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Abstract 11 
• Under benign conditions, as plants grow, size dependent (allometric) scaling changes mass 12 

allocation between organs. In the face of resource stress plants grow less but also show 13 
plasticity in multiple trait categories, including biomass allocation, morphology and 14 
anatomy. The extent to which size dependent (allometric) vs active (beyond allometric) 15 
responses to resource limitations are consistent with expectations for increasing resource 16 
acquisition potential is poorly understood. Here we assess the impact of allometric scaling 17 
on the direction, magnitude and coordination of trait plasticity in response to light and/or 18 
nutrient limitations in cultivated sunflower (Helianthus annuus).  19 

• We grew seedings of ten sunflower genotypes for three weeks in a factorial of light (50% 20 
shade) and nutrient (10% supply) limitation in the greenhouse and measured a suite of 21 
allocational, morphological and anatomical traits for leaves, stems, fine roots, and tap roots. 22 

• Under resource limitation, more biomass was allocated to the organ capturing the most 23 
limiting resource, as expected. Allometric scaling accounted for a substantial portion of 24 
many trait responses, especially for anatomical traits. Allometric and active responses were 25 
generally aligned in the same direction and for specific leaf area and specific root length 26 
under light and nutrient limitation, respectively, this alignment contributed to more 27 
acquisitive trait values. However, traits not generally associated with resource limitation 28 
showed the greatest active adjustment, e.g. tap root and stem theoretical hydraulic 29 
conductance.  Although light limitation triggered a more pronounced coordinated trait 30 
adjustment than nutrient limitation, factoring out allometric scaling clarified that active 31 
coordinated trait responses to both light and nutrient limitation were similar in scale but 32 
resource specific.   33 

• The substantial contribution of allometric scaling to trait responses that are consistent with 34 
a functional increase in the uptake capacity of the most limiting resource suggests that both 35 
allometric and active trait adjustments need be considered as potentially adaptive. 36 
 37 
 38 

• Keywords: allocation, morphology, anatomy, allometry, phenotypic plasticity, Ks, SLA, SRL 39 
 40 
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Introduction 42 
The extent of plant trait adjustment in response to a changed environment is generally considered 43 
as the plant’s phenotypic plasticity (Nicotra et al., 2010; Valladares et al., 2007). According to theory 44 
(Gedroc et al., 1996; Shippley & Mezianne 2002; Poorter et al., 2012; Robinson et al., 2010), this 45 
plasticity serves to optimize/maximize the uptake of the most limiting resource (Bloom et al., 46 
1985;Chapin, 1991). For example, increased mass allocation to leaves under shade, or to roots under 47 
nutrient limitation alleviates some of the stress caused by resource limitation (Shipley & Maziane, 48 
2002; Sugiura & Tateno, 2011). However, since plants are inevitably smaller under resource stress, a 49 
factor to consider in understanding these traits shifts under resource limitation is how allometric 50 
scaling affects traits (McConnaughay & Coleman 1999; Onsas et al., 2013; Poorter et al. 2015; Reich 51 
2002, 2018; Shipley & Meziane, 2002; Weiner 2004;).  52 

Allometric scaling, as narrowly defined, governs the relationship between mass allocation at 53 
differing plant parts (Weiner 2004). Across and within species this scaling relationship is such that 54 
smaller plants allocate proportionally more mass to leaves than to roots (Poorter et al., 2015).  Thus, 55 
in shade, allometric scaling associated with a smaller plant under limiting resources could be seen as 56 
a strategy to acquire the most limiting resource at a given plant size (Coleman et al., 1994; Müller et 57 
al., 2000; Reich, 2002). This “passive” (Nicotra et al., 2010) or “apparent” (McConnaughay and 58 
Coleman 1999) plasticity predisposes the plant to attune its traits with the available resources and 59 
resource demand. However, there is evidence for active adjustments (adjustments beyond those 60 
accounted for by allometry) that can affect resource uptake. For example, greater plant height for a 61 
given mass under low light condition aids in light uptake (Rice & Bazzaz, 1989). The extent to which 62 
plasticity in a broader range of trait responses (beyond just mass allocation) during resource 63 
limitation is active vs an effect of size dependent (allometric) scaling is poorly understood. 64 

Most research to date governing allometric scaling has focused on broad intraspecific comparisons 65 
of species (Poorter et al. 2015). However, at the intraspecific level there could be population or 66 
genotypic level differences in these scaling relationships. If responses due to allometric scaling and 67 
active adjustments vary in the degree to which they align, and if this variation has a genetic 68 
component, then within species and populations there could be variation in tolerating stress at 69 
different points in the growth cycle.  Moreover, “passive” adjustments in traits associated with size 70 
cannot be a priori regarded as or ruled out as adaptive (cf Nicotra et al. 2010, Poorter et al. 2019). If 71 
traits responses that are consistent with greater ability to take up the most limiting resource have 72 
both allometric and active components, this suggests that the magnitude and alignment of both 73 
components need to be considered when evaluating evidence for functional and putatively adaptive 74 
responses. 75 

Among plant traits, anatomical traits are often overlooked due to time and budget constraints. 76 
However, variation in anatomical traits underlies or contributes to variation in morphological and 77 
physiological traits that have received much attention (John et al., 2017; Kong et al., 2014; Scoffoni 78 
et al., 2015). For example, palisade parenchyma thickness is positively correlated to leaf thickness 79 
(Catoni et al., 2015) and photosynthetic rate (Chatelet et al., 2013). A thicker cortex could provide a 80 
relative larger site for mycorrhizal infection and higher resource uptake in thicker roots, especially 81 
for the arbuscular mycorrhiza (Kong et al., 2014). Root cortex thickness, due to the size of cortical 82 
cells (Eissenstat & Achor, 1999) strongly affects fine root diameter (Gu et al., 2014; Guo et al., 2008). 83 
Exploring how responses in anatomical traits align with those of other traits will enhance our 84 
understanding of how plants adjust to changing environmental conditions from tissue, to organ, to 85 
architecture.  86 
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Across species or populations within a species, plant functional traits are generally expected to 87 
exhibit a coordinated shift due to resource limitation in their typical habitats, i.e., the leaf, stem, root 88 
and whole-plant economics spectrum with acquisitive traits at high resource conditions (Díaz et al., 89 
2016; Fortunel et al., 2012; Reich, 2014; Wright et al., 2004;). Moreover, trait values are thought to 90 
show a coordinated response across all organs, supporting the idea of a whole-plant-based strategy 91 
(Reich, 2014). However, within species, much remains unclear about how the expectation of 92 
integrated trait responses at the ‘whole plant economic spectrum’ (Reich, 2014) level plays out at 93 
the level of environmentally induced plasticity. Especially in terms of coordination among a broad 94 
set of traits and plant organs and how size induced, allometric, plasticity affects this. 95 

