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 28 

Abstract 29 

The global public health impact of relapsing fever (RF) spirochetosis is significant, as the 30 

pathogens exist on five of seven continents.  The hallmark sign of infection is episodic fever and 31 

the greatest threat is to the unborn.  With the goal of better understanding the specificity of B cell 32 

responses and the role of immune responses in pathogenicity, we infected Rhesus macaques with 33 

Borrelia turicatae (a new world RF spirochete species) by tick bite and monitored the immune 34 

responses generated in response to the pathogen.  Specifically, we evaluated inflammatory 35 

mediator induction by the pathogen, host antibody responses to specific antigens, and peripheral 36 

lymphocyte population dynamics.  Our results indicate that B. turicatae elicits from peripheral 37 

blood cells key inflammatory response mediators (IL-1β and TNF-α) which are associated with 38 

pre-term abortion.  Moreover, a global decline in peripheral B cell populations was observed in 39 

all animals at 14 days post-infection.  Serological responses were also evaluated to assess the 40 

antigenicity of three surface proteins, BipA, BrpA and Bta112.  Interestingly, a distinction was 41 

observed between antibodies generated in non-human primates (NHPs) and mice.  Our results 42 

provide support for the nonhuman primate model not only in studies of prenatal pathogenesis, 43 

but for diagnostic and vaccine antigen identification and testing.  44 

  45 
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Introduction 46 

Relapsing Fever (RF) spirochetosis is a neglected global disease.  In parts of Africa, RF 47 

spirochetosis is a common bacterial infection [1], and the disease is a significant cause of 48 

hospital admissions and child mortality [2-6].  The causative agents are Borrelia species that are 49 

transmitted by the human body louse, or ixodid and argasid ticks (1-4).  The manifestation of 50 

disease in humans includes recurrent febrile episodes, rigors, vomiting, severe headache, 51 

neurological symptoms, muscle and joint aches and tachycardia (1).  Antibiotic treatment may 52 

result in the Jarisch-Herxheimer reaction, which is caused by a cytokine release leading to shock 53 

(5) and even death (6, 7).  Mortality of tick-borne RF spirochetosis is 4-10% and is associated 54 

with the burden of spirochetes in the blood (8).  RF borreliosis is particularly devastating on fetal 55 

and neonatal health (9, 10).  For example, in Tanzania a perinatal mortality rate of 436/1000 was 56 

reported for Borrelia duttonii (11).  The disease also has a severe impact in developing countries 57 

because of the nonspecific, malaria-like clinical manifestation of the disease.  Importantly, with 58 

the geographic distribution of RF spirochetes largely overlapping with malaria (12) and studies 59 

indicating an often misdiagnosis (13, 14), the true morbidity of RF is underappreciated.  60 

The reduction in spirochete levels and eventual clearance has been shown in animal 61 

models to be a direct result of the antibody response, especially IgM and IgG3 isotypes (15, 16).  62 

The clearance by lymphocytic response was established by Newman and Johnson (17), who 63 

showed not only the importance of the B cell response, but that of a T-independent B cell 64 

response.  Subsequent studies have demonstrated neutralization (18) and a directly bactericidal 65 

(19) role of serum IgM in controlling relapsing fever spirochetemia.  The contribution of B cell 66 

subsets to RF pathogen control has been further delineated in mice (16, 20, 21). 67 
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Rodent models of RF have contributed immensely to the understanding of infectivity, 68 

host-pathogen interactions and immune responses to infection [31-36].  For example, 69 

transmission studies in Borrelia turicatae demonstrated that RF spirochetes enter the host within 70 

seconds of tick bite (22), indicating the importance of preventing early mammalian infection.  71 

Moreover, vaccination of mice with the Borrelia hermsii variable tick protein (Vtp) has guided 72 

vaccine strategies.  Vtp is produced in the salivary glands of Ornithodoros hermsi and 73 

subsequently down-regulated once the pathogens are detectable in murine blood (23).  74 

Vaccination studies with Vtp indicated that RF spirochete surface proteins produced in the tick 75 

salivary glands could be ideal immunological targets to prevent the establishment of infection 76 

(24).   77 

Mice are natural reservoir hosts and may have limitations as models for testing 78 

intervention and therapeutic strategies.  Thermoregulation in mice varies, and they are a limited 79 

model to further understand the Jarish-Herxheimer reaction.  Mammals have evolved unique 80 

thermoregulatory mechanisms in defense against pathogens, with rodents typically remaining 81 

afebrile or decreasing body temperatures in response to bacterial challenge and endotoxin 82 

administration (25-29).  Therefore, mice may not be ideal for the evaluation of vaccine 83 

candidates and therapeutics that prevent the clinical sign of fever, which is a hallmark feature of 84 

RF.   85 

Non-human primates (NHP) infected with RF spirochetes accurately mimic human 86 

disease.  A 1938 report published by Dr. Edward Francis showed that NHPs infected with B. 87 

turicatae by tick bite exhibited morbidity and mortality commonly observed with human disease 88 

(30).  We have also demonstrated human-like illness with this model.  Four rhesus macaques 89 

were infected with B. turicatae by tick transmission, and radio telemetry was used to quantify the 90 
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intricacies of infection (31).  Multiple febrile episodes, high spirochete densities in blood, and 91 

disruption of cardiac function were observed.   92 

 In this current report, we further characterized the immune responses of NHPs that were 93 

infected with B. turicatae by tick bite (31).  We originally hypothesized that B. turicatae would 94 

induce a TH2 type immune response, with concomitant induction of B cell proliferation and 95 

antibody production.  Rather, we found that in peripheral blood cells, B. turicatae induced TH1 96 

type cytokines (IL-1β and TNF-α) and significant declines in B cell populations were observed 97 

soon after infection.  Changes in peripheral blood lymphocyte subsets, immune mediator 98 

production by stimulated PBMCs, and antibody responses reflect a distinct response to RF 99 

