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Abstract

Summary: Studies of complex traits and diseases are strongly dependent on

the availability of user-friendly software designed to handle large-scale genetic

and phenotypic data. Here, we present the R package qgg, which provides an

environment for large-scale genetic analyses of quantitative traits and disease

phenotypes. The qgg package provides an infrastructure for efficient processing

of large-scale genetic data and functions for estimating genetic parameters,

performing single and multiple marker association analyses, and genomic-based

predictions of phenotypes. In particular, we have developed novel predictive

models that use information on functional features of the genome that enables

more accurate predictions of complex trait phenotypes. We illustrates core

facilities of the qgg package by analysing human standing height from the UK

Biobank.

Availability and implementation: The R package qgg is freely available.

For latest updates, user guides and example scripts, consult the main page

http://psoerensen.github.io/qgg/.

1 Introduction

Collection of large-scale genotype and phenotype data is fundamental for investigating
the genetic basis underlying complex traits and diseases in evolutionary biology,
animal and plant breeding, and human health. Furthermore, functional genomics
is rapidly accumulating data about DNA function at gene, RNA transcript and
protein product levels. We take advantage of the different layers of biological data
to improve current prediction models of complex trait phenotypes.

Here, we present the qgg package, which provide a range of statistical models that
incorporates prior information on genomic features. Genomic features, consisting
of a set of genetic markers, are regions on the genome that links to different types
of functional genomic information (e.g. genes, biological pathways, gene ontologies,
sequence annotation, genome-wide expression or methylation patterns). Our main
hypothesis is that these genome regions are enriched for causal variants affecting
a specific trait. If this hypothesis is valid, then identifying the genomic features
enriched for causal variants will aid in identifying the biological processes underlying
trait variation (e.g. Rohde et al. (2016b); Sørensen et al. (2017)) and increase
prediction accuracy of trait phenotypes (e.g. Edwards et al. (2016); Sarup et al.
(2016)). We have previously demonstrated that genomic feature models can provide
novel biological knowledge about the genetic basis of complex trait phenotypes in
different species, including fruit fly (Edwards et al., 2016; Rohde et al., 2016a, 2017,
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2018; Sørensen et al., 2017; Ørseted et al., 2017, 2018), mice (Ehsani et al., 2015),
dairy cattle (Edwards et al., 2015; Fang et al., 2017a,b, 2018), pigs (Sarup et al.,
2016) and humans (Rohde et al., 2016b).

The qgg package provides a range of genomic feature prediction modelling
approaches. Multiple features and multiple traits can be included, different genetic
models (e.g. additive, dominance, gene by gene and gene by environment interactions)
can be fitted, and a number of genetic marker set tests can be performed. Marker set
tests allow for rapid analysis of different layers of genomic feature classes to discover
genomic features potentially enriched for causal variants, thereby facilitating more
accurate prediction models.

2 Implementation and main functions

The qgg package is implemented in the R statistical programming language (R Core
Team, 2018). This allows users to utilise existing statistical computing and graphic
facilities, and to develop efficient workflows that takes advantage of the genomic
annotation resources (a key element in genomic feature models) available in e.g.
Bioconductor (Huber et al., 2015).

The qgg package provides core functions for performing quantitative genetic
analyses including: 1) fitting linear mixed models, 2) constructing marker-based
genomic relationship matrices, 3) estimating genetic parameters (e.g. heritability
and correlation), 4) prediction of genetic predisposition and phenotypes, 5) single
marker association analysis, and 6) gene set enrichment analysis.

Multi-core processing with openMP, multithreaded matrix operations imple-
mented in BLAS libraries (e.g. OpenBLAS, ATLAS or MKL) and fast memory-
efficient batch processing of genotype data stored in binary files (e.g. PLINK bedfiles)
provide an efficient computational infrastructure for analysing large-scale data. The
package compiles under all major platforms (Linux, MS Windows and OS X). Detailed
documentation and tutorials are available online (http://psoerensen.github.io/qgg/).

3 Analysing human height

Core facilities of qgg are illustrated on standing height of the White British cohort
in the UK Biobank (Bycroft et al., 2017). Analyses were restricted to unrelated
individuals with < 5,000 missing SNP-genotypes and those without chromosomal
aneuploidy (n=335,744 individuals). SNPs with minor allele frequency <0.01, loci
with >5,000 missing genotypes, and SNPs associated with the major histocom-
patibility complex were removed (m=599,297 SNPs). Analyses accounted for age,
gender and the first 10 genetic principal components. The scripts are available as
supplementary material.

We estimated the heritability of human height (h2, Fig. 1A) and partitioned the
total genetic variance by autosomal chromosomes (h2

f , Fig. 1B); a simple example
of a genomic feature class. Partitioning SNPs in the training population by degree
of association, improved the accuracy of genomic prediction (R2) in the validation
population when increasing the number of included top SNPs and the size of the
training population (Fig. 1C). The top 200 associated SNPs from the GIANT height
study (Lango Allen et al., 2010), was highly enriched in the UK Biobank data (Fig.
1D).
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4 Conclusion

The qgg package provides an efficient computational infrastructure for analysing
large-scale genotype-phenotype data, and contains a range of quantitative genetic
modelling approaches for investigating the genetic basis of complex traits and
diseases.
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Figure 1. Summary of results from human standing height using qgg functions. (A) SNP-based heritability estimates (h2) as
a function of the size of the training population. For each training population the analysis was performed on five different
training sets (points). (B) Partitioning of genetic variance (h2

f ) using autosomal chromosomes as genomic features. (C)
Prediction accuracy (R2) of a genomic feature best linear unbiased prediction model as function of training population size and
number of top ranking SNPs used as genomic features. (D) Gene set enrichment analysis using marker sets defined by p-value
ranked SNP-markers from the GIANT consortium with 100 SNPs within each feature set. Main figure shows the enrichment of
the first 100 sets, whereas the small inserted figure contains all 2,145 sets.
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