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Abstract 12 

Background 13 

Selecting the proper parameter settings for bioinformatic software tools is challenging. Not 14 

only will each parameter have an individual effect on the outcome, but there are also potential 15 

interaction effects between parameters. Both of these effects may be difficult to predict. To 16 

make the situation even more complex, multiple tools may be run in a sequential pipeline 17 

where the final output depends on the parameter configuration for each tool in the pipeline. 18 

Because of the complexity and difficulty of predicting outcomes, in practice parameters are 19 

often left at default settings or set based on personal or peer experience obtained in a trial and 20 

error fashion. To allow for the reliable and efficient selection of parameters for bioinformatic 21 

pipelines, a systematic approach is needed. 22 

Results 23 

We present doepipeline, a novel approach to optimizing bioinformatic software parameters, 24 

based on core concepts of the Design of Experiments methodology and recent advances in 25 

subset designs. Optimal parameter settings are first approximated in a screening phase using a 26 

subset design that efficiently spans the entire search space, then optimized in the subsequent 27 

phase using response surface designs and OLS modeling. doepipeline was used to optimize 28 

parameters in four use cases; 1) de-novo assembly, 2) scaffolding of a fragmented genome 29 

assembly, 3) k-mer taxonomic classification of Oxford Nanopore Technologies MinION 30 

reads, and 4) genetic variant calling. In all four cases, doepipeline found parameter settings 31 

that produced a better outcome with respect to the characteristic measured when compared to 32 

using default values. Our approach is implemented and available in the Python package 33 

doepipeline. 34 
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Conclusions 35 

Our proposed methodology provides a systematic and robust framework for optimizing 36 

software parameter settings, in contrast to labor- and time-intensive manual parameter 37 

tweaking. Implementation in doepipeline makes our methodology accessible and user-38 

friendly, and allows for automatic optimization of tools in a wide range of cases. The source 39 

code of doepipeline is available at https://github.com/clicumu/doepipeline and it can be 40 

installed through conda-forge. 41 

Keywords 42 
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Background 46 

Bioinformatic software tools frequently offer a number of outcome-related parameters for the 47 

user to set or change from their default values. These parameters may be different forms of 48 

input filters, or alter the behavior of the running algorithm. Parameters may be either 49 

quantitative or qualitative (multi-level) in nature. While it is advantageous to customize tools 50 

to a specific situation, it is not always obvious what effect changing parameters will have on 51 

the outcome. This may be due to lack of documentation, poor understanding of the algorithm, 52 

or interaction effects between parameters that are difficult to foresee. Additionally, software 53 

tools are commonly combined into pipelines, for example when calling genetic variants from 54 

raw sequence reads [1,2]. Pipelining tools in this manner further increases the complexity of 55 

selecting optimal parameter settings by increasing the numbers of both parameters and 56 

potential interaction effects. The settings for a particular data processing pipeline may also 57 

have to be tailored to the type of technology that was used to generate the data, for example 58 

the different platforms available for DNA sequencing which yield different error profiles [3]. 59 

In general, the strategy for selecting parameter settings therefore typically consists of using 60 

values derived from personal or peer experience and obtained in a trial-and-error fashion, or 61 

simply retaining the default values. This kind of non-systematic selection of parameter 62 

settings runs the risk of producing sub-optimal results. 63 

The combined ranges of all possible parameter settings form a parameter space. To find the 64 

optimal point in the parameter space, an exhaustive brute-force search, commonly called a 65 

grid search, simply trying all possible combinations, is guaranteed to find the optimum. Since 66 

the number of combinations increases exponentially, exhaustive searching quickly becomes 67 

unfeasible as the number of parameters, and their ranges, grow. Instead, statistical Design of 68 

Experiments (DoE) can be used to span and investigate the parameter space in an efficient 69 

manner [4]. DoE aims to maximize information gain while minimizing the number of 70 
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experiments required [5]. This is done by introducing variation into the system under 71 

investigation in a structured manner in order to explain how the parameters (factors) 72 

influence the result (response). This variation is introduced according to statistical designs for 73 

simultaneously varying the factor settings at a specific set of values (levels), and the system is 74 

modeled using statistical methods, for example with Ordinary Least Squares (OLS) 75 

regression [5–7]. The simplest type of statistical design is the full factorial design (FFD) 76 

where all combinations of factor levels are investigated in an exhaustive manner, meaning 77 

that they quickly become impracticable. To greatly reduce the number of experiments 78 

required, fractional factorial designs (FrFD) are used to investigate a structured subset of the 79 

FFD [6]. The problem is that FrFD are not trivial to use in situations where there are more 80 

than two levels to investigate, and that there is no obvious way to combine qualitative and 81 

quantitative variables. Recently, fractional factorial designs have been generalized into the so 82 

called generalized subset design (GSD) [8]. GSDs are balanced and near-orthogonal multi-83 

level and multi-factor subset designs capable of mixing quantitative and qualitative factors, 84 

allowing for the investigation of a large and diverse set of parameters in an efficient manner. 85 

Compared to grid search, GSDs reduce the number of runs required to explore an equivalent 86 

parameter space by an integer factor, also called the reduction factor. 87 

Although DoE is primarily used in analytical chemistry, a DoE approach has previously been 88 

applied by Eliasson et al to optimize software parameter settings in a liquid chromatography-89 

mass spectrometry (LC-MS) metabolomics data processing pipeline [9]. In essence, this 90 

approach consists of sequentially updating a statistical design based on the predicted optimal 91 

configuration of settings, until they converge at an optimum. We build upon the approach 92 

proposed by Eliasson et al, and have developed a strategy for automated optimization of 93 

software parameter settings. We extend Eliasson et al’s approach with a screening phase 94 

using the recently developed GSD to efficiently span a much larger parameter space. We also 95 
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make it possible to optimize multiple responses simultaneously. This extended approach may 96 

be used both for optimization of individual tools and for multiple tools organized into a 97 

pipeline. One crucial component is a well-defined objective function that you wish to 98 

minimize or maximize, i.e. there must be some way to objectively determine how well the 99 

pipeline is performing. Our strategy is software-agnostic and is implemented as a user-100 

friendly Python package - doepipeline. 101 

In this article, we outline our DoE-based strategy for a systematic approach to optimizing 102 

multi-level and multi-step data processing workflows, and exemplify the application of 103 

doepipeline with four cases; 1) de-novo assembly of a bacterial genome, 2) scaffolding of 104 

contiguous sequences (contigs) of a bacterial genome using 3rd generation sequencing 105 