To add to our understanding of plant response to resource limitation, here we examined trait 96 
responses to light and nutrient limitation of traits across different trait categories (biomass 97 
allocation, morphology and anatomy) and organs (leaf, stem and root) in cultivated sunflower. Prior 98 
research has shown strong plastic responses to resource limitation and other environmental factors 99 
in Helianthus (Bowsher et al., 2017; Donovan et al., 2014; Masalia et al. 2018; Temme et al., 2019). 100 
Specifically, we sought to answer the following questions:  101 

1) How do mass allocation, organ morphology, and anatomy change with above and below 102 
ground resource limitation, and what role does size scaling of traits play in this?  103 

2) How do traits compare for magnitude of plasticity and what role does size scaling of traits 104 
play in this?  105 

3) Do traits show a coordinated shift due to resource limitation across all organs and what role 106 
does size scaling of traits play in this?  107 

Material and Methods 108 

Experimental design 109 
To address these questions we selected a set of 10 cultivated sunflower genotypes, varying broadly 110 
in biomass based on prior work (Table S1) from a larger diversity panel used for genomic dissection 111 
of traits (Mandel et al., 2011; Masalia et al., 2018; Nambeesan et al., 2015). We conducted a 112 
factorial design of two nutrient treatments (rich and poor) and two light treatments (sun and shade) 113 
at the Botany greenhouses of The University of Georgia USA in March 2018. Achenes were sown in 114 
seedling trays and allowed to grow for seven days, after which each seedling was transplanted to 5 115 
liter (1.3 gallon) pot filled with a 3:1 sand:calcinated clay mixture (Turface MVP, Turface Athletics, 116 
Buffalo Grove, IL). Pots were arranged in a split plot design of 6 replicate blocks or whole-plot. The 117 
light treatment was applied as the whole-plot factor, with 2 sub-plots in each plot randomly assigned 118 
to unshaded or 50% shade generated with high density woven polyethylene cloth (Fig. S1). Within 119 
each subplot, two pots of each genotype were randomly distributed and supplied with either 40g or 120 
4g fertilizer (Osmocote Plus 15-9-12 with micronutrients, Scotts, Marysville, OH, USA), totaling 240 121 
pots (plants). Greenhouse temperature controls were set to maintain 18–24 °C, and supplemental 122 
lighting was provided to maintain a 15/9-h photoperiod. 123 

Plant harvest and trait measurements 124 
Plants were harvested 3 weeks after transplanting (4 weeks after germination). At harvest, plant 125 
height (from soil surface to top of apical meristem) and stem diameter (midway between cotyledons 126 
and first leaf pair) were measured. Plants were separated into root, leaf (including cotyledons), and 127 
stem (including bud if present—rarely) for organ anatomy, morphology and allocation 128 
measurements. In order to determine the relative magnitude of adjustments to anatomy, 129 
morphology and allocation traits we assigned all measured traits to one of these three categories. 130 
While we believe our assignment of traits to categories is defensible, we acknowledge that this is 131 
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somewhat arbitrary and that different groupings could influence results associated with 132 
comparisons among categories. 133 

For plant  anatomical traits, from each replicate plant, one recently matured fully expanded leaf was 134 
sampled, cutting a 1×0.5 cm rectangle out of the leaf center, a 5 mm length stem segment (centered 135 
between the cotyledon and the first leaf pair) was cut, a 1 cm tap root segment was cut 4 cm below 136 
the root/stem junction, and from a single lateral root attached to the tap root near to the root/stem 137 
junction with an intact root tip, a 1 cm fine root segment was cut 2 cm from the apex of the root. All 138 
tissue subsamples were fixed in formalin–acetic acid-alcohol solution, FAA, (50% ethanol (95%), 5% 139 
glacial acetic acid, 10% formaldehyde (37%) and 35% distilled water).  140 

Fixed subsamples were processed for anatomy at the University of Georgia Veterinary Histology 141 
Laboratory. Each sample was embedded and gradually infiltrated with paraffin, sliced with a sledge 142 
microtome, mounted to a slide, and stained with safranin and fast green dye. Slides were imaged 143 
with a camera mounted Zeiss light microscope using ZEN software (Carl Zeiss Microscopy, 144 
Oberkochen, Germany). Cell (i.e., conduit) and tissue (i.e., palisade and spongy, cortex and vascular 145 
or stele) dimensions of leaf, stem, fine and tap roots were traced using Motic Images Advanced 3.2 146 
software (Motic Corporation, Xiamen, China). Theoretical hydraulic conductivity (Ks, kg·s-1·m-1·MPa-1) 147 
for each sample was calculated, based on the Hagen-Poseuille equation (Tyree & Ewers, 1991): ks =148 
(πρ 128ηAw⁄ )∑ 𝑑𝑑𝑖𝑖4𝑛𝑛

𝑖𝑖=1 . where ρ is the density of water (988.3 kg·m-3 at 20 °C); η is the viscosity of 149 
water (1.002×10-9 MPa·s at 20 °C); Aw is the stele (vascular) cross-section area, d is the diameter of 150 
the ith vessel and n is the number of conduits in the xylem. 151 