Borrelia in NHPs.  We evaluated antibody responses to a known conserved surface protein, the 100 

Borrelia immunogenic protein A (BipA) (33, 34), and two newly identified surface proteins, 101 

Bta112 and the Borrelia repeat protein A (BrpA).  Bta112 and BrpA are up-regulated in the tick 102 

and were evaluated to determine their antigenicity once B. turicatae enters the mammalian host.  103 

Our results demonstrate differences in the host antibody specificity between mice and NHPs 104 

infected with B. turicatae, and further indicate the significance of macaques as a model that most 105 

accurately represents human RF borreliosis.   106 

 107 

Results  108 

Co-culture of macaque PBMCs with B. turicatae elicits inflammatory response mediators.  109 

Given the high numbers of RF spirochetes that are observed in the blood during febrile episodes, 110 

we sought to measure immune mediators produced by PBMCs in response to stimulation with 111 

borreliae.  In the analysis of 23 cytokines produced in reponse to stimulation with B. turicatae, 112 

both commonalities and differences with B. burgdorferi (the Lyme disease causing agent) were 113 
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observed.  While both borrelial pathogens elicited TNF-α, IL-10, G-CSF and IL-12/23p40, B. 114 

turicatae induced a statistically significant higher level of IL-1β and soluble CD40 ligand 115 

(sCD40L) compared to B. burgdorferi (Figure 1A and 1D, respectively).  We tested stimulation 116 

of PBMCs derived from a naïve, uninfected monkey (JD03) in addition to PBMCs derived from 117 

infected animals.  To preserve the viability of the spirochetes and retain soluble factors, the 118 

stimulations were performed with spirochetes in their own growth media (shown as Bt media and 119 

Bb media).  However, components of the media also had a moderate stimulatory effect for some 120 

cytokines/chemokines.  Figure 1A shows IL-1β responses of naïve macaque PBMCs stimulated 121 

with borreliae, indicating a significant induction of this inflammatory cytokine specifically by B. 122 

turicatae.  For IL-1β, significance differences were observed at the 12-hour time point when 123 

comparing B. turicatae (Bt) to BSK (p=0.0231) and B. burgdorferi (Bb) to BSK (p=0.001). At 124 

24 hours, significant differences in these two groups were observed as well (Bt vs. BSK, 125 

p<0.0001; Bb vs. BSK, p=0.0047).  In Figure 1B, the effect on TNF-α production indicates that 126 

both Borrelia species induce production of this inflammatory cytokine by PBMCs.  At 12 hours, 127 

significance was observed when comparing Bt vs. BSK (p=0.0007), Bb vs.BSK (p<0.0001).  No 128 

difference was observed between Bt media and BSK, yet the quantity of TNF-α induced by Bt 129 

over that of Bt media was significant (p=0.0013), indicating that soluble factors do not drive the 130 

induction of TNF-α by B. turicatae.  At 24 hours, each of these differences remained significant 131 

(Bt vs. BSK, p=0.0002; Bb vs. BSK, p=0.0003; Bt media vs. Bt).  Figure 1 also shows the 132 

specific differences in the induction of G-CSF (C), sCD40 (D) and IL-12/23 (E) from naïve 133 

PBMCs stimulated with borreliae.  Significant changes in G-CSF production by PBMCs 134 

stimulated with B. turicatae were only observed at the 24 hour time point.  Here, stimulation 135 

with Bt vs. BSK was significant (p=0.0005), as was stimulation with Bb vs. BSK (p=0.0002).  136 
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For the soluble CD40 ligand, (sCD40l), significant differences were observed only at the 12 hour 137 

time point, with stimulation of Bt compared to Bt media demonstrating significance (p=0.0085), 138 

along with Bt vs. BSK (p=0.0027) and Bt vs. BSK (p=0.0047).  For IL-12/23, significant 139 

differences were seen at both 12 and 24 hour time points comparing Bt vs. BSK (12 h: p=0.0007; 140 

24h: p=0.0013) and Bb vs. BSK (12h: p=0.0033; 24 h: p=0.0343).  Figure 2 shows IL-1β 141 

responses among infected monkeys.  Stimulation of day 14 p.i. PBMCs with Bt vs. Bt media 142 

alone resulted in a significant increase in this inflammatory mediator for all three monkeys that 143 

were infected.  A two to three fold increase in quantity of IL-1β produced in response to B. 144 

turicatae compared to media alone indicates the specific effect of the pathogen. Specifically, 145 

significant differences were observed at the 12 and 24 h timepoints for JB60 (12 h: p=0.0070; 24 146 

h: p=0.0010), JB23 (12 h: p=0.0022; 24 h: p=0.0005), and IN57 (12 h: p=0.0008; 24 h: 147 

p=0.0005) when Bt vs. Bt media were compared.  148 

Immune regulatory molecules in serum were also quantified.  We collected blood 149 

droplets between days 0-14, but serum was collected beginning on day 14, as our intent was to 150 

evaluate antibody responses.  Therefore, we used available sera to test in the 23-plex cytokine 151 

magnetic bead panel.  The immune mediators that were elevated in serum at various time points 152 

included IL-10, sCD40L, IL-8 and MCP-1 (supplemental Figure S2).  Both IL-10 and MCP-1 153 

were elevated at the earlier time points (14 and 28 days), but declined by 6 weeks post-infection.  154 