(nanopore) data, 3) k-mer taxonomic classification of long noisy sequence reads generated by 106 

ONT MinION sequencing units, and 4) genetic variant calling in a human sample. 107 

Methods 108 

We propose an approach for the optimization of software parameters, based on methods 109 

derived from statistical design of experiments. Our approach, which has been implemented in 110 

a python package (doepipeline), can be divided into two distinct phases: 111 

1. Screening using a generalized subset design to find an approximate optimum. This 112 

phase also serves to find the best choice of categorical variables. 113 

2. Iterative optimization, starting from the best point found by screening, based on the 114 

algorithm by Eliasson et al[9]. This phase optimizes only quantitative variables, 115 

meaning that categorical variables are fixed at the best values found during phase 1. 116 

The screening and optimization phases are schematically illustrated in Figure 1 and described 117 

in more detail in the following subsections. Prior to screening and optimization, the user 118 

specifies what parameters to use as factors in the designs, whether they are categorical or 119 
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numerical, and the permitted categories or value spans to be investigated. The user also 120 

specifies what process outcomes to use as response, and whether it should be maximized, 121 

minimized or reach a target value. In cases with several responses the user also needs to 122 

specify low/high limits and the target for each response. The responses are then re-scaled 123 

according to these limits and targets and combined into a single response using the geometric 124 

mean according to Derringer & Suich desirability functions [10]. In brief, when there are 125 

multiple responses each individual response is rescaled to be in the interval between 0 and 1, 126 

and it is 0 when outside accepted limits and 1 when better than the target. The rescaled 127 

responses are then combined into the overall desirability using the geometric mean. 128 

Figure 1 - Schematic visualization of doepipeline design space movement. Example of 129 

optimization of two factors (A and B) through both the screening and the optimization phase, 130 

completed in 3 iterations. Each dot represents an executed pipeline with the parameters set by 131 

factors A and B. Triangles represent executed pipelines using the optima of an Ordinary 132 

Least Squares (OLS) model calculated in each optimization iteration. Red dots and triangles 133 

represent the best configuration of factors found in each iteration. Dashed lines represent the 134 

current high and low parameter settings in each iteration. Screening phase: a GSD using three 135 

levels and a reduction factor of 2 is used to span the design space. The pipelines are executed 136 

with the factor configurations suggested by the GSD and an approximate optimum is found 137 

(red dot). Optimization phase: in iteration 2, an optimization design is created around the best 138 

configuration found in the screening phase (black dots). In iteration 3, the design space is 139 

moved in the direction of the configuration of factors that produced the best result (red 140 

triangle) in iteration 2. doepipeline halts when the best response is produced by a 141 

configuration of factors that lies close to the center point (red triangle in iteration 3). 142 
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Screening for Approximate Optimum 143 

The purpose of the screening phase is to span the full search space to find regions with close 144 

to optimal performance. Screening is performed by executing the specified pipeline using 145 

combinations of factor configurations given by a GSD. Using a GSD effectively reduces the 146 

number of experiments to run, while optimally spanning the search space (Fig. 1a). The 147 

number of experiments required to investigate a given set of factors at a number of levels is 148 

approximately an integer fraction of the total number of possible combinations, which 149 

depends on the number of factors and their levels. A greater number of levels increases the 150 

resolution of the space searched during screening but also exponentially increases the number 151 

of runs required. We have found that five levels per numeric factor span large search spaces 152 

with a high enough resolution to give satisfactory results, but it is possible to set the number 153 

of levels individually for each factor in doepipeline. Similarly, we have found that the integer 154 

fraction of the full design that the GSD should represent can be safely set at the number of 155 

factors included in the design. However, this may also be controlled by the user by means of 156 

the reduction factor setting in doepipeline. 157 

The screening phase also serves the purpose of setting the category to use for each categorical 158 

variable. For subsequent optimization, qualitative factors are fixed at the category of the best 159 

factor configuration according to the screening. By fixing qualitative factors, only numeric 160 

factors are investigated during the following optimization phase. 161 

Optimization of Numeric Factors 162 

After selecting the best factor configuration during screening, numerical factors are optimized 163 

using response surface designs. The levels used in the screening design are here applied as 164 

anchor points for the new optimization design. A response surface design, for instance a 165 

central composite design, is constructed around the best configuration found. That is, the 166 
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configuration of factor levels found to produce the best result during the screening phase is 167 

initially set as the center point in the new response surface design (Fig. 1b). If this 168 

configuration lies at the edge of a factor’s global design space (as defined by its min and max 169 

allowed values), the factor’s center point is shifted to the nearest screening level instead. This 170 

is done in order to keep the design within the global design space. After having set the center 171 

point for the new design, the high and low settings for each numeric factor are set to lie at the 172 

midpoints between the nearest screening levels respectively above and below the chosen 173 

center point, as indicated by the dashed line in Figure 1b. The span of each factor is then 174 

defined as the difference between the high and low settings. As during screening, the 175 

specified pipeline is executed using factor configurations given by the response surface 176 

design. 177 

During each optimization iteration, pipeline performance is approximated using OLS 178 

regression [7]. By fitting a regression model the optimal configuration can be found by 179 

optimizing the response predicted according to the model. The factors included in the OLS 180 

model are selected either using a best subset approach or by using greedy forward selection; 181 

the latter is preferred when more than four factors are included in the design. If the predictive 182 

power (Q2) of the model is acceptable (Q2 > 0.5), the model is used to predict an optimal 183 

parameter configuration. Each numeric factor’s settings are then updated based on the best 184 

result in a manner similar to the algorithm given by Eliasson et al [9]. For each factor, the 185 

difference between the predicted best factor setting and the factor center point is calculated. If 186 

this distance is greater than 25% of the span of the factor, the high and low settings of the 187 