For plant morphological traits, after anatomical trait samples were collected, the rest of the leaf, 152 
stem, and fine/tap root of each plant were scanned (Espon, Expression1680, Japan). Total root 153 
length and volume of fine root, tap root and stem, as well as leaf area were measured using 154 
WinRhizo (v. 2002c, Regent Instruments, Quebec, Canada), respectively. Then, the subsamples were 155 
dried at 60°C for 48 h and weighed. Specific leaf area (SLA, cm2·g-1) and specific root length (SRL, m·g-156 
1) were calculated as the ratios of leaf area to leaf dry mass, and root length to root dry mass, 157 
respectively. Tissue density (g·cm-3) was calculated as the ratio of dry mass to volume for stem, tap 158 
and fine root, respectively. Leaf dry matter content (LDMC, mg·g-1), used as a proxy for leaf tissue 159 
density, was measured as leaf dry mass divided by leaf fresh mass (Kramer-Walter et al., 2016; 160 
Wilson et al., 1999).  161 

For allocational traits, total plant dry mass was calculated as the sum of all plant parts, including the 162 
subsamples for anatomical and morphological traits.  Once anatomy and morphology subsamples 163 
were collected, the remaining tissue organs were dried at 60°C for 48 h and weighed. Prior to fixed 164 
in FAA, the fresh biomass of subsamples for anatomical analysis was measured and converted to dry 165 
biomass based on the ratio of fresh/dry biomass of remaining tissue organs. Finally, the mass 166 
fractions for each tissue were calculated as proportions of total plant dry mass (g·g-1).  167 

Data analysis 168 
The statistical analysis for the phenotypic data was performed using R v3.5.1 (R Core Team). To 169 
obtain genotype means from our split plot design, a mixed effects model was fitted using the 170 
package lme4 (Bates et al., 2018) with genotype, light and nutrient level and all their interactions as 171 
fixed effects and light treatment within block as random factor. Least-square (LS) means of all trait 172 
values without random factor were estimated from this model using the R package emmeans (Lenth 173 
et al., 2018). To test the effect of genotype and treatment on measured traits we fitted a less 174 
expansive mixed effects model with genotype, light and nutrient level as well as the interaction 175 
between light and nutrient level as fixed effects (following Freschet et al., 2018) and light treatment 176 
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within block as random factor. From this model, fixed effects were then tested using a Walds Chi-177 
square test in a type III Anova using the package car (Fox et al., 2018). Differences between 178 
treatments were tested using a Tukey test corrected for multiple comparisons. We then estimated 179 
the influence of plant allometry on the significance of nutrient and light limitation effects on traits by 180 
adding (log-transformed) plant biomass as a fixed factor to both models and recalculating means 181 
and significance (Ryser & Eek, 2000; Wahl et al., 2001). The relative shift in trait value per genotype 182 
was calculated as the value in control (high nutrient & unshaded conditions) minus that in each 183 
treatment, and divided by the value at control.  184 

To quantify the plastic response of each trait to each resource limitation treatment, we calculated 185 
the relative distance plasticity index (RDPI, Valladares et al., 2006, Scoffoni et al., 2015) as 186 
(𝑥𝑥𝑖𝑖′ − 𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖′ + 𝑥𝑥𝑖𝑖⁄ ), where 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑖𝑖′ are the mean trait values of genotypes grown under control 187 
(high-light and high-nutrient) and resource limited condition. In addition, the RDPI for each traits and 188 
resource limitation treatment was recalculated after correcting for plant size (total biomass). 189 
Significant values of RDPI (difference from zero, no plasticity) were determined using T-test on 190 
genotype averages.  191 

A principal component analysis (PCA) was applied to the trait data before and after correcting for 192 
size, to determine major sources of variation across multiple traits and identify whether there were 193 
concerted trait adjustments to limitation in above or belowground resources. Differences between 194 
treatments were tested using, Bonferroni corrected, Hotellings-t test on the first two principal 195 
components. Data visualizations were made using ggplot2 (Wickham et al., 2018). 196 

Results 197 
Across all genotypes, plant biomass decreased by 21.4%, 53.3%, and 65.8% under light, nutrient, and 198 
combined limitation, respectively, with additive effects of both stresses on whole plant biomass (Fig. 199 
1a, Table 1). Moreover, traits frequently scaled with biomass and genotypes differed in the effect of 200 
biomass on trait value (Table 1). 201 

Allometric and active responses to resource limitation 202 
Allocational traits were affected in contrasting ways by above and belowground resource limitation. 203 
The ratio of leaf mass to fine root mass (LFRratio) increased under light limitation (+82.6%) due to 204 
both increased mass allocation to leaf mass (LMF, +3.7%) and decreased allocation to fine roots 205 
mass (FineRMF, -41.4%). In contrast, LFRratio decreased under nutrient limitation (-45.7%) due to 206 
decreased LMF (-12.1%) and an increased FineRMF (+71.4%). A significant interaction of light and 207 
nutrient limitation was found on allocational traits, e.g., LMF, stem mass fraction (SMF) and FineRMF 208 
(Table 1).  After allometric scaling was taken into account by statistically correcting for the effect of 209 
total plant dry mass on trait values, the effect of light limitation on leaf mass fraction disappeared, 210 
indicating that the increased LMF response was largely driven by the reduction in plant size and not 211 
an active adjustment to resource limitation (Table 1).  212 

Light limitation affected all morphological traits except for fine root diameter (FRD) (Table 1). The 213 
responses led to strong increases in acquisitive values for resource acquiring traits such as SLA 214 
(+40.5%, Fig. 2a), SRL (fine root, +31.8%, Fig. 2b; tap root +86.9%), and a moderate increase in plant 215 
height (Height, +15.0%) (Table 2). This was accompanied by strong decreases in organ dimensions, 216 
e.g., leaf thickness (LT, -10.8%), stem diameter (SD, -18.02%), tap root diameter (TRD, -28.84%), as 217 
well as tissue density assessed as leaf dry matter content (LDMC, -20.57%); stem tissue density (STD, 218 
-22.89%), fine root tissue density (FineRTD, -18.76%). After allometric scaling was factored out, the 219 
effect of light limitation on largely disappeared, indicating that the root trait adjustments were 220 
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mainly driven by allometric scaling (Table 2).  221 

