotype range is
narrow, f (Rc) = 99 and f (RC) = 101; in the passive state, the phenotype
range is wide, f (rc) = 80 and f (rC) = 120. Thus, the ordering is rc ≺
Rc ≺ RC ≺ rC and the pattern is Π. Conditional on either R or r, c ≺ C;
but r ≺ R|c and R ≺ r|C.

Note that even though biologically we would say R controls C, the direc-
tion of effect of R depends on C, not the other way around. In the GWAS
setting, the effect of the c→ C substitution is always positive. The effect of
the r → R substitution changes sign depending on the population frequency
of C. Thus, even though the R gene can be interpreted as more important,
the C gene can be easier to detect by GWAS, and easier to replicate across
different populations.

7. Discussion

Our method offers an explanation for the ‘unreasonable effectiveness’ of
linear genetic models when the underlying biology is nonlinear, but satisfies
our less binding conditions such as directional consistency.

7.1. Natural Scale

We introduced the concept of the natural scale, an exact or approxi-
mate tranformation of the quantitative phenotype on which Multiple theories
within quantitative genetics are formulated with respect to additive models,
and thus apply to the natural scale. The natural scale is the scale on which
evolution operates in the sense of Fisher’s Fundamental Theorem of Natural
Selection and the Breeder’s Equation. In the applied field of Genomic Se-
lection, breeding value prediction and phenotype prediction methods work
the same way under an exactly additive model, and differ when dominance
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Pattern Z:  One Way Inversion

A>a unconditionally B>b unconditionally

a A a A a A a A

b 1 2 4 2 4 3 3 4

B 3 4 3 1 2 1 1 2

b 1 3 3 1 2 4 2 1

B 2 4 4 2 1 3 4 3

Pattern Π: One Way Inversion

A>a if B; a>A if b B>b unconditionally

b 1 2 2 3 4 3 3 4

B 4 3 1 4 1 2 2 1

b 1 3 3 2 2 1 4 1

B 2 4 4 1 3 4 3 2

Pattern X: Two Way Inversion

A>a if B; a>A if b B>b if b; b>B if a

b 1 3 2 4 2 3 3 2

B 4 2 3 1 4 1 1 4

b 1 4 4 2 3 1 4 1

B 3 2 1 3 2 4 2 3

Table 5: General 2 × 2 epistatic order combinations. 3 × 8 = 24 patterns reduce to 3
canonical patterns after fixing ab as minimum and Ab ≺ Ba.

is present. In the GWAS context, additivity has the implication that ef-
fects attributed to alleles do not differ due to allele frequencies; thus effects
measured on an arbitrary scale should in principle vary from population to
population, but not effects measured on the natural scale. Under our con-
ditions, the same natural scale applies to environmental and genetic effects;
with additional assumptions about many small independent effects, the cen-
tral limit theorem implies normality of either the genetic or environmental
contribution to the trait, on the same natural scale. Such a derivation of nor-
mality from theoretical conditions contrasts with methods such as Fusi et al.
(2014), where a transformation to normality is used to pre-process traits for
statistical analysis.

7.2. Epistasis Boundary

The Epistasis Boundary framework offers a conciliatory position in the
debate about the importance of epistasis: epistasis can be neglected in favor
of linear models for ‘well-behaved’ traits inside the boundary, and becomes
relevant in more complex situations where the boundary’s constraints are
violated. Figure 1 summarizes the decision criteria we have identified.
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Figure 1: Decision Flowchart for Separability

We can ensure that a trait is separable by meeting the combinatorial
criteria identified for single locus systems, the population criteria for multi-
ple locus systems, or our three principles for general systems with multiple
loci and environmental contributions (Directional Consistency, Environmen-
tal Compensability, Pathway Redundancy). A separable trait can be repre-
sented by a linear model on an appropriately chosen scale. Violations of these
criteria imply that a trait has essential epistasis that cannot be removed by
a scale transformation. Such traits may are not suitable for linear modelling,
and may exhibit phenomena such as the GWAS inversion we describe for the
robustness gene, if linear models are inappropriately applied.
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Appendix A. Definitions and Theorems

Appendix A.1. Definitions

Following Fishburn (1970) and Fishburn (1992), let % be a binary pref-
erence relation on a family S of subsets of a nonempty set X. Define the
relations A � B if A % B and not B % A; A ∼ B if A % B and B % A. The
relation % is transitive if for any A,B,C ∈ S, A % B and B % C together
imply A % C. It is complete if for any A,B ∈ S: A % B or B % A. It is a
weak order if it is transitive and complete.