factor are updated in the direction of the best result. The default step length is 25% of the 188 

span of the factor, i.e. the high and low settings are moved 25% of the step length (Fig. 1b, 189 

iteration 3). We found that the algorithm did not always converge at this stage, but moved the 190 

design space back and forth between iterations. To alleviate this problem, we implemented 191 
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design space shrinkage, which shrinks the design space span through multiplication by a so 192 

called shrinkage factor (typical value is 0.9, corresponding to 10 % shrinkage) between 193 

iterations, and found that it successfully improved convergence. If the proposed updated 194 

factor settings lie outside the predefined design space limits, the design is instead placed at 195 

the factor limits while keeping the same factor span. If the design has not moved between two 196 

iterations, or the best response is not improved upon compared to the previous iteration, the 197 

algorithm has converged and halts. If the optimization algorithm halts and responses have not 198 

reached their minimally acceptable values, the screening results are re-evaluated and a new 199 

optimization phase is run based on the results of the next best screening. At the end of the 200 

optimization iterations the factor configuration that has produced the best result throughout 201 

the iterations is chosen as the optimal configuration. 202 

Sequence data used in cases 203 

The Francisella tularensis sp. holarctica strain FSC200 [11], and a genetic near neighbor 204 

Francisella hispaniensis strain FSC454 were chosen as an example dataset in case 1 to 3 of 205 

this study. The genome assembly of FSC200 is available as RefSeq assembly accesssion 206 

GCF_000168775.2 and genome assembly of FSC454 as RefSeq assembly accession 207 

GCF_001885235.1. Previously, generated Illumina HiSeq reads of FSC200 are available as 208 

NCBI SRA run SRR518502. This latter dataset was subsampled down to an estimated 209 

coverage of 100X (1.9M 100bp reads) for use in case 1, subsampling was performed with 210 

seqtk [12](v. 1.2-r94, installed through bioconda [13]). 211 

New sequencing libraries were prepared from DNA extractions of the two bacterial strains 212 

using the SQK-LSK108 Ligation Sequencing Kit according to the manufacturer's 213 

specifications and then sequenced using a FLO-MIN107 MinION flow cell (Oxford 214 

Nanopore Technologies, UK). MinION sequence reads for FSC200 are available as NCBI 215 
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SRA run SRR9290761, and for FSC454 as NCBI SRA run SRR9290851. Subsampling down 216 

to 50 000 from 132 259 MinION reads for FSC200 and 15 000 from 15757 MinION reads for 217 

FSC454 was performed with a custom script, and the sequences were trimmed to a maximum 218 

length of 3000 bp as well as being sorted by length to increase classification speed. 219 

Case 1: de-novo assembly of a bacterial genome 220 

In this example, we optimize the paired-end sequence assembler ABySS [14,15] (v. 2.0.2, 221 

installed through bioconda [13]) to assemble the genome of an isolate of Francisella 222 

tularensis ssp. holarctica (FSC200). ABySS has a total of 27 different parameters that can be 223 

specified by the user. Some are directly related to the running time and memory usage of the 224 

software (such as number of threads to use or bloom filter size), while others are related to 225 

the quality and/or characteristics of the resulting assembly (such as the size of k-mer or the 226 

minimum mean k-mer coverage of a unitig). For this example, we focused on the latter type 227 

of parameter. Hence, all parameters chosen to be part of the optimization were deemed to 228 

have a potential effect on the resulting assembly. The chosen parameters were: size of k-mer 229 

(k) (KMER), minimum mean k-mer coverage of a unitig (c) (MIKC), minimum alignment 230 

length of a read (l) (MIAL), and minimum number of pairs required for building contigs (n) 231 

(MIPA). 232 

For this optimization we set the investigated factor space so that the default value for each 233 

factor was included within the span of each factors’ min and max values (Table 1). Although 234 

central to the ABySS algorithm, there is no default value for the k-mer size parameter. But 235 

since the value of the k-mer size is bounded by the actual read length it was still possible to 236 

define the GSD search space in a satisfactory way. For purposes of comparison, however, we 237 

considered a k-mer size of 31 to be the default setting. In this example we ran the initial 238 

screening with a reduction factor of 8, and used Central Composite Face-centered (CCF) 239 
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designs in the following optimization iterations. We used a shrinkage factor of 0.9 (-s), and 240 

set the model selection method (-m) to greedy to speed up model selection. All other 241 

doepipeline settings were kept at default values. 242 

There are many metrics that can be used to evaluate the quality of a de-novo assembly, and 243 

which specific ones to use depends on what the assembly is to be used for [16,17]. Example 244 

metrics include the number of resulting contiguous sequences (contigs), the amount of total 245 

sequence covered by the assembly, and the N50 value. The latter is the length of the contig 246 

that, when the contigs are ordered by size, spans the midpoint of the total assembly. Hence, 247 

the N50 value can be viewed as an assessment of the quality of the assembly in terms of 248 

contiguity. 249 

We used the total size of the assembly (tSeq), the number of contigs (nSeq), and the N50 250 

value as responses. Since this optimization contained multiple responses, it was necessary to 251 

set low/high acceptable limits for each response, as well as target values to reach. The low 252 

and high limits for the responses were set with respect to the result obtained using the default 253 

settings with the same input data, meaning that the worst acceptable results are the default 254 

results. The target for the tSeq response was set to the reference genome size for FSC200 255 

[11], while the targets for the nSeq and N50 responses were set to values that were 256 

considered achievable (Table 2). 257 

The data input to ABySS consisted of the subsampled Illumina HiSeq 2500 sequence data for 258 