In contrast to the effect of light limitation, nutrient limitation affected only 4 out of 12 222 
morphological traits (Table 1). Nutrient limitation decreased SD (-15.6%) and FRD (-7.3%), and 223 
increased the fine root specific root length (FineSRL, +19.8%) (Fig. 2b, Table 2) and TapRTD (+16.6%, 224 
Table 2). After allometric scaling was factored out, the effect of nutrient limitation on these traits 225 
remained, indicating active adjustments. 226 

Similar to allocational and morphological traits, responses of anatomical traits to resource limitation 227 
were also organ-specific. Light limitation affected leaf, stem, and tap root anatomical traits, while 228 
nutrient limitation predominately affected fine root traits. More specifically for light limitation, 229 
aboveground traits responded by decreasing leaf palisade parenchyma layer thickness (LPT, -12.1%, 230 
Fig. 3a), stem cortex thickness (SCT, -11.6%), stem vascular bundle thickness (SVT, -26.2%, Fig. 3b) 231 
and stem xylem thickness (SXT, -24.7%) (Table 2). Belowground traits responded by reducing tap 232 
root cortex thickness (TRCT, -12.9%) and stele diameter (TRSD, -33.6%) (Table 2). Vascular tissue 233 
adjustment to light limitation led to changes in theoretical hydraulic conductivity, with for decreased 234 
leaf hydraulic conductivity (LKs, -19.0%) but increased stem hydraulic conductivity (SKs, +32.4%) 235 
(Table 2). After allometric scaling was factored out, the effect of light limitation on SCT, SVT, TRCT 236 
and TRSD was driven mainly by allometric scaling (Table 2), but there was active adjustment for 237 
greater stem and tap root hydraulic conductivity (SKs, +95.9%; TRKs, +94.1%) (Table 2).  238 

In contrast to light limitation, nutrient limitation predominately affected fine root anatomy. Nutrient 239 
limitation decreased fine root cortex thickness (FRCT, -7.72%, Fig. 3c) and fine root stele diameter 240 
(FRSD, -7.95%) (Table 2). After allometric scaling was factored out, the effects of nutrient limitation 241 
on FRCT remained in both light conditions, however the effect of nutrient limitation on FRSD 242 
disappeared under low light condition (Table 2).   243 

Allometric and active trait plasticity 244 
Trait categories differed in magnitude and direction of plasticity depending on resource limitation 245 
(Fig. 4). Based on simple means per category in absolute relative distance plasticity index (RDPI), 246 
biomass allocational traits showed relatively larger magnitude in plasticity, followed by morphology, 247 
and last anatomy (Fig. 4a). On average, light limitation induced a higher RDPI values than nutrient 248 
limitation (Fig. 4). When allometric scaling is factored out, the average magnitude of RDPI values 249 
decreased for most traits (Fig. S2). Notable exceptions were, plant height, SKs and TRKs, for which 250 
RDPI increased after taking plant biomass into account indicating active and passive responses to be 251 
in opposite directions (Fig. 4b, Fig. S2).   252 

Coordinated trait adjustment to resource limitation 253 
When the genotypes means for traits in all three traits categories (allocation, morphology, and 254 
anatomy) and all treatments were included in a principal component analysis, the first two axis 255 
explained 34.4% and 13.4% of the variation (Fig. 5a). Light and nutrient limitations moved the key 256 
set of traits to be more acquisitive along the first and second axis, respectively, e.g., higher SLA 257 
under shade, higher FineSRL under nutrient limitation (Fig. 5a). Overall, light limitation triggered 258 
more pronounced coordinated trait adjustment than nutrient limitation (Fig. 5a). However, after 259 
allometric scaling was factored out, active coordinated trait responses to both light and nutrient 260 
limitation were more similar in scale and resource specific.   261 

Discussion 262 
Here we assessed the impact of allometric scaling on the direction, magnitude, and coordination of 263 
allocation, morphological and anatomical trait responses to light or/and nutrient limitation in 264 
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cultivated sunflower. We found more biomass was allocated to the organs acquiring the most 265 
limiting resource (roots for nutrient stress and leaves for shade) and that morphological and 266 
anatomical trait adjustments generally led to more acquisitive trait values (higher SLA in shade and 267 
higher SRL in nutrient stress). Although portions of the plant trait responses were accounted for by 268 
allometric scaling (i.e., trait changes due lower biomass of stressed plants), there was additional 269 
active adjustments of key traits beyond allometric scaling. Interestingly, traits that showed the 270 
greatest active adjustment were traits that are not often discussed in relation to light or light or 271 
nutrient limitation, namely tap root and stem theoretical hydraulic conductance. We found evidence 272 
for coordination of both allometric and active adjustments for many traits in response to resource 273 
stress. 274 

Plasticity and allometry 275 
Our results demonstrated that plants increase biomass allocation to the plant part acquiring the 276 
most limiting resource, both through allometric scaling and additional active responses (Bloom et al., 277 
1985; Poorter et al., 2012). Lower light availability resulted in increased relative investment in 278 
aboveground plant organs (higher LMF and SMF) and lower nutrient availability resulted in increased 279 
relative investment in belowground (FineRMF). This allocation pattern has been confirmed in other 280 
growth forms (e.g., grasses, Siebenkäs et al., 2015; shrubs, Valladares et al., 2000; trees, Reich et al., 281 
1998, Kramer-Walter & Laughlin, 2017). Both morphology and anatomy adjustments resulted in a 282 
higher specific area of light and nutrient capture per biomass invested under each stress 283 
respectively. Additionally, anatomical adjustments in leaf and root, both decreased LPT and FRCT, 284 
reduce tissue metabolic and maintenance costs (Guo et al., 2006, Galindo-Castañeda et al., 2018; 285 
Jaramillo et al., 2013). Thus, greater capacity for resource acquisition was coupled with reduced 286 
costs.  287 