In contrast, sCD40L and IL-8 appeared to be elevated throughout the infection period in 155 

monkeys inoculated with B. turicatae (IN57, JB60 and JB23) compared to the animals fed upon 156 

by uninfected ticks (JD03).   157 

Characteristic peripheral B cell depletion during acute infection.  T and B-cell phenotypic 158 

analyses were performed with PBMCs at days 0, 14, and 70 post-infection time points from all 4 159 
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NHPs.  With respect to the T-cell phenotype, only general CD4 and CD8 T-cell phenotypes were 160 

measured in all three time points after infection.  Only one animal (IN57) had reduced CD3+ 161 

populations, detected at day 14 post-infection (Table S1 and Figure 3) and the percentages of all 162 

four subsets of CD3 cells (CD4+CD8-, CD4+CD8+, CD4-CD8+ and CD4-CD8-) were reduced. 163 

The other 3 animals showed a moderate increase in peripheral T cells at 2 weeks p.i. that 164 

declined by day 70.   165 

B-cell subsets were distinguished by a panel of markers that included CD5, CD20, CD21, 166 

CD138, IgM, IgD, CD27, and CD38. Notable reductions in the percentages of B cells were 167 

observed in the serum 14 days after infection, suggesting an infection-induced B cell depletion 168 

(Table 1, Figure S1). As shown in Table 1, the B-cell depletion was due to the loss of CD5 (B-1a 169 

cells, marker of naïve or immature B-cells (35-37)), CD21 (marker of B cell differentiation and 170 

maturation (38-40)), CD86 (activation marker (41, 42)), and CD138 (plasmablasts (37)).  In a 171 

subsequent staining, we looked at IgM+ B cells, switched memory (CD27+IgD-), non-switched 172 

memory (CD27+IgD+), naïve (CD27-IgD+), double negative (CD27-IgD-), and 173 

CD27
high

CD38
high

 plasmablasts. A precipitous and global decline in peripheral B cell populations 174 

was observed in all animals at day 14 p.i.  (Table 1 and Figure 3). The B cell percentages and 175 

different B-cell subsets returned to near pre-infection levels at day 70 post-infection in all 176 

animals.  The percent drop in total B cell frequency between day 0 and day 14 was significant for 177 

all monkeys.  Specifically, the CD20+ lymphocytes decreased by 43% for JD03, 84% for IN57, 178 

80% for JB60 and 56% for JB23.  179 

Evaluation of Bta112 between strains of B. turicatae.  Bta112 was further evaluated as an 180 

antigen because computational analyses suggested the protein was exposed on the surface of RF 181 

spirochetes.  The PROSITE InterPro database identified a predicted lipid attachment site at the 182 
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N-terminus of the protein (Figure S3).  PSIPRED and the Phobius prediction server suggested 183 

that the Bta112 was rich with alpha helices and the C-terminus of the protein was soluble and 184 

positioned toward the extracellular environment, respectively.  Sequence analysis of Bta112 185 

between B. turicatae 91E135, FCB, TCB1, TCB2, and 99PE-1807, indicated the presence of an 186 

intact gene that coded for a protein that was nearly identical in all B. turicatae isolates evaluated 187 

(Figure S3).  Given the presence of Bta112 in multiple B. turicatae isolates, we evaluated the 188 

protein further. 189 

Expression of recombinant Bta112, temperature-mediated production, and surface 190 

localization of the native protein.  To evaluate serological responses to B. turicatae Bta112, the 191 

gene was expressed as a recombinant fusion protein.  bta112 was overexpressed in BL21 Star 192 

(DE3) cells (Figure 4A), and rabbit immune serum was generated against the recombinant 193 

protein.  Since native bta112 is up-regulated by B. turicatae during culture at 22 
o
C relative to 35 194 

o
C (43), spirochetes grown at both temperatures were evaluated to assess temperature-mediated 195 

protein production.  Optical density analysis of immunoblots probed with the rabbit serum 196 

sample generated against rBta112 indicated 3.2-fold increase of the protein in B. turicatae grown 197 

at 22 
o
C versus 35 

o
C (Figure 4B, top panel).  The rabbit’s pre-immunization serum sample was 198 

used as a negative control (Figure 4B, middle panel).  Moreover, a serum sample generated 199 

against B. turicatae FlaB was used as a control to indicate similar protein loads were 200 

electrophoresed in the immunoblotting assays (Figure 4B, lower panel).   201 

 Performing proteinase K and immunoblotting assays with B. turicatae grown at 35 
o
C 202 

indicated that the Bta112 was surface localized (Figure 4C).  Bta112 was degraded following 203 

incubation with increasing concentrations (5, 50, and 200 µg per ml) of proteinase K for 15 204 

minutes (Figure 4C, upper panel).  The relative density of the periplasmic protein FlaB in 5 µg 205 
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per ml
 
of proteinase K compared to the 0 µg per ml of proteinase K control was 101%.  The 206 

relative density of FlaB in 50 and 200 µg per ml of proteinase K was 93% and 90% respectively, 207 

indicating that the spirochetes’ membranes remained intact (Figure 4C, lower panel).  208 

Collectively, these results supported that Bta112 was surface localized and the protein’s 209 

production was elevated at 22 
o
C.  Given these findings, the antigenicity of rBta112 was 210 

assessed.   211 

Serological responses to B. turicatae surface proteins.  Given variations in humoral responses 212 

between mammalian species (44, 45), we compared the antigenicity of B. turicatae rBta112, 213 

rBrpA, and rBipA using serum samples from NHPs and mice that were infected by tick bite.  214 

Immunoblotting indicated varying serological responses between NHPs and mice to the 215 

recombinant proteins (Figure 5 A-F).  All four NHPs produced antibodies that bound to B. 216 

turicatae protein lysates, rBta112, and rBipA, while serological reactivity to rBrpA was only 217 

detected in JB60 (Figure 5B).  An immunoblot from two mice represented the eight remaining 218 

animals (Figure 5E and F).  All the mice seroconverted to rBipA, two of eight animals 219 

seroconverted to rBta112, while none of the animals seroconverted to rBrpA.  Probing 220 

immunoblots with a monoclonal antibody for the six histidine epitope was used to as a control 221 

for the expected molecular weight of each protein (Figure 5G).  These findings suggested 222 

varying serological responses to RF spirochete antigens between NHPs and mice.   223 