FSC200 (see Sequence data used in cases). Prior to calculating the values for the responses 259 

we applied a length-based filter to the assembly using Fastaq [18] (v. 3.17.0), keeping only 260 

those contigs more than 1000 bp in length. This filter was also applied when calculating the 261 

response from the pipeline using the default parameter configuration. This is done because 262 

the very short contigs are typically made up of short repetitive sequences, and removing them 263 
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simplifies the assembly graph and calculations on it. The software seqstats [19] was used to 264 

calculate the response values from the filtered assembly. 265 

Case 2: scaffolding of a bacterial genome assembly using long reads 266 

Assembling a genome with short reads typically results in a fragmented assembly, consisting 267 

of a number of contigs. The way these contigs are connected with each other - in terms of 268 

ordering, distance, and direction - remains unknown. The reason for the fragmentation is that 269 

certain stretches of genomes have low complexity and are therefore impossible to resolve 270 

with short reads. One way of stitching together the contigs of an assembly is by using paired 271 

reads with long insert sizes, or - as is increasingly common - using long reads from, for 272 

example, the Nanopore or PacBio platforms. The long reads have an increased chance of 273 

spanning the low-complexity regions, effectively anchoring both ends of a pair of contigs 274 

together and thus resolving the gap. The process of connecting contigs together is referred to 275 

as scaffolding, and the resulting sequences are known as scaffolds. 276 

SSPACE-LongRead [20] (SSPACE) uses long reads, such as those produced by the PacBio 277 

or Nanopore platforms, to scaffold an assembly. When running the software, the user can 278 

manipulate a total of six parameters that relate to the resulting scaffolds. We investigated 279 

whether manipulating some of the parameters would yield a better result than that achieved 280 

by running SSPACE (v. 1-1) with default parameter settings. We chose to optimize the 281 

minimum alignment length to allow a contig to be included for scaffolding (a) (ALEN), the 282 

minimum gap between two contigs (g) (GLEN), the maximum link ratio between the two 283 

best contig pairs (r) (RRAT), and the minimum identity of the alignment of the long reads to 284 

the contig sequences (i) (IDEN). As response, we maximized the N50 value of the resulting 285 

scaffolded assembly. 286 
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We set the investigated space for the factors so that the default value for each factor was 287 

included within the span of each factor's min and max values (Table 3). For the optimization 288 

phase following the screening phase we chose to use a CCF design for the experiments. The 289 

reduction factor for the GSD was kept at the default value, i.e. the number of factors in the 290 

investigation, which in this case was 4. The model selection method (-m) was set to greedy 291 

and the shrinkage factor (-s) to 0.9. All other doepipeline settings were kept at default values. 292 

The input assembly had been constructed with ABySS [15] (v. 2.0.2) (k=71) and subjected to 293 

a contig length filter (>1000 bp). It consisted of 94 contigs between 1,685 and 87,479 bp in 294 

length, had an N50 of 27,549 bp, and totaled 1,800,912 bp prior to scaffolding. The assembly 295 

was constructed from the FSC200 Illumina HiSeq 2500 sequence data (see Sequence data 296 

used in cases). We include the assembly at the doepipeline github repository. The read set 297 

used for scaffolding consisted of 132,258 nanopore reads of between 163 and 108,214 bp in 298 

length (N50=679 bp), totaling 104,374,862 bp. Seqstats [19] was used to calculate the 299 

response from the scaffolded assembly. 300 

Case 3: k-mer classification 301 

K-mer classification is a method used to assign taxonomic labels to short DNA sequence 302 

reads [21]. The method requires a precomputed database of k-mers generated from previously 303 

known and assembled genomes, for example all complete genomes in the NCBI database. 304 

When classifying a sample, the k-mer set of each read is calculated and compared with the 305 

database of known k-mers. The read is then assigned to the most specific taxonomic class 306 

within the database using the highest scoring k-mer root-to-leaf classification path following 307 

the taxonomic hierarchy. This method is implemented in, for example, the software package 308 

Kraken [22]. 309 
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Kraken also uses a least common ancestor method, which re-classifies reads that are assigned 310 

to multiple taxonomic sub-classes under a parent node. A read with non-unique leaf 311 

assignment will then be assigned to the least common ancestor where there is little or no 312 

assignment conflict instead. The k-mer classification method implemented in Kraken can be 313 

applied to longer error-prone reads even though it is optimized for short accurate reads. 314 

However, it will be less accurate due to the different (higher) error frequencies and will 315 

therefore generate an increased rate of false positives. 316 

In this study we used the software KrakenUniq [23] (v. 0.5.2). KrakenUniq builds upon the 317 

Kraken engine but additionally records the number of unique k-mers as well as coverage for 318 

each taxon. Three factors were used in the optimization: precision (PRES), minimum k-mer 319 

hits (MH) and a filter (FILT). We chose to use a CCF design in the optimization phase of 320 

doepipeline, the model selection method (-m) was set to greedy, and the shrinkage factor (-s) 321 

to 0.9. All other doepipeline settings were kept at default values. The F1 score (Eq. 1), which 322 

is the harmonic mean of precision and recall, was used as response. 323 

�1 � 2 �
� �������	
 � ����

 �

� �������	
 � ����

 �
   (Eq. 1) 324 

The input data were nanopore sequenced reads from two Francisella species, a target, 325 

Francisella tularensis holarctica (FSC200) and one near neighbor, Francisella hispaniensis 326 

(FSC454). The dataset was reduced to contain 50,000 F. tularensis reads and 15,000 (max) F. 327 

holarctica reads of maximum length 3000 bp, to increase the speed of classification and 328 

reduce potential bias (see Sequence data used in cases). 329 

Case 4: genetic variant calling 330 

A single genetic difference with respect to a reference genome is referred to as a genetic 331 

variant, and the process of identifying these variants from sequence data is referred to as 332 
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variant calling. Calling the simplest form of genetic variant, single nucleotide variants (SNV), 333 

from standard Illumina paired-end data is considered trivial nowadays, with F1 scores 334 

reaching 0.98 [24]. Because of this, we opted to optimize calling of short insertions and 335 

deletions (indels), which are slightly more complex and are harder to call correctly [24]. 336 

We used raw sequence data and high-confidence genetic (or “truth”) variant calls from a 337 

single well-studied individual, commonly known as NA12878. The raw sequence data 338 

(2x100 bp, 50X depth), which form part of the Illumina Platinum Genomes (PG) [25], were 339 

retrieved from the European Nucleotide Archive (ENA), study accession ERP001960 (run: 340 