The relatively high SKs and TRKs in shaded plants was associated with the functional hydraulic 288 
continuum with taller plants. Both plant height and SLA of shaded plants were significantly greater 289 
than the control (Tables 1, 2), resulting in an increase in axial transportation distance and total 290 
transpiring surface. Theoretical hydraulic conductance, SKs and TRKs of shaded plant were increased 291 
by 95.9% and 94.1% when taking biomass into account indicating active adjustments beyond 292 
allometry (Table 2). This suggests that a coordinated increase in axial above- and below-ground 293 
hydraulic conductance offsets the greater transportation resistance (Plavcová & Hacke, 2012), 294 
ensuring efficient movement of carbon to roots and nutrients and water to leaves (Maurel et al., 295 
2010; Rodríguez-Gamir et al., 2016; Wahl et al., 2001). 296 

Besides a response to resource limitation, many traits showed a strong correlation with plant biomass 297 
indicating allometric scaling, with larger plants having a thicker leaf, stem and tap root (Table 1). 298 
Consistent with Poorter et al. 2012, we found that light limitation effects were more accounted for by 299 
allometry then nutrient limitation effects. However, even when accounting for plant biomass by using 300 
total biomass as a covariate, treatment effects remained significant for major traits, such as SLA, 301 
FineSRL, LPT and FRCT, indicating active adjustments as well. This demonstrates that light and nutrient 302 
limitation had substantial active effect on plant adjustments to the major morphological and 303 
anatomical traits influencing resource acquisition indicate allometry. Generally, allometric 304 
adjustments went in a similar direction as the active adjustments (Fig 3). Thus, both allometric scaling 305 
as well as active trait adjustments were consistent with trait adjustments that serve to ameliorate 306 
some of the effects of resource limitation.  307 

Magnitude of trait adjustments 308 
Consistent with other resource limitation studies, plasticity of mass allocational traits was largest, 309 
followed by morphological traits (Kramer-Walter & Laughlin, 2017, Valladares et al., 2000), and 310 
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smallest in anatomical traits (Catoni et al., 2015; Cai et al., 2017; Xu et al., 2015). It should be noted 311 
that differences in the extent of plasticity for different categories of traits may be species specific or 312 
based on the traits included. For example, oak (Quercus robur) seedlings were more plastic in 313 
physiological traits under shade, yet beech (Fagus sylvatica) was more plastic in morphological traits 314 
(Valladares et al., 2002). Differences among trait categories for the magnitude of plasticity may 315 
reflect an inherent hierarchy originating from the internal structural framework of any specific 316 
organ. For example, leaf thickness is highly correlated with palisade parenchyma (Scoffoni et al., 317 
2015) and root diameter with cortex and/or stele thickness (Kong et al., 2014). Thus, small shifts in 318 
individual component anatomical traits could add up to larger shifts in morphological traits which in 319 
turn affect allocational traits. 320 

In general, pulling out allometric effects decreased the magnitude of morphological and anatomical 321 
traits adjustment.  Only the RDPIs of the plant height, SKs and TRKs increased especially under shade 322 
when the allometry was accounted for (Fig. 4, Fig. S2). Given that height increased under shade, a 323 
higher efficiency of stem and root transportation could offset greater resistance due to a longer 324 
transportation distance (Plavcová & Hacke, 2012). It should be noted, however, that this increased 325 
stem Ks may come at the cost of increased risk of xylem embolism in shaded plants (Tyree & 326 
Zimmermann, 2002). However, the opposite response in leaf Ks provides a puzzling counterpoint 327 
that would be worth assessing in more experiments. Additionally, the anatomical dataset collected 328 
in this work provides an excellent resource for anatomical water flow models (Couvreur et al., 2018) 329 
to further shed light on the consequences of these anatomical trait adjustments for plant hydraulics. 330 

Trait coordination and resource strategy 331 
Contrary to the evolutionarily conservative strategy generally expected under low resource 332 
conditions (Díaz et al., 2016; Reich 2014), our results at the scale of environmentally induced 333 
plasticity showed that traits shift towards values generally thought to be resource acquisitive under 334 
stress (Fig. 2-4; Table 1,2), consistent with other resource manipulation studies for commonly 335 
measured traits (Freschet et al. 2015). Our plants growing under lower resource conditions, with 336 
lower biomass, had thinner leaves, stem, fine and tap roots, as well as narrower leaf palisade, stem 337 
vascular tissue, fine root cortex and tap root stele, but higher SLA and SRL. These coordinated trait 338 
shifts depended on the limiting resource or organ. For example, higher SLA and thinner LPT were 339 
only significant under shade, while higher FineSRL and thinner FRCT and FRSD were only significant 340 
under poor nutrient condition (Table 2). Thus, while there was some coordination, shifts were not 341 
such that the resource use strategy at the whole-plant level shifted from conservative to acquisitive, 342 
even though individual organs showed more acquisitive traits consistent with increased capture 343 
ability for the limiting resource.  344 

Conclusion 345 
Few studies have assessed the phenotypic response of whole plants in terms of biomass allocation, 346 
organ morphology and anatomy simultaneously, and even less under multiple resource limitation 347 
(Givnish 1988; Pratt et al., 2010). Here, our research demonstrates that major traits from all three 348 
categories shift in response to resource limitation. The resource specific extent, direction, and 349 
coordination of the responses is driven not only by changes in plant size (allometric scaling), but often 350 
includes a variable amount of active adjustment that is sometimes, but not always, aligned in the same 351 
direction as the allometric component. The substantial contribution of allometric scaling to trait 352 
responses that are consistent with a functional increase in the uptake capacity of the most limiting 353 
resource suggests that both allometric and active trait adjustments need be considered as potentially 354 
adaptive.  355 

 356 
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Figure and table captions 368 
Table 1 Allocational, morphological, and anatomical traits across a factorial of light and nutrient 369 
limitation. Light/Shade, direct sun vs 50% shade. Rich/poor, high nutrients vs 10% nutrient 370 
concentration. Means±SE of 10 genotypes estimated marginal mean (based on 5-6 replicates) from 371 
our split-plot design. Effects of genotype (G), light (L) and nutrient (N) stresses and their interactions 372 
(L×N) on plant traits data. With or without plant total biomass (Mass) as a covariate. ***:p<0.001, 373 
**:p<0.01, *:p<0.05, ns: not significant. 374 