 Since rBipA and rBta112 were immunogenic by immunoblotting in all four NHPs, we 224 

further evaluated their serological responses over the duration of the study using enzyme-linked 225 

immunosorbent assay (ELISA).  Assessment of rBipA and rBta112 indicated the temporal 226 

persistence of IgG responses to the recombinant proteins (Figure 6 A-D).  JB23, JB60, and IN57 227 

generated IgG responses for at least 84 days after the animals were infected with B. turicatae by 228 
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tick transmission (Figure 6 A-C).  These responses were statistically significant compared to the 229 

pre-infection serum samples for each animal to a given recombinant protein.  JD03 was a control 230 

animal, as described in our previous report (46), and evaluating IgG response at three time points 231 

(7, 27, and 43 days) after feeding uninfected ticks indicated that tick saliva did not generate cross 232 

reactive antibody responses to rBipA and rBta112 (D).  After infecting the animal by tick 233 

transmission, IgG responses to rBipA and rBta112 were detected 42 days after feeding (D, day 234 

100 of the study).  Statistically significant IgG responses were no longer detected to rBta112 235 

from animal JD03 84 days after infection.  Collectively, these findings indicated temporal 236 

persistence of IgG responses to rBipA, while three of four animals generated prolonged IgG 237 

responses to rBta112.  238 

  239 

Discussion 240 

 In this study, we identified cytokine profiles associated with pathogenesis and 241 

characterized differences in antibody responses of NHPs and mice infected with B. turicatae.  242 

Evaluating cytokine production from B. turicatae-stimulated PBMCs identified mediators 243 

involved in disease manifestation.  B. turicatae induced significant increases in TNFα, IL-1β, 244 

sCD40, and IL-23 compared to medium controls.  The observed TNFα response has been linked 245 

to spirochete lipoprotein-induced Jarisch-Herxheimer reactions [14].  Interestingly, B. turicatae 246 

also induced statistically significant higher levels of IL-1β compared to cells incubated with 247 

Borrelia burgdorferi, the Lyme disease pathogen.  IL-1β and TNFα are known to play a primary 248 

role in triggering miscarriage and pre-term labor in rhesus macaques (47) and in human patients 249 

(48, 49).  If significant quantities of RF spirochetes cross the placenta, such a response could be 250 

induced in utero, and this pathogenic mechanism should be further evaluated.  We did not detect 251 
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elevated levels of these key inflammatory mediators directly in serum of infected monkeys; 252 

however, the response in PBMCs was detected between 12-24 hours post-stimulation.  We 253 

therefore suspect that we missed the height of the inflammatory response with evaluation 254 

commencing after 14 days of infection.  In mice infected with B. hermsii, plasma levels of IFN 255 

appear to be elevated at the height of spirochetemia, whereas IL-1β is detected after clearance of 256 

the infection (50).  Directly comparable experiments in mice and primates would be of benefit, 257 

but consistent detection of these inflammatory mediators in blood cells exposed to RF 258 

spirochetes indicates that they are likely important for pathogenesis.   259 

 Our findings suggest unique characteristics in antibody responses generated to B. 260 

turicatae antigens between mammalian species.  BipA is known to be immunogenic in mice (33, 261 

34), but previous work screening serum samples from a small cohort of mice naturally infected 262 

with B. turicatae by tick bite indicated that BrpA was not antigenic (51).  The serological 263 

responses from the 10 mice that were evaluated in this current study supported previous findings 264 

with BrpA.  Interestingly, one NHP produced a detectable response against rBrpA.  Furthermore, 265 

while only two mice seroconverted to rBta112, the protein was antigenic in all four NHPs.  266 

While more animals are needed to definitively determine differences in antibody responses 267 

between mice and NHPs, these findings suggested that the immune response between the two 268 

mammalian species were dissimilar.  Future work should evaluate NHPs as a model for antigen 269 

discovery and vaccine development.   270 

 B cells drive the immune effort to control infection with relapsing fever spirochetes, and 271 

distinct subsets with roles in immunity have been delineated (20, 52, 53). Mature B cells can be 272 

divided into follicular (FO) B cells, present in the lymphoid follicles, marginal zone (MZ) B 273 

cells, located in the marginal sinus of the spleen, and B1 cells predominantly found in the mouse 274 
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peritoneum. These are subdivided into B1a and B1b cells. B1 and MZ B cells are known to 275 

engage in the T-cell independent antibody response.  In contrast to the Lyme disease (LD) 276 

spirochete, which induces an expansion of MZ B cells upon infection, RF spirochetes induce a 277 

loss of MZ B cells (54). This may reflect the long-term presence of LD spirochetes in the spleen 278 

versus the periodic blood-borne expansion of RF spirochetes and/or the differential responses to 279 

antigens. The importance of the B1b cell component of the T-independent response to RF 280 

spirochetes was demonstrated by transfer of B1b lymphocytes from convalescent mice to Rag 281 

1−/− mice (lacking mature B and T lymphocytes).  This subpopulation conferred protection that 282 

consisted of a specific IgM response which occurred when mice were challenged 60 days after 283 

the reconstitution, indicating that this population alone could confer memory and afford 284 

protection (20).  Importantly, the identical counterpart of this particular B cell subset has not 285 

been identified in humans (55), so it remains to be seen if the same mechanism to control 286 

infection occurs in RF patients.  Our study shows a precipitous drop in all of the major B cells 287 

subsets within the peripheral blood of RF spirochete-infected NHP during the height of 288 

bacteremia (2 weeks p.i.).  While we did not examine lymph node populations, we surmise that 289 

the steep decline in peripheral B cells was met with migration to lymphoid organs. By day 70, no 290 

specific B cell subset emerged at an increased frequency over the others.  In addition, the specific 291 

antibody responses to recombinant proteins were of IgG isotype.  Our attempts at screening IgM 292 

responses did not produce clear and specific binding to either recombinant proteins or 293 