ERR194147). The truth callset was a “hybrid” dataset, meaning it was produced by 341 

combining callsets obtained with different technologies and methodologies [25–27] as 342 

described in Krusche et al [28]. The truth set was downloaded from the PG GitHub repository 343 

[29]. 344 

The genome analysis toolkit (GATK) best practices workflow [1,2] was used as a guide for 345 

this variant calling case. Raw data processing was carried out in accordance with GATK best 346 

practices up to the point of having analysis ready reads, after which doepipeline was applied 347 

to optimize the variant calling and filtering steps. First, PICARD (v. 2.18.1) [30] was used to 348 

convert the sequence reads (FASTQ format) into unmapped BAM format (uBAM) and to 349 

mark Illumina adapters. We then mapped the reads to the hg19 reference (part of the GATK 350 

resource bundle) using BWA-MEM (v. 0.7.15 -r1140) [31,32] and marked duplicates using 351 

PICARD. Finally, Base Quality Score Recalibration (BQSR) was carried out using GATK (v. 352 

3.8-1-0) [33] to obtain analysis-ready reads. 353 

This case aimed to optimize variant calling and variant filtering, the remaining steps in the 354 

GATK best practices after obtaining analysis-ready reads. The calling was carried out using 355 

HaplotypeCaller, and the filtering was carried out using VariantFiltration, both tools within 356 
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GATK. HaplotypeCaller offers around 20 adjustable parameters while the VariantFiltration 357 

tool expects custom-specified cutoffs for annotations in the variant call format (VCF) file. 358 

GATK suggests four annotations by which to filter indels. In order to include a meaningful 359 

number of parameters at each step we chose to optimize the two steps sequentially. 360 

Performing sequential optimization allowed us to investigate 4 parameters for each step, 8 in 361 

total. We first optimized the calling step while keeping the parameters in the filtering step at 362 

their default settings. We then optimized the parameters for the filtering step using the output 363 

from the highest scoring experiment in the first step. For the calling step we chose to 364 

optimize the global assumed mismapping rate for reads (globalMAPQ) (GMQ), the minimum 365 

base quality for calling (mbq) (MBQ), the minimum reads per alignment start 366 

(minReadsPerAlignStart) (RAS), and the minimum confidence threshold for calling 367 

(stand_call_conf) (SCC). For the filtering step we chose to optimize the quality by depth 368 

(QD) (QD), the read position rank sum test (ReadPosRankSum) (RPRS), the Fisher test for 369 

strand bias (FS) (FS), and the strand odds ratio (SOR) (SOR). To further reduce the size of 370 

the optimization, we chose to optimize only against variants on chromosome 1. However, we 371 

screened for any overfitting of the parameters by executing the variant calling and filtering 372 

pipeline across all autosomes and chromosome X with the optimized parameters. 373 

The following settings were used for both optimizations. We set the space investigated for the 374 

factors so that the default value for each factor was included within the span of each factor's 375 

min and max values (Table 5). The design of choice for the screening phase was the CCF 376 

design. The reduction factor for the GSD was increased to 8, reducing the number of 377 

experiments. The model selection method (-m) was set to greedy and the shrinkage factor (-s) 378 

to 0.9. All other doepipeline settings were kept at default values. 379 

Performance metrics and tools to assess the accuracy of variant calling in a standardized 380 

manner are crucial, and the benchmarking team of the Global Alliance for Genomics and 381 
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Health (GA4GH) have made significant progress with respect to this [28]. The GA4GH 382 

benchmarking team has developed a benchmarking tool, hap.py [34], that can compare a 383 

high-confidence (or “truth”) variant callset with a user-made single-sample callset, also 384 

known as the query callset, and output performance metrics. For a certain set of confident 385 

regions (specified by BED file), concordant variants in the two callsets should be considered 386 

true positives (TP), while discordant variants should be considered either false positives (FP) 387 

or false negatives (FN) depending on which callset they appear in. Hap.py also outputs the F1 388 

score (see case 3 methods) for variants passing the VCF filters, which was used as the 389 

response in this case. 390 

Grid search comparison 391 

We compared the results from doepipeline to those from grid search, which is a common 392 

methodology for optimizing parameters. Grid search is done by evaluating the parameter 393 

performance for all possible combinations of parameter settings, the so-called parameter grid. 394 

For the comparison to be relevant, we performed the grid search at the same resolution as the 395 

GSD screening step in each case. In other words, we tested all possible combinations of the 396 

factor setting levels (typically 5 levels per factor). 397 

doepipeline 398 

Implementation 399 

doepipeline is fully implemented in the Python programming language and source code is 400 

available for download at github (https://github.com/clicumu/doepipeline) and installable 401 

with conda-forge [35,36] and through PyPi. Generation of statistical designs is carried out 402 

through the python package PyDOE2 [37], in which the GSD has been implemented. 403 
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Usage 404 

Configuration of the optimization is done in a structured YAML file with sections for the 405 

experimental design and for the pipeline steps (commands) to run. The design section 406 

includes the names of the factors investigated and their min/max values (design space), the 407 

responses and their goals (minimize/maximize), and the type of design to use in the 408 

optimization phase. The pipeline section is where each individual pipeline step is specified. 409 

In each iteration, doepipeline takes the pipeline steps as configured and substitutes the 410 

parameters under investigation with the values given by the statistical design. A batch script 411 

is created for each pipeline step, with any parameter values substituted, and the execution of 412 

it is controlled by doepipeline. Pipeline steps are executed either in parallel mode, where all 413 

experiments are run at the same time, or in sequential mode where each pipeline with all of 414 

the steps is executed in sequence. For reference, we provide example YAML files at the 415 

github repository. 416 

Today, scientific data processing can include vast amounts of data and/or require substantial 417 

computing power. In such cases, data processing is commonly performed on compute clusters 418 

that typically use some queueing system in order to handle all user requests for resources. An 419 

example of such a queueing system is the Slurm Workload Manager [38] (Slurm). To 420 

accommodate users of compute clusters, we have implemented Slurm support for 421 

doepipeline. If using Slurm, specify the Slurm options in the YAML file as you would when 422 

running a regular Slurm job. The Slurm options are transferred by doepipeline to the batch 423 