Table 2 Relative shift in allocational, morphological, and anatomical traits across a factorial of light 375 
and nutrient limitation. Light/Shade, direct sun vs 50% shade. Rich/poor, high nutrients vs 10% 376 
nutrient concentration. Means±SE of 10 genotypes relative shift in treat value as compared to Light-377 
Rich treatment. Base values as measured and after correcting for the effect of biomass on trait 378 
value. Greyed out numbers are not significantly different from zero (T-test p>0.05). 379 

Figure 1. Biomass and mass allocation of leaf, stem, tap root, and fine root tissue across a factorial of 380 
light and nutrient limitation. Light/Shade, direct sun vs 50% shade. Rich/poor, high nutrients vs 10% 381 
nutrient concentration. (a) Average whole plant biomass across genotypes (n=10), stacked by 382 
average tissue contribution. (b) Average mass allocation to tissue types per treatment. Error bars 383 
denote standard error across genotypes. Different letters represent significant (p<0.05) Tukey post 384 
hoc differences between treatments. 385 

Figure 2. Leaf and fine root morphology across a factorial of light and nutrient limitation. 386 
Light/Shade, direct sun vs 50% shade. Rich/poor, high nutrients vs 10% nutrient concentration. (a) 387 
specific leaf area (SLA, cm2 g-1), (b) specific root length (SRL, m g-1), (c) ratio of leaf area to root 388 
length (SLA/SRL, cm2 m-1). Points indicate genotype (n=10) mean (n=5-6) at a given treatment. 389 
Boxplots show distribution of values. Different letters represent significant (p<0.05) Tukey post hoc 390 
differences between treatments. 391 

Figure 3. Leaf, stem, and fine root anatomy across a factorial of light and nutrient limitation. 392 
Light/Shade, direct sun vs 50% shade. Rich/poor, high nutrients vs 10% nutrient concentration. (a) leaf 393 
palisade parenchyma thickness (µm), (b) stem vascular bundle width (µm), (c) fine root cortex 394 
thickness (µm). Points indicate genotype (n=10) mean (n=5-6) at a given treatment. Boxplots show 395 
distribution of values. Different letters represent significant (p<0.05) Tukey post hoc differences 396 
between treatments 397 

Figure 4. Trait plasticity in response to resource limitation. Points indicate the average (n=10) relative 398 
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distance plasticity index (RDPI) in response to light limitation (dark blue, Shade-Rich) or nutrient 399 
limitation (light green, Light-Poor), or combined (light blue, Shade-Poor). Point size represents a T-test 400 
significance (p<0.05) of RDPI being different from zero (large points) or not (small points). (a) RDPI 401 
values taken from base measurements. (b) RDPI values when correcting trait values for biomass, 402 
allometry. Trait abbreviations and units as in Table 1. 403 

Figure 5. Principal component analysis (PCA) of leaf, stem and roots traits in response to resource 404 
limation. Light/Shade, direct sun vs 50% shade. Rich/poor, high nutrients vs 10% nutrient 405 
concentration. Panels represent (a) trait values as measured, (b) trait values after correcting for size 406 
scaling (allometric effects). Different letters indicate significant Hotellings-T test, after Bonferroni 407 
correction, between treatments on the first two principal components. Trait abbreviations and units 408 
as in Table 1. 409 

Supplementary materials 410 
Table S1. List of genotypes used in this study, it’s common name, the corresponding plant ID from the 411 
USDA GRIN Database for each genotype, and the market type of each genotype. 412 

Fig S1. Comparison of light levels between shaded and unshaded treatment. On average the low-light 413 
treatment received 50% of the photon flux density of the high-light treatment. Light intensities in each 414 
treatment were measured with a handheld light meter (LI-189; LI-COR, Lincoln, NE). Readings were 415 
taken from 8:00 AM to 7:00 PM. The light sensor was held near the soil level in each plot. We 416 
presented representative data from May 15th, a cloud-free day. 417 

Fig S2. Effect of accounting for size scaling in traits when calculating relative distance plasticity index 418 
(RDPI). RDPI changes are shown per treatment (Light/Shade, full sun/50% shade; Rich/Poor, full 419 
nutrients/10% nutrients) and whether RDPI measures were positive or negative when initially 420 
compared to control (Light-Rich). For positive RDPI values (traits that increase in trait value with stress) 421 
a positive change when taking size scaling into account shows that size scaling decreased apparent (as 422 
measured initially) plasticity (i.e taking size scaling into account shows increased plasticity). A negative 423 
change on the other hand shows that the apparent plasticity was enhanced by size scaling (i.e taking 424 
size scaling into account shows decreased plasticity. For negative RDPI values (traits that decrease in 425 
trait value with stress) the effect of the sign of change is reversed. Symbols indicate whether RDPI 426 
significance (different from zero) is gained (circles), lost (squares), or remains unchanged (triangles, 427 
when taking biomass into account. 428 

Fig S3. Scaling relationship between biomass and trait value among and between genotypes and 429 
treatments. (a) Scaling relationships between individual plants per genotypes and treatment (dotted 430 
lines) and (b) scaling relationships between genotypes per treatment.   431 
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Table 1 Allocational, morphological, and anatomical traits across a factorial of light and nutrient limitation. Light/Shade, direct sun vs 50% shade. Rich/poor, 594 
high nutrients vs 10% nutrient concentration. Means±SE of 10 genotypes estimated marginal mean (based on 5-6 replicates) from our split-plot design. Effects 595 
of genotype (G), light (L) and nutrient (N) stresses and their interactions (L×N) on plant traits data. With or without plant total biomass (Mass) as a covariate. 596 
***:p<0.001, **:p<0.01, *:p<0.05, ns: not significant. Letters denote Tukey test post-hoc differences between treatments. 597 

 598 

Category Trait Unit Light-Rich Light-Poor Shade-Rich Shade-Poor G L N L×N Mass G MxG L N L×N
Allocation Total Biomass g 1.70±0.14a 1.28±0.07b 0.77±0.05c 0.56±0.05d ** ** ** ns n/a n/a n/a n/a n/a n/a