B.turicatae lysates.  This suggests that B cell responses in primates may rely more on T-294 

dependent IgG subclass responses.   295 

 RF Borreliosis is a major burden to maternal and fetal health, especially in resource-poor 296 

areas and novel intervention strategies are needed.  According to the World Health Organization, 297 
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every year 45% of all deaths in children under 5 years are among newborn infants in their first 28 298 

days of life or the neonatal period, and 25% of neonatal deaths result from infections (56). The 299 

major threat of RF borreliosis caused by both Old and New World species are pregnancy 300 

complications occurring during the perinatal period (~20 weeks after gestation to 1-4 weeks after 301 

birth) (57-65).  The use of rhesus macaques as an animal model resulted in the identification of a 302 

novel antigens (BrpA and Bta112) and confirmed the immunogenicity of BipA.  Future studies 303 

will determine if these antigens offer potential targets for human vaccination or in diagnosis of 304 

RF.  We will also expand on the developed NHP model and focus on understanding 305 

immunopathology of infected pregnant macaques to identify cytokines in amniotic fluid, which 306 

may reveal a mechanism of perinatal effects associated with RF infection.   307 

 308 

Materials and Methods 309 

Ethics statement.  Practices in the housing and care of NHP and mice conformed to the 310 

regulations and standards of the Public Health Service Policy on Humane Care and Use of 311 

Laboratory Animals, and the Guide for the Care and Use of Laboratory Animals.  The Tulane 312 

National Primate Research Center (TNPRC) and Baylor College of Medicine (BCM) are fully 313 

accredited by the Association for the Assessment and Accreditation of Laboratory Animal Care-314 

International.  The Institutional Animal Care and Use Committees at the TNPRC and BCM 315 

approved all animal-related protocols, including the infection and sample collection from NHPs 316 

and mice.  All animal procedures were overseen by veterinarians and their staff.   317 

B. turicatae strains used and animal infections by tick bite.  B. turicatae strains used in this 318 

study were 91E135, Florida canine Borrelia (FCB), 99PE-1807, Texas canine Borrelia (TCB) 1, 319 

and TCB2 (66).  Tick transmission studies to were previously reported using a colony of O. 320 
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turicata that originated from Kansas (31).  Briefly, four male Indian rhesus macaques (JB23, 321 

JB60, IN57, and JD03) 2.02-2.85 years of age were used.  Animals were sedated with 5-8 mg/kg 322 

Telazol by intramuscular injection and ten third stage nymphal ticks infected with B. turicatae 323 

were fed on each NHP (67).  JD03 was initially fed upon by 10 uninfected ticks and monitored 324 

for 42 days as a control for tick-specific responses.  This animal was subsequently fed upon by 325 

infected ticks. 326 

 Murine infection by tick bite was performed as previously described (34).  Eight to 10 327 

infected third stage nymphal O. turicata were fed to repletion on 10 Institute of Cancer Research 328 

(ICR) mice, a Swiss derivative maintained at BCM.  Infection was assessed by collecting a drop 329 

of blood from the animals and evaluating the specimen by dark field microscopy for the presence 330 

of circulating spirochetes.  Thirty days after infection by tick bite, the animals were 331 

exsanguinated and serum samples were obtained.   332 

Collection and processing of NHP blood.  To evaluate immune responses from NHPs, both 333 

whole blood and clotted blood for serum were collected.  Animals were anesthetized (Ketamine, 334 

0.1 ml/kg, IM) and blood was collected by venipuncture of the femoral vein into either clot tubes 335 

or EDTA tubes (whole blood).  Blood for serum samples was collected at day 0 (prior to tick 336 

feeding), day 28, day 56, day 70 and day 85, as previously described (31).  Whole blood for flow 337 

cytometry was collected at day 0, day 14 and day 70.  Tubes containing clotted blood were 338 

centrifuged at 3,000 rpm for 10 minutes to obtain serum samples.  Peripheral blood mononuclear 339 

cells (PBMCs) were isolated from whole blood using Lymphocyte Separation Medium (MP 340 

Biomedicals) (68).  The lymphocyte layer was washed once with sterile PBS, then resuspended 341 

in PBS/2% FBS and counted.  Cells were again pelleted and resuspended in Freeze Medium 342 

(Invitrogen) at ≤1 x 10
7
/ml, then cryopreserved in liquid nitrogen until staining.   343 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2018. ; https://doi.org/10.1101/503615doi: bioRxiv preprint 

https://doi.org/10.1101/503615
http://creativecommons.org/licenses/by-nc/4.0/


16 
 

Flow cytometry Assay.  Cryopreserved PBMCs were thawed, washed in RPMI-1640 media, , 344 

counted with trypan blue exclusion staining, and adjusted to a concentration of 1 x 10
7
 cells/ml 345 

in RPMI-1640 media with 10% FBS.  One hundred µl of cells were used for staining with 346 

different concentrations of monoclonal antibodies and incubated for 25 min at room temperature, 347 

protected from light, as reported earlier (68-71). The cells were further washed two times with 348 

3ml of flow wash buffer (PBS with 0.1% BSA and 7mM sodium azide) and centrifuged at 349 

1350rpm for 7 min.  Following aspiration of supernatants from cell pellets, the cell pellets were 350 

resuspended in 350 µl of 1% paraformaldehyde buffer (in PBS). For antibodies conjugated with 351 

tandem dyes, the cell pellets were dissolved in FACS fixation and stabilization buffer (Becton 352 