script which is then submitted to Slurm using sbatch. 424 

After optimization, the parameter values suggested by doepipeline are saved in the working 425 

directory for the optimization. Additionally, there is a rich log file that can be investigated to 426 

follow the workflow. 427 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2019. ; https://doi.org/10.1101/504050doi: bioRxiv preprint 

https://doi.org/10.1101/504050
http://creativecommons.org/licenses/by/4.0/


20 
 

Results 428 

Case 1: de-novo assembly of a bacterial genome 429 

The goal of de-novo assembly is to combine raw sequence reads into a representation of an 430 

organism’s genome, i.e. to obtain as contiguous a genomic sequence as possible. Due to the 431 

characteristics of the genome sequence itself, in combination with short reads, this process 432 

can be difficult. For example, sequence reads from less complex segments of the genome will 433 

map to more than one position, causing ambiguities that are not possible to resolve, and this 434 

in turn leads to fragmentation of the assembly. 435 

One popular sequence assembler is ABySS [15], which provides 27 different user-controlled 436 

parameters. We set up an example for optimization of de-novo assembly software parameters 437 

using ABySS (see Methods section). doepipeline ran for two iterations before halting. Thus, 438 

the best response was obtained in the first iteration, in the GSD screening phase. The 439 

experimental sheet and corresponding response values from the GSD screening and iteration 440 

2 are included as Additional file 1. Using the optimized parameter settings (Table 1), we 441 

obtained a 1.6% and 13.1% increase in the investigated responses tSeq and N50, and a 2.2% 442 

reduction in nSeq as compared to when abyss-pe was run with default settings (Table 2). 443 

Optimizing the parameters using the grid search option required 625 experiments to be run, 444 

and it resulted in the same combination of parameter settings as when using doepipeline (see 445 

Additional file 2 for grid search result). By comparison, doepipeline required 97 experiments 446 

to be run. 447 

Table 1 - Factors in the de-novo assembly case. The four factors investigated in the de-448 

novo assembly case are described below. The letter in parenthesis following the parameter 449 

name is the parameter used in the abyss-pe command line interface. Min and max values 450 

define the design space. *: There is no default value explicitly specified by the ABySS 451 
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documentation. However here we used a k-mer size of 31 for comparison purposes. **: This 452 

refers to the square root of the median k-mer coverage, which is affected by the sequencing 453 

depth and choice of k-mer size. The optimized values are the combination of factor values 454 

that produced the best outcome, as found by doepipeline. 455 

Parameter Abbr. Type Min Max Default Optimized 

Size of k-mer (k) KMER Ordinal 20 90 31* 38 

Minimum mean k-
mer coverage of a 
unitig (c) 

MIKC Quantitative 2 15 sqrt(median)** 8.5 

Minimum alignment 
length of a read (l) 

MIAL Ordinal 20 60 40 30 

Minimum number of 
pairs required for 
building contigs (n) 

MIPA Ordinal 5 15 10 15 

 456 

Table 2 - Responses in the de-novo assembly case. The three responses that were measured 457 

in the de-novo assembly case are described below. *: Responses that have the criterion 458 

maximize have a low limit, and those with the criterion minimize have a high limit. **: 459 

Default values are based on using a k-mer size of 31 and leaving all other parameters 460 

unchanged. 461 

Response Abbr. Criterion Low/high limit* Target Default** Optimized 

Total 
sequence in 
assembly (bp) 

tSeq Maximize 1,830,000 1,894,157 1,835,427 1,864,165 

Number of 
contigs in 
assembly 

nSeq Minimize 95 85 91 89 

N50 N50 Maximize 28,000 35,000 28,149  31,847 

 462 
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Case 2: scaffolding of a bacterial genome assembly using long reads 463 

Scaffolding is the process of connecting together contigs obtained from an assembly step. In 464 

this example we aimed to optimize parameters for the scaffolding software package 465 

SSPACE-LongRead [20], which relies on long reads to span the low-complexity regions that 466 

are typically found between the contigs of an assembly. doepipeline ran for three iterations 467 

before halting, obtaining the best result in the second iteration. The response values and 468 

parameter settings investigated in each iteration are included in Additional file 3. The 469 

response (N50) value obtained when using the default parameter settings was 1,141,889 bp. 470 

Using the optimized parameter settings (Table 3) resulted in a 66.9% increase in the response 471 

(1,905,883 bp). Optimizing the parameters using the grid search option required 625 472 

experiments to be run, compared to 211 experiments using doepipeline, and it resulted in a 473 

best N50 value of 1,868,309, which is slightly lower than the result obtained using 474 

doepipeline (see Additional file 4 for grid search result). 475 

Table 3 - Factors in the scaffolding case. The four factors investigated in the scaffolding 476 

case are described below. The letter in parenthesis following the parameter name is the 477 

parameter used in the SSPACE command line interface. Min and max values define the 478 

design space. The optimized values are those that in combination produced the best outcome, 479 

as found by doepipeline. 480 

Parameter Abbr. Type Min Max Default Optimized 

Minimum alignment 
length to allow a contig 
to be included for 
scaffolding (a) 

ALEN Ordinal 0 5000 0 0 

Minimum gap between 
two contigs (g) 

GLEN Ordinal -3000 3000 -200 -750 

Maximum link ratio 
between two best contig 
pairs (r) 

RRAT Quantitative 0.1 0.7 0.3 0.325 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2019. ; https://doi.org/10.1101/504050doi: bioRxiv preprint 

https://doi.org/10.1101/504050
http://creativecommons.org/licenses/by/4.0/


23 
 

Minimum identity of the 
alignment of the long 
reads to the contig 
sequences (i) 

IDEN Ordinal 30 90 70 82 

Case 3: k-mer classification 481 

K-mer classification is used to gather information about the species content of a metagenomic 482 

sample. It is possible to visualize the general distribution of species through the reads 483 

classified or to identify the presence/absence of reads classified to specific targets. By using 484 

third generation sequencing techniques, such as Oxford Nanopore, it is possible to classify 485 

reads from an unknown sample in real time. But due to the long error-prone reads produced 486 

by third-generation sequencing machines, there is a greater risk of misclassification. At the 487 

genus level this is not usually a problem. But when it comes to discriminating between 488 

pathogenic and non-pathogenic species, misclassification may become problematic; in 489 

particular false positive signals of pathogenic species may be obtained. We investigated the 490 