Leaf mass fraction g·g-1 0.68±0.006a 0.59±0.001b 0.70±0.01c 0.66±0.01d ** ** ** ** ns *** *** ns *** ***
Stem mass fraction g·g-1 0.16±0.009a 0.16±0.009b 0.20±0.001c 0.21±0.02b ** ** ns * ns *** ** *** ns **

Fine root mass fraction g·g-1 0.13±0.007a 0.21±0.001b 0.074±0.004c 0.10±0.007d ** ** ** ** ns *** *** *** *** ***
Tap root mass fraction g·g-1 0.04±0.002a 0.04±0.003b 0.027±0.002a 0.03±0.002b ** ** ns ns ns *** ns *** ns ns

Ratio of leaf and fine root 5.58±0.33a 2.93±0.22b 9.96±0.65c 6.58±0.40a ** ** ** ** ns *** ns *** *** ns
Ratio of SLA and FineSRL 1.30±0.07ab 1.13±0.06b 1.50±0.11a 1.23±0.04b ** * * ns ns *** ns * ns ns

Morphology Leaf thickness µm 257.71±8.38a 248.87±7.23b 228.86±4.75a 227.24±6.37b ** ** ns ns * *** ns *** ns ns
Specific leaf area cm2·g-1 349.53±11.04a 362.46±6.47b 487.72±8.96a 493.42±18.32b ** ** ns ns ** *** ns *** ns ns

Leaf dry mass content mg·g-1 102.95±2.66a 106.92±2.55b 87.33±2.78a 90.91±2.69b ns ** ns ns ns *** ns *** ns ns
Stem diameter mm 5.23±0.18a 4.65±0.10b 4.30±0.13c 3.88±0.11a ** ** ** ns *** *** *** ns *** ***

Stem tissue density g·cm-3 0.039±0.003a 0.037±0.002b 0.028±0.001a 0.031±0.002ab * ** ns ns ns ns ns * ns ns
Fine root diameter µm 404.95±8.32ac 374.96±8.15b 388.27±1.95c 348.22±8.61ab ** ns ** ns ns *** ns ns ** ns

Specific fine root length m·g-1 288.10±11.34a 342.28±17.57b 377.10±21.55c 423.75±23.45a ** ** ** ns ns *** ns * * ns
Fine root tissue density g·cm-3 0.033±0.002a 0.033±0.001b 0.027±0.002a 0.028±0.001ab ** ** ns ns ns *** ns ns ns ns

Tap root diameter µm 1337.49±62.57a 1228.76±59.19b 937.87±42.74a 900.58±36.41b ** ** ns ns ** *** * ns ns *
Specific tap root length m·g-1 4.46±0.43a 5.04±0.56b 7.35±0.90c 10.51±2.06ab ** ** ns ns * * ns ns ns ns
Tap root tissue density g·cm-3 0.037±0.002a 0.043±0.002a 0.033±0.002b 0.033±0.002a ** ** ** * ns *** * ns *** *

Height cm 14.62±0.82a 14.33±0.93b 16.75±1.11a 16.43±1.64b ** ** ns ns *** *** ns *** * ns
Anatomy Leaf palisade thickness µm 141.35±4.60ac 136.74±4.61b 124.16±3.96c 122.22±3.20ab ** ** ns ns ns *** ns * ns ns

Leaf spongy thickness µm 79.96±4.93ab 74.11±4.63b 70.79±2.85a 73.60±4.85ab ** ** * * * *** * ** * *
Leaf Ks kg·s-1·m-1·MPa-1 4.55±0.45a 4.27±0.53b 3.66±0.42a 3.34±0.33ab ** ** ns ns ns *** ns ns ns ns

Stem cortex thickness µm 262.41±15.68a 266.45±12.93b 227.65±11.37a 225.16±10.32b ** ** ns ns ** *** ns ns ns ns
Stem vascular thickness µm 651.28±22.70a 593.58±21.77b 479.75±21.92c 436.78±19.99d ** ** ** ns *** *** * ** ns *

Stem xylem thickness µm 314.49±11.57a 293.74±7.17b 234.98±9.27a 205.33±8.60c ** ** ns * *** *** ns ns ns ns
Stem Ks kg·s-1·m-1·MPa-1 8.62±0.77ab 9.86±0.89a 11.12±1.11b 9.56±1.09ab ** ** ns * *** *** ns *** ** ns

Fine root cortex thickness µm 136.38±2.99a 125.46±3.58b 127.44±4.13a 113.25±2.07a * ns * ns ns ** ns ns * ns
Fine stele diameter µm 113.38±5.27ab 103.50±4.28b 111.68±5.01a 104.40±4.44ab ** ns ** ns ns *** ns ns * ns

Fine root Ks kg·s-1·m-1·MPa-1 0.54±0.07a 0.63±0.16a 0.66±0.15a 0.64±0.13a ** ns ns ns * *** ns ns ns ns
Tap root cortex thickness µm 209.14±8.67a 209.20±8.06b 182.66±13.98a 186.40±9.60ab ** ** ns ns ns *** ns ns ns ns

Tap root stele diameter µm 888.75±60.60a 769.73±44.59b 569.64±22.97c 517.38±30.58a ** ** ** ns ** *** * ns ns *
Tap root Ks kg·s-1·m-1·MPa-1 27.16±4.14a 28.32±4.08a 29.43±3.84a 30.49±4.31a ** ns ns ns ns *** ns ** ns ns

Statistics  -including biomass
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Table 2 Relative shift in allocational, morphological, and anatomical traits across a factorial of light and nutrient limitation. Light/Shade, direct sun vs 50% 599 
shade. Rich/poor, high nutrients vs 10% nutrient concentration. Means±SE of 10 genotypes relative shift in treat value as compared to Light-Rich treatment. 600 
Base values as measured and after correcting for the effect of biomass on trait value. Greyed out numbers are not significantly different from zero (T-test 601 
p>0.05). 602 

 603 

Category Trait Abreviation Unit Base ∆% Mass cor ∆% Base ∆% Mass cor ∆% Base ∆% Mass cor ∆%
Allocation Total Biomass TotalBiomass g -21.43±(5.94) -53.25±(3.14) -65.82±(2.81)