Dickinson).   For T cell phenotyping, CD3-FITC (SP34-2, BD Biosciences), CD8-PerCP (SK1, 353 

BD Biosciences), and CD4-APC (L200, BD Biosciences) were used.  For B cell phenotyping, 354 

anti-CD5-PE-Cy5.5 (CD5-5D7, Invitrogen), anti-CD20-ECD (B9E9, Beckman Coulter), anti-355 

CD21-APC (B-Ly4, BD Biosciences), anti-CD86-PECy5 (FUN-1, BD Biosciences) anti-CD138-356 

FITC (MI15, BD Biosciences), anti-CD27-FITC (M-T271 BD Biosciences), anti-IgM (G20-127, 357 

BD Biosciences) and anti-IgD (purified polyclonal, Southern Biotech) antibodies were used. 358 

Anti-CD38 antibody (clone OKT10) was obtained from NIH NHP Reagent Resource.  Data were 359 

acquired within 24 hours of staining using either BD Fortessa instrument (BD Immunocytometry 360 

System) or BD Facsverse (BD Biosciences) and FACSDiva software (BD Immunocytometry 361 

System). For each sample, 50,000 events were collected by gating either on CD3+ T cells or 362 

CD20+ B cells. For B-cell phenotypic analysis, cells were first gated on singlets, followed by 363 

lymphocytes, and CD20+ B-cells and CD20- cells. CD20+ B-cells were further gated for 364 

CD5/CD21/CD86 and CD138 expression.  In cases where enough PBMCs were available, flow 365 
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cytometry was repeated to give duplicate samples.  The gating strategy, along with representative 366 

results from a single animal, is shown in supplementary Figure S1. 367 

Cytokine/chemokine array.  A portion of PBMCs derived from whole blood were also used for 368 

in vitro stimulation with B. turicatae.  Cells isolated from blood collected from each animal 369 

(which included JD03 following control/uninfected tick feeding) on day 14 post-tick feeding 370 

were resuspended in RPMI 1640/10% FBS at 1 x 10
6
/ml and 0.5 ml was added to each well of a 371 

24-well plate.  Late log-phase B. turicatae was diluted to 1 x 10
7
 spirochetes per ml and 0.5 ml 372 

was added to appropriate wells for a 10:1 ratio of spirochetes to cells.  Controls included 373 

untreated cells, cells incubated with B. burgdorferi, and cells incubated with BSK medium 374 

(Sigma).  To determine the impact of soluble factors produced by the spirochetes, cells were 375 

incubated with 0.22 µm-filtered BSK medium derived from B. turicatae and B. burgdorferi 376 

cultures.  Cultures were placed in a 37
o
C, 5% CO2 incubator. Supernatants were collected at 12 377 

and 24 hours and stored at -20
 o
C.  Serum samples from days 14, 28 and 41 were also tested by 378 

the cytokine/chemokine array.  Undiluted samples were analyzed using the MILLIPLEX MAP 379 

Non-Human Primate Cytokine Magnetic Bead Panel - Premixed 23 Plex (Millipore) according to 380 

the manufacturer’s instructions.  The bead assay was performed by the Pathogen Detection and 381 

Quantification Core at the TNPRC and analyzed on a Bioplex 2000 Suspension Array System 382 

(BioRad). Each analyte concentration was calculated by logistic-5PL regression of the standard 383 

curve.  To determine the statistical significance between the means for two experimental groups, 384 

an unpaired, two-tailed Student’s t-test was performed using GraphPad Software QuickCalcs.  385 

Those differences with p≤ 0.05 are reported as significant. 386 

Computational analysis of Bta112.  Initially, bta112 was identified as a gene up-regulated by 387 

B. turicatae in the tick and at 22 
o
C (tick-like growth conditions) compared to spirochetes 388 
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isolated from infected murine blood and spirochete grown at 35 
o
C (mammalian-like growth 389 

conditions) (43).  The protein was evaluated using the Basic Local Alignment Search Tool 390 

(BLAST) from NCBI, LipoP1.0, and ScanProsite.  The gene sequence of bta112 was evaluated 391 

in B. turicatae 91E135, FCB, 99PE-1807, TCB 1, and TCB 2 through ongoing genome 392 

sequencing efforts of these isolates.   393 

Recombinant proteins and rabbit serum generation to recombinant Bta112 (rBta112).  394 

Recombinant BipA (rBipA) and BrpA (rBrpA) were produced as six histidine linked proteins as 395 

previously described (34, 51).  Recombinant Bta112 was also produced as a six histidine linked 396 

recombinant protein using the pEXP1-DEST expression vector (ThermoFisher Scientific, 397 

Waltham, MA).  The bta112 gene was amplified by PCR from B. turicatae gDNA with 398 

Accuprime Pfx (Thermo Fisher Scientific) without its predicted signal sequence (1-69 bp, signal 399 

P 3.0 - http://www.cbs.dtu.dk/services/SignalP-3.0/).  The gene’s signal sequence was omitted 400 

from amplification using primers SP/1779/70-1461 (5′-CAAACAAGTTTGTACAAAAATTTC 401 

AAAAGTCCAAAAGACGCTG-3′) and ASP/1779/70-1461 (5′-CGTATGGGTAAAGC 402 

TTATTACTACTTGCGGTACTATCTGCTG-3′).  The amplicon was cloned by In-fusion (BD 403 

Clontech) into pEXP1-HA-DEST, digested with BsrGI and HindIII to create pEXP1-404 

HA::bta112, and Top10 Escherichia coli were transformed.  Plasmid DNA was isolated and 405 

submitted for sequencing to ensure that errors were not introduced by PCR.  Vector NTI 11.0 406 