KrakenUniq [23] (v. 0.5.2) algorithm and used doepipeline to find optimized settings for long 491 

error-prone reads in order to increase the ratio of true positives to false positives using the F1-492 

score as response. KrakenUniq also has a filter that may reduce the number of false positive 493 

reads. The filter will adjust each assigned read up the tree until the desired threshold is met, 494 

where the threshold is the number of assigned k-mers divided by  the number of unique k-495 

mers in that category [23]. 496 

Optimization ran for three iterations before halting and the best results were found during the 497 

second iteration. The experimental sheet and corresponding response values from the GSD 498 

screening and optimization iterations are included in Additional file 5. Using the optimized 499 

parameter settings (Table 4), we were able to increase the F1 score by 0.065% from 0.993690 500 

to 0.994341, compared to when running KrakenUniq with default settings. 501 
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Optimizing the parameters using the grid search option required 125 experiments to be run, 502 

compared to 76 experiments using doepipeline. The grid search resulted in a best F1 score of 503 

0.994169 which is slightly lower than the result obtained using doepipeline (see Additional 504 

file 6 for grid search result). 505 

Table 4 - Factors in the k-mer classification case. The three factors investigated in the k-506 

mer case are described below. Min and max values define the design space. The optimized 507 

values are those that in combination produced the best outcome, as found by doepipeline. *: 508 

The KrakenUniq documentation to our knowledge does not state what the default value is. 509 

Parameter Abbr. Type Min Max Default Optimized 

Minimum k-mer hits MH Ordinal 1 200 * 14 

Standard deviation of 
the relative errors of the 
estimate 

PRES Ordinal 10 18 12 17 

Minimum tax-ID score 
threshold 

FILT Quantitative 0 0.05 0 0 

 510 

Case 4: genetic variant calling 511 

Variant calling is the process of determining genetic variants (or mutations) from genetic 512 

sequence data. In this case we aimed to find optimized parameters for a widely used variant 513 

calling framework, the genome analysis toolkit (GATK). Specifically, we sequentially 514 

optimized two of the steps carried out by GATK: variant calling and variant filtering (see 515 

methods). 516 

In the optimization for the first step (variant calling), doepipeline ran for three iterations 517 

before halting, obtaining the best result in the second iteration (F1=0.9707). In the 518 

optimization for the second step (variant filtration), doepipeline ran for four iterations before 519 

halting. The best result (F1=0.9716) was obtained in the fourth iteration when the optimum 520 
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predicted by the model was validated. This optimum was too far from the design space edges 521 

for doepipeline to move the design space and initiate another iteration, and thus it halted 522 

execution. The response values and parameter settings investigated in each iteration are 523 

included in Additional file 7 (variant calling step) and 8 (variant filtering step). The included 524 

parameters and their default and optimized settings are listed in Table 5. 525 

As the optimization was performed only on chromosome 1, we wanted to see how well the 526 

optimized parameter settings carried over into a variant calling and filtering pipeline applied 527 

across all autosomes and chromosome X. This analysis resulted in an F1 score of 0.9713, 528 

while using the default settings resulted in an F1 score of 0.9702. 529 

Optimizing the parameters using the grid search option resulted in a best F1 score of 0.9715, 530 

which is marginally lower than the results obtained using doepipeline. Five experiments in 531 

the first step of the grid search optimization (calling) resulted in the same highest F1 score 532 

(see Additional file 9). We therefore ran five parallel instances of the second step of 533 

optimization (filtering) using the different VCF files from the five best experiments in the 534 

first step. This inflated the number of required experiments from the expected 1250 to 3750 535 

experiments in total, compared to 280 experiments with doepipeline. The five parallel 536 

optimizations of step two all yielded the same set of 12 combinations of settings producing an 537 

equally high F1 score (0.9715) (see Additional file 10). Validation across all autosomes and 538 

chromosome X using all 60 combinations of parameter settings (5 times 12) yielded a best F1 539 

score of 0.9712, again marginally lower than for doepipeline. 540 

Table 5 - Factors in the variant calling case. The factors investigated in the variant calling 541 

case are described below. The optimization was carried out sequentially for two main steps, 542 

variant calling and variant filtering, and which step each factor belongs to is indicated. For 543 

the variant calling step, the factor’s corresponding command line flag is given in parentheses 544 

after the parameter name. For the variant filtering step, the corresponding information tag 545 
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annotated in the VCF file is indicated in parentheses. The min and max values define the 546 

design space. The default values for all factors are also indicated; for the calling step they are 547 

the build-in default values of the HaplotypeCaller tool, while for the filtering step the default 548 

values are those recommended by the GATK team. The optimized values are those that in 549 

combination produced the best outcome, as found by doepipeline. 550 

Step Parameter Abbr. Type Min Max Default Optimized 

V
ar

ia
nt

 c
al

li
ng

 

Global assumed 
mismapping rate for reads 
(globalMAPQ) 

GMQ Ordinal 20 55 45 46 

Minimum base quality for 
calling (mbq) 

MBQ Ordinal 5 25 10 10 

Minimum reads per 
alignment start 
(minReadsPerAlignment) 

RAS Ordinal 5 25 10 20 

Minimum confidence 
threshold for calling 
(stand_call_conf) 

SCC Quantitative 5 25 10 5 

V
ar

ia
nt

 f
il

te
ri

ng
 

Quality by depth (QD) QD Quantitative 0 10 2 0.41 

Read position rank sum 
test (ReadPosRankSum) 

RPRS Quantitative -40 0 -20 -37.5 

Fisher test for strand bias 
(FS) 

FS Quantitative 0 250 200 62.5 

Strand odds ratio (SOR) SOR Quantitative 0 20 10 8.16 

 551 

Discussion 552 

Selecting parameter settings for a data processing pipeline is complex, since the influence of 553 

the parameters on the end result is not always obvious. While the value of personal and peer 554 

experience should not be underestimated, our approach provides a systematic way of 555 
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determining optimal settings. Specialized tools to optimize particular bioinformatic software 556 

tools have been proposed previously. For example, VelvetOptimizer [39] can be used to 557 

optimize the k-mer and coverage cutoff parameters of the Velvet assembler [40] and 558 