Appendix A.2. Discrete Model

The pair (S,%) satisfies model 1 if every A is finite there is a u : X → R
such that for all A,B ∈ S,

A % B ⇐⇒
∑
x∈A

u (x) ≥
∑
x∈B

u (x)

Let A′ be the indicator function of A ⊆ X: A′ (x) = 1 if x ∈ A, A′ (x) = 0
otherwise. (S,%) satisfies finite cancellation if it is never true that there
is a positive integer m and A1, . . . Am, B1, . . . Bm in S such that

1.
∑m

l=0 A
′
l (x) =

∑m
l=0 B

′
l (x) for all x ∈ X

2. Ai % Bi for all i

3. Ai � Bi for some i

A collection of ∼ comparisons {Ai ∼ Bi, i = 1, . . .m} satisfies linear
independence if the m equations

∑
x∈Ai

z(x) −
∑

x∈Bi
z (x) = 0 for each

i = 1, . . .m are linearly independent (note that we are not defining z(x) but
treating each z(x) for different x as a formal variable).

Theorem 1. (from Fishburn (1992)) Suppose S is a finite collection of finite
sets. Then (S,%) satisfies model 1 if (S,%) satisfies finite cancellation and
% is complete.

Theorem 2. (from Fishburn (1992)) Suppose (S,%) satisfies model 1 under
the initial conditions of Theorem 1, and |X| = n. Then u (x) is unique up to
similarity transformations of the form u′ (x) = au (x) + b, a > 0 if and only
if some collection of n− 1 ∼ comparisons satisfies linear independence.
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Appendix A.3. Continuous Model

Following Gonzales (1996):

Axiom 1. (ordering) % is a weak order on X (i.e. % is complete and transi-
tive).

Axiom 2. (independence) For any i ∈ {1, 2, . . . n} and any x, y ∈ X,

(x1, . . . xi−1, xi, xi+1, . . . xn) % (y1, . . . yi−1, xi, yi+1, . . . yn)

implies

(x1, . . . xi−1, yi, xi+1, . . . xn) % (y1, . . . yi−1, yi, yi+1, . . . yn)

Axiom 3. (solvability with respect to the ith component) x ∈ X, yj ∈ Xj for
all j 6= i implies that there exists zi ∈ Xi such that

x ∼ (y1, . . . yi−1, zi, yi+1, . . . yn)

Archimedean Axiom. (Axiom 5 in Gonzales (1996)) Any strictly bounded
standard sequence with respect to the first component is finite. For any
set N of consecutive integers (positive or negative, finite or infinite), a set{
xk
1 : xk

1 ∈ X1, k ∈ N
}

is a standard sequence with respect to the first
component if not (x0

1, x
0
2, . . . , x

0
n) ∼ (x0

1, x
1
2, . . . , x

1
n) and for all k : k, k+1 ∈ N ,

(xk
1, x

0
2, . . . , x

0
n) ∼ (xk+1

1 , x0
2, . . . , x

0
n).

Theorem 3. (Theorem 1 in Gonzales (1996)) Assume that (X,%) is a weak
order and that % satisfies the independence axiom, as well as solvability with
respect to the first two components, and that there exists an additive utility
representing %12. Then there exists a unique additive utility representing %,
that is, there exist real valued functions ui on Xi, i = 1, . . . n such that for
any x, y ∈ X, x % y ⇔

∑n
i=1 ui (xi) ≥

∑n
i=1 ui (yi) and these functions are

unique up to similarity transformation.

Theorem 4. (Corrolary 2 in Gonzales (1996)) Assume that (X,%) is a weak
order and that % satisfies the independence axiom, as well as solvability with
respect to the first three components and the Archimedian axiom. Then there
exists a unique additive utility representing %.
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