(ThermoFisher Scientific) was used to assess bta112 sequence.  rBta112 was produced by 407 

transforming E. coli BL21 Star (DE3) cells (ThermoFisher Scientific) with pEXP1-HA::bta112 408 

and expression was induced with 0.5 mM IPTG.  rBta112 was purified by nickel chelate 409 

chromatography.   410 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2018. ; https://doi.org/10.1101/503615doi: bioRxiv preprint 

https://doi.org/10.1101/503615
http://creativecommons.org/licenses/by-nc/4.0/


19 
 

 Rabbit anti-rBta112 was produced by Cocalico Biologicals, INC.  Pre-immunization 411 

serum samples were collected from two rabbits and the animals were immunized 412 

intraperitoneally with 50 µg of rBta112 using complete Freund’s adjuvant.  The animals were 413 

immunized three subsequent times in two-week intervals using Freund’s incomplete adjuvant.  414 

Serum samples were collected and evaluated for specificity to rBta112 and the native protein by 415 

immunoblotting.   416 

Surface localization assays, immunoblotting, and densitometry analysis.  To determine the 417 

surface localization of Bta112, proteinase K assays and immunoblotting were performed as 418 

previously described (51, 72).  Moreover, for all immunoblotting assays B. turicatae was grown 419 

at 35 
o
C.  For proteinase K assays, spirochetes were grown to a density > 5 x 10

7
 cells per ml, 420 

pelleted at 1,000 x g for 10 minutes at room temperature, washed in PBS + MgCl2, pelleted 421 

again, and resuspended in PBS + MgCl2. Spirochetes were incubated with increasing 422 

concentrations (5, 50, and 200 µg per ml) of proteinase K (Promega, Madison, WI) for 15 423 

minutes at room temperature. PBS + MgCl2 was used as a vehicle control. Proteinase K was 424 

inactivated by boiling samples at 100°C for 10 minutes. SDS-PAGE and immunoblotting were 425 

performed as previously described using the Any kD Mini-PROTEAN TGX Stain-free precast 426 

gels (BioRad, Hercules, CA) (51).  One µg of recombinant protein or 1 x 10
7
 spirochetes were 427 

electrophoresed per lane, and the Trans-Blot Cell (BioRad) was used to transfer proteins onto 428 

polyvinylidene fluoride membranes.  Rabbit, murine, chicken, and NHP serum samples were 429 

used to probe immunoblots at a concentration of 1:200, and antibody binding was detected with 430 

the appropriate secondary antibody and the ECL Western blotting reagent (VWR, Atlanta, GA).  431 

ImageLab (6.0.1) was used to quantify the relative density of FlaB of spirochetes incubated with 432 

5, 50 and 200 µg per ml proteinase K to spirochetes that did not undergo proteinase K treatment.    433 
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ELISA  434 

Immulon 2HB flat bottom microtiter polystyrene plates (Thermo Fisher, Waltham, MA) were 435 

coated with 1 μg/ml of rBipA or r1779 using 1x coating solution (KPL, Gaithersburg, MD).  The 436 

plates were washed three times with wash buffer (1x PBS and 0.05% Tween20) and blocked 437 

with diluent (1x PBS, 5% Horse Serum, 0.05% Tween20, 0.001% Dextran Sulfate) overnight at 438 

4 °C.  Plates were washed again and probed with the NHP serum samples at a 1:100 dilution in 439 

diluent and incubated for one hour at room temperature.  Plates were washed again and incubated 440 

for one hour at room temperature with peroxidase labeled goat anti-monkey IgG (KPL, 441 

Gaithersburg, MD) at a 1:4000 dilution.  Plates were washed again and incubated with ABTS 442 

Peroxidase Substrate (KPL, Gaithersburg, MD) for 30 minutes and read at 405nm on an Epoch 443 

Microplate Spectrophotometer (Biotek, Winooski, VT).  Samples were considered statistically 444 

significant if their mean optical density was more than three times the SD above the mean of the 445 

pre-tick challenge sera (p ≤ 0.003).   446 

 447 

  448 
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 449 

 450 

 451 

Table 1.  Changes in Peripheral B cell Subsets Following Infection with B. turicatae.452 
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*uninfected (fed upon by uninfected ticks) 453 

 454 

 455 

 456 

  457 

ANIMAL, 
DAYS POST 
INFECTION  

CELLS OUT OF TOTAL LYMPHOCYTES 

CD20+ (%) 
CD20+CD5+ 

(%) 
CD20+CD21+ 

(%) 
CD20+CD
86+ (%) 

CD20+CD138+ 
(%) 

IgM+ (%) 
Switch 
memory 
(CD27+Ig
D-) 

Non-
Switched 
Memory 
(CD27+Ig
D+) 

Naïve 
(CD27-
IgD+) 

Double 
negative 
(CD27-
IgD-) 

Plasmablast 
(CD27high
CD38high) 

JD03u*, d0 26.3 ± 0.71 0.652 ± .032 12.87 ± 0.88 16.43 0.051 ± .008    
   

JD03u*, d14 30.3 ± 0.85 0.809 ± 0.069 13.87 ± 2.48 14.67 0.113 ± 0.002    
  

JD03, d0 31.8 0.86 15.20 18.83 0.08 16.75 9.4604 15.8388 0.871 0.61908 0.1059 

JD03, d14 18.2 ±5.09 0.927 ± 0.14 8.71 ± 0.73 8.13 0.233 ± 0.019 16.9332 7.7559 9.3627 7.3233 6.4581 0.11546 

JD03, d70 
54.7 ± 
20.93 

2.39 ± 1.78 26.69 ± 8.24 18.87 0.240 ± 0.024 13.4506 6.5836 7.739 4.5562 2.9212 0.10268 