KmerGenie can be used to make an informed decision on the choice of k-mer in de Bruijn 559 

based assemblers [41]. However, a generalized, software-agnostic optimization approach is 560 

preferable, especially when several tools are used together in a pipeline. 561 

Here we present such a generalized strategy for automated sequential optimization of 562 

software parameters, employing core concepts of DoE methodology. We have implemented 563 

our strategy in a user-friendly python package, doepipeline. The optimization strategy and the 564 

use of doepipeline was exemplified in four bioinformatics use cases; de-novo assembly of a 565 

bacterial genome using Illumina reads, scaffolding a bacterial genome assembly using 566 

nanopore reads, k-mer classification of metagenomic third generation sequencing data, and 567 

genetic variant calling. In all four cases, we saw an improvement in the measured response 568 

variables as compared to when using the default parameter settings. The improvement of the 569 

measured responses in our examples ranged between 0.065% and 66.9%. We compared the 570 

results from doepipeline to results from standard grid searches, and doepipeline achieved 571 

equally good or better results using significantly lower numbers of evaluations/experiments. 572 

Grid search is typically limited to running a single optimization phase evaluating all points in 573 

the parameter grid with no further refinement. This is in contrast to doepipeline, which is 574 

adaptive and refines the parameter settings based on the best results from the previous phase, 575 

allowing it to find better performing parameter settings than grid search. 576 

One of the advantages of our proposed strategy is the use of a GSD in a screening phase prior 577 

to the optimization phase. Compared to Eliasson et al[9], we are able to screen a much larger 578 

design space efficiently prior to optimization using the GSD-based approach. In order for the 579 

optimization phase to converge in a feasible number of iterations, the design space should be 580 
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restricted in some way. Deciding the range of each of the factors without guidance risks 581 

creating too narrow or wide a design space. Instead, the screening allows the user to set up a 582 

relaxed (wide) design space in which to investigate and to approximate the optimal factor 583 

combination. The approximation represents a substantiated initial center point around which 584 

to set up a narrower optimization design. The screening phase will also identify promising 585 

values for any qualitative factors and fix them before optimization. Thus, the GSD screening 586 

phase can be viewed as a systematic approach to restricting the design space for the 587 

subsequent optimization phase. Similar results can be achieved using stochastic optimization 588 

methods such as random search [42], commonly applied within the machine learning 589 

community. Random search can effectively reduce the number of runs required, but the final 590 

results are probabilistic and may not be optimal, depending on each particular random draw. 591 

By using structured space-filling designs, doepipeline deliberately spans more of the search 592 

space rather than relying on randomness. We note that the multi-phase workflow of 593 

doepipeline has conceptual similarities to Bayesian hyperparameter optimization [43], in 594 

refining the parameter choice based on promising parameter regions from earlier iterations. 595 

However, doepipeline uses statistical designs that are guaranteed to fill the parameter space 596 

and structured refinement around promising points rather than randomly sampling promising 597 

regions with higher probability. 598 

The fraction of the full design that a GSD represents can be controlled with the reduction 599 

factor parameter in doepipeline. We ran the optimization of ABySS (case 1) with a GSD 600 

reduction factor of 8, but another optimization of ABySS where a reduction factor of 10 was 601 

used produced the same response values (data not shown) in fewer experimental runs (45 as 602 

opposed to 70). In addition, there was a degree of overlap among the response values in the 603 

GSD iterations (Additional files 1, 3, and 5). Overall, this could indicate that it is meaningful 604 
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to try running the GSD with a higher reduction factor than the recommended default, and/or 605 

reducing the number of levels, further reducing the number of experiments. 606 

Currently, doepipeline leverages cloud computing capability through the Slurm workload 607 

managing system. Given the recent development and consolidation of workflow managing 608 

systems [44] it would be possible to integrate doepipeline with for example SnakeMake [45] 609 

or NextFlow [46], similar to other implementations [47,48]. 610 

During development and testing of doepipeline we saw the design space moving back and 611 

forth between iterations in the optimization phase. We hypothesized that this behavior was 612 

because either the underlying function was not modeled properly or the function was flat 613 

within the investigated design space. To counteract this phenomenon we implemented three 614 

features; i) no prediction of the optimal factor combination if the predictive power (Q2) of the 615 

model was low (default: Q2<0.5), ii) validation of the predicted optimal factor combination 616 

by carrying out the pipeline with those factor settings, and iii) shrinking the span of the 617 

factors between iterations. After implementing these three features, doepipeline consistently 618 

converged to satisfactory results. 619 

Specifying the pipeline in a YAML file allows for flexible configurations of commands to be 620 

run, essentially enabling optimization of any pipeline run on the command line. However, the 621 

number of parameters will typically increase with the length of the pipeline under 622 

investigation. At the same time there is a soft constraint on the number of parameters that can 623 

be investigated simultaneously. This constraint will be related to the problem currently under 624 

investigation and depends on the computational complexity of the pipeline, and on the 625 

available computational and time resources. Instead of doing a global optimization of 626 

parameters, i.e. optimizing the entire pipeline at once, an alternative approach is to run 627 

sequential optimizations in which only a section of the pipeline at a time is optimized while 628 
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keeping the default parameter values for the rest of the pipeline [9]. This type of sequential 629 

optimization is not yet fully implemented in doepipeline and is a feature for future updates. 630 

Sequential optimization of a pipeline currently requires that an optimization is carried out for 631 

each step of the pipeline and that the optimized parameter values so obtained are manually 632 

updated for the subsequent steps of the pipeline.  633 

Conclusion 634 

Our proposed strategy represents a systematic approach to the optimization of software 635 

parameters. Our implementation in the software-agnostic and user-friendly package 636 

doepipeline could potentially serve as a starting point for experimenters and 637 

bioinformaticians who currently rely on default settings or common practice when running 638 

their data processing pipelines. 639 
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