Leaf mass fraction LMF g·g-1 -12.06±(1.97) -12.85±(1.85) 3.67±(1.47) 0.37±(1.39) -2.94±(1.88) -7.62±(1.7)
Stem mass fraction SMF g·g-1 -2.07±(4.09) -1.95±(4.08) 23.97±(3.81) 24.4±(3.8) 32.92±(5.55) 33.57±(5.53)

Fine root mass fraction FineRMF g·g-1 71.42±(10.45) 84.47±(12.91) -41.36±(3.29) -27.23±(4.67) -19.59±(5.56) 4.82±(7.78)
Tap root mass fraction TapRMF g·g-1 6.81±(3.73) 7.92±(3.72) -21.21±(3.7) -18.49±(3.87) -12.85±(5.86) -8.57±(6.07)

Ratio of leaf and fine root LFRratio -45.65±(5.3) -47.15±(4.95) 82.61±(13.59) 53.12±(11.61) 20.81±(8.55) -12.25±(7.04)
Ratio of SLA and FineSRL SLAFineSRLratio -12.1±(4.1) -12.59±(4.04) 16.35±(6.65) 14.37±(6.73) -3.39±(4.77) -6.12±(4.66)

Morphology Leaf thickness LT mm -3.11±(2.33) -3.16±(2.33) -10.8±(1.64) -10.98±(1.63) -11.47±(2.1) -11.73±(2.1)
Specific leaf area SLA cm2·g-1 4.25±(2.36) 0.85±(2.84) 40.53±(4.17) 27.59±(3.34) 42.24±(6.03) 24.2±(4.83)

Leaf dry mass content LTD mg·g-1 -0.69±(3.82) 2.47±(4.22) -20.57±(3.42) -12.26±(3.92) -19.82±(4.36) -7.12±(4.97)
Stem diameter SD mm -15.6±(3.82) -11.26±(2.55) -18.02±(3.42) 0.25±(2.77) -27.56±(3.96) -1.15±(2.57)

Stem tissue density SDensity g·cm-3 -0.21±(6.89) 3.96±(7.23) -22.89±(5.73) -12.55±(6.33) -17.62±(4.13) -1.74±(4.94)
Fine root diameter FRD mm -7.25±(1.85) -7.1±(1.82) -3.91±(3.02) -3.32±(3.01) -13.82±(2.15) -12.96±(2.11)

Specific fine root length FineSRL m·g-1 19.82±(6.72) 15.72±(6.44) 31.81±(7.99) 19.58±(6.31) 50.35±(13.43) 32.56±(11.54)
Fine root tissue density FineRTD g·cm-3 2.22±(5.63) 5.59±(6.3) -18.76±(4.39) -10.31±(4.38) -13.92±(3.33) -0.44±(4.35)

Tap root diameter TRD mm -6.2±(6.59) 1.13±(6.2) -28.84±(4.18) -1.62±(6.83) -31.25±(4.05) 9.52±(6.25)
Specific tap root length TapSRL m·g-1 16.66±(10.54) -1.91±(11.5) 86.92±(35.39) -7.72±(13.43) 163.95±(39.39) 25.7±(18.47)
Tap root tissue density TapRTD g·cm-3 16.56±(5.96) 22.11±(6.1) -11.38±(6.17) 0.99±(6.59) -9.65±(5.94) 9.51±(6.55)

Height Height cm -0.28±(6.84) 6.26±(4.95) 15.04±(5.91) 41.59±(4.38) 11.95±(9.83) 50.23±(7.5)
Anatomy Leaf palisade thickness LPT mm -2.95±(2.64) -2.43±(2.63) -12.05±(1.28) -10.27±(1.3) -13.1±(2.23) -10.49±(2.18)

Leaf spongy thickness LST mm -7±(3.2) -6.74±(3.24) -10.34±(2.82) -9.42±(2.85) -7.61±(3.53) -6.26±(3.56)
Leaf Ks LKs kg·s-1·m-1·MPa-1 -8.09±(4.91) 0.01±(6.03) -19.02±(5.46) 9.59±(6.3) -25.09±(6.07) 18.45±(9.99)

Stem cortex thickness SCT mm 3.82±(6.52) 6.77±(6.05) -11.57±(4.97) -1.25±(5.33) -12.06±(5.51) 3.39±(6.16)
Stem vascular thickness SVT mm -8.7±(2.17) -1.97±(2.65) -26.2±(2.78) -4.41±(2.89) -32.68±(2.93) 0.41±(3.59)

Stem xylem thickness SXT mm -5.83±(3) 0.83±(2.32) -24.69±(3.24) -2.39±(3.52) -34.18±(2.98) -1±(3.07)
Stem Ks SKs kg·s-1·m-1·MPa-1 17.4±(8.3) 39.01±(11.45) 32.36±(10.82) 95.94±(17.02) 19.83±(18.39) 107.23±(29.44)

Fine root cortex thickness FRCT mm -7.72±(2.86) -7.26±(2.86) -5.9±(4.28) -4.18±(4.3) -16.43±(2.97) -13.93±(2.94)
Fine stele diameter FRSD mm -7.95±(3.29) -7.75±(3.26) -1.14±(2.58) -0.35±(2.55) -7.31±(3.07) -6.14±(3.07)

Fine root Ks FRKs kg·s-1·m-1·MPa-1 14.42±(26.24) 14.31±(26.19) 30.55±(24.63) 30.06±(24.56) 17.28±(15.36) 16.67±(15.32)
Tap root cortex thickness TRCT mm 0.77±(3.86) 8.32±(3.17) -12.93±(5.06) 11.5±(7.25) -10.59±(3.93) 24.66±(4.63)

Tap root stele diameter TRSD mm -10.47±(7.24) -1.01±(9.76) -33.64±(4.96) -0.47±(11.43) -39.98±(4.24) 9.48±(11.54)
Tap root Ks TRKs kg·s-1·m-1·MPa-1 9.34±(7.58) 34.04±(18.67) 18.56±(11.35) 94.08±(32.24) 21.85±(12.56) 128.2±(40.12)

Light-Poor Shade-Rich Shade-Poor
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