IN57, d0 23.9 1.01 12.02 12.45 0.30 54.0015 12.7185 37.947 14.039 4.8094 0.0915 

IN57, d14 
3.915 ± 

1.74 
0.225 ± 0.177 1.95 ± 1.17 3.25 0.045 ± 0.006 2.05418 0.43089 0.9214 1.07316 0.28455 0.04293 

IN57, d70 
58.25 ± 

2.05 
1.96 ± 0.22 26.76 ± 2.72 28.63 0.342 ± 0.318 42.6855 9.3729 25.8501 16.716 7.761 0.16642 

JB60, d0 43.8 1.61 24.66 24.05 0.11       

JB60, d14 8.97 ± 3.02 0.276 ± 0.12 3.99 ± 1.68 8.00 0.026 ± 0.029 4.04336 2.72517 2.58857 1.01767 0.496541 0.2394 

JB60, d70 54.4 ± 2.97 2.73 ± 0.23 27.92 ± 1.05 27.67 0.125 ± 0.141 40.3975 18.532 36.2165 1.0283 0.74015 0.47888 

JB23, d0 7.3 0.42 3.78 3.96 0.11       

JB23, d14 3.23 ± 0.52 0.132 ±0.068 1.51 ± 0.41 2.43 0.0158 ± 0.018 1.39282 1.34706 0.94094 0.31746 0.252538 0.30615 

JB23, d70 
24.05 
±8.27 

0.864 ± 0.35 10.46 ± 1.31 9.50 0.071 ± 0.062 13.7839 15.4583 12.8271 0.7774 0.81627 0.53768 
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Figure Legends 666 

Figure 1.  IL-1β (A),TNF-α (B), G-CSF (C), sCD40 (D) and IL-12/23 (E)  responses of naïve 667 

macaque PBMCs stimulated with Borreliae.  PBMCs obtained at day 0 from animal JD03 668 

were stimulated with B. turicatae (Bt), B. burgdorferi (Bb), filtered BSK-H medium derived 669 

from B. turicatae or B. burgdorferi cultures (Btmedia; Bbmedia), uninoculated BSK-H medium 670 

(BSK), or left untreated (no trt).  Supernatants were collected at 12 and 24 hours, for 671 

measurement of inflammatory mediators by a NHP-specific 23-plex cytokine bead assay.  672 

Figure 2.  IL-1β production by the PBMCs of B. turicatae-infected macaques.  Cells isolated 673 

from blood on day 14 post-tick feeding were incubated with B. turicatae at a 10:1 ratio of 674 

spirochetes to cells (+Bt), untreated (no trt), incubated with BSK-H medium (+BSK), or 675 

incubated with filtered mBSK medium derived from B. turicatae cultures (+Btmedia).  676 

Supernatants were collected at 12 and 24 hours, for measurement of inflammatory mediators by 677 

a NHP-specific 23-plex cytokine bead assay. 678 

Figure 3.  Frequency of B and T cells in the peripheral blood after infection with B. 679 

turicatae.  PBMCs were subjected to flow cytometry to detect the relative percentages of B cells 680 

(CD20+) and CD4+/CD8+ T cell subsets.  Each staining experiment was performed twice and 681 

the standard deviation is indicated with error bars. 682 

Figure 4.  Expression of bta112 as a recombinant protein, temperature mediated protein 683 

production and surface localization of Bta112.  Bta112 was produced in E. coli and purified 684 

(A).  E. coli samples were taken prior to induction (Tp0), three hours after induction (Tp3), and 685 

the purified protein.  Immunoblots using rabbit serum samples generated against rBta112 686 

indicated the protein’s increased production at 22 
o
C compared to 35 

o
C (B, upper panel).  687 

Preimmune serum samples (B, middle panel) and serum samples generated to the flagellin (FlaB) 688 
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protein (B, lower panel) are shown.  Immunoblotting was also performed to evaluate the surface 689 

localization of Bta112.  Proteinase K (PK) was used at concentrations of 5 to 200 µg per ml (C).  690 

Membranes were probed with anti-Bta112 serum samples (C, upper panel), and anti-FlaB (C, 691 

lower panel) as a control to indicate equal protein loads in the gels (73)..  Molecular weight 692 

markers (MWM) are show on the left of gel (A), and molecular masses are indicated on the left 693 

of each immunoblot.  694 

Figure 5.  Immunoblot analysis using serum samples from NHPs and mice to rBta112, 695 

rBrpA, and rBipA.  Immunoblots of JB23 (A), JB60 (B), IN57 (C), and JD03 (D) are shown.  696 

Membranes were probed with preinfection serum samples (left blot) and serum samples collected 697 

at days 84 (JB23, JB60, and IN57) and 100 (JD03).  Immunoblots from two mice (E and F), 698 

which represent the remaining 10 animals are shown.  Membranes were also probed with an anti-699 

6 histidine monoclonal antibody (G), and indicate the molecular weight of each recombinant 700 

protein.  An asterisk is next to each recombinant protein that was antigenic.  Molecular weights 701 

are indicated at the left of each immunoblot.  702 

Figure 6.  Evaluation of temporal serological responses to rBipA and rBta112 by ELISA.  703 

Serum samples were evaluated prior to infection and at days 28, 44, 56, 70, and 84 for animals 704 

JB23, JB60, and IN57 (A-C).  Serum samples from JD03 were collected prior to and seven, 27, 705 

and 43 days after feeding the animal with uninfected (D, uninfected ticks).  The animal was then 706 

infected with B. turicatae by tick bite and serum samples were collected at days 58, 72, 100, and 707 

142 of the study (D, infected ticks).  Pre-infection serum samples from each animal were used to 708 

establish a statistically significant threshold (p ≤ 0.003) for rBipA (dashed line) and rBta112 709 

(dotted line).   710 

 711 
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