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Abstract 17 

Healthy ageing is accompanied by changes to spontaneous electromagnetic oscillations. At the 18 

macroscopic scale, previous studies have quantified the basic features, e.g., power and 19 

frequencies in rhythms of interest from the perspective of attention, perception, learning and 20 

memory. On the other hand, signatures and modes of neural communication have recently been 21 

argued to be identifiable from global measures applied on neuro-electromagnetic data such as 22 

global coherence that quantifies the degree of togetherness of distributed neural oscillations and 23 

metastability that parametrizes the transient dynamics of the network switching between 24 

successive stable states. Here, we demonstrate that global coherence and metastability can be 25 

informative measures to track healthy ageing dynamics over lifespan and together with the 26 

traditional spectral measures provides an attractive explanation of neuronal information 27 

processing. Finding normative patterns of brain rhythms in resting state MEG would naturally 28 

pave the way for tracking task relevant metrics that could crucially determine cognitive flexibility 29 

and performance. While previously reported observations of a reduction in peak alpha frequency 30 

and increased beta power in older adults are reflective of changes at individual sensors (during 31 

rest and task), global coherence and metastability truly pinpoint the underlying coordination 32 

dynamics over multiple brain areas across the entire lifespan. In addition to replication of the 33 

previous observations in a substantially larger lifespan cohort than what was previously reported, 34 

we also demonstrate, for the first time to the best of our knowledge, age related changes in 35 

coherence and metastability in signals over time scales of neuronal processing. Furthermore, we 36 

observed a marked frequency dependence in changes in global coordination dynamics, which, 37 

coupled with the long held view of specific frequency bands sub-serving different aspects of 38 

cognition, hints at differential functional processing roles for slower and faster brain dynamics. 39 

  40 
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Introduction: 41 

      42 

A comprehensive understanding and characterization of the process of healthy aging are 43 

essential to treat age-associated neurological changes such as the decline in working memory, 44 

processing speeds, and executive cognitive functioning. Over the years, converging lines of 45 

evidence have successfully demonstrated the role of neural oscillations in many cognitive 46 

domains. Specific neuronal oscillatory patterns observed in EEG/ MEG data are essential markers 47 

of cognition (Buzsaki 2011), and researchers overwhelmingly agree on the use of field potential 48 

to tap neuro-cognitive processes associated with human brain function (Pesaran et al., 2018). 49 

Accordingly, several recent studies have tried to track age-related changes in the brain's 50 

oscillatory profile using spectral estimation techniques. For example, the amplitude of resting and 51 

motor-related beta-band oscillations (16-25 Hz) is typically found to be higher in the older 52 

population compared to the younger population. Similarly, a substantial number of reports have 53 

highlighted that spontaneous peak alpha frequency (8-12 Hz) is lower in older people as 54 

compared to younger participants.  55 

 56 

While age-related alterations in sensor specific features like power and frequency are fairly well-57 

reported, very few studies have looked at changes in global patterns of frequency-specific 58 

synchronization in the context of healthy aging. We argue that much information about the 59 

mechanisms of aging is to be found in studying patterns of coherent activity across the lifespan. 60 

The relevance of this assumption can be assessed from the existing literature. For example, the 61 

theory of communication through coherence (CTC) posits that message passing across spatially 62 

distant neural assemblies demands coordinated fluctuations in their respective excitabilities 63 

(Fries, 2005). The importance of global coherence in the context of cognitive functioning is 64 

underscored by the essential need for efficient message passing in bringing about cognition. Even 65 

though the original CTC proposal was formulated in a task context, recent work has drawn out its 66 

repercussions for spontaneous brain dynamics, a.k.a resting-state activity (Deco et al.,2016). 67 

According to this formulation, resting brain activity frequently traverses across different functional 68 

configurations to maintain a state of maximal readiness in anticipation of external stimuli, which, 69 

when presented, collapses the state of the brain to whichever configuration is deemed most 70 

relevant in the stimulus context. In other words, resting-state brain activity must demonstrate 71 

metastable dynamics, whereby the brain fluidly recapitulates varied patterns of coherent activity 72 

(Deco et al.,2016). In line with this view, global metastability is found to be associated with 73 
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cognitive flexibility and information processing in the brain. Therefore, tracking changes in 74 

coherence and metastability is crucial, given the fact that aging is marked by distinct cognitive 75 

changes that are, in turn, orchestrated by coherent neural oscillations. 76 

 77 

The fundamental objective of this article is to track lifespan associated patterns of global 78 

coherence and metastability from neurophysiological recordings. As a necessary confirmation 79 

step, we first replicate the already well-established results in the field of aging neuroscience- the 80 

observations of reduced peak alpha frequency and an increase in average beta power with age 81 

on the current dataset. In doing so, we successfully establish the validity of earlier observations 82 

on a substantially larger dataset across the age continuum - a feature lacking in many previous 83 

studies. We then utilize a standard measure of global coherence to characterize band-specific 84 

lifespan trends. Finally, we apply a proxy for metastability - the standard deviation of the Kuramoto 85 

order parameter to characterize age-related alterations in frequency-specific metastable brain 86 

dynamics. Resting-state magnetoencephalogram (MEG) recordings from the Cambridge-Ageing 87 

Neuroscience (Cam-CAN) group for our purposes. Since this analysis has been carried out on a 88 

large cohort of an aging population (cross-sectional) consisting of 650 participants across an age 89 

range of 18-88 years we can consider them as a normative pattern of temporal structure of brain 90 

rhythms associated with ageing. The relevance of the global network metrics we further evaluated 91 

vis-à-vis performance in visual short term memory (VSTM) tasks over lifespan. Thus, we could 92 

summarize the organization of band specific coordinated brain dynamics over lifespan.   93 
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Methods 94 

Participants  95 

Cam-CAN is a multi-modal, cross-sectional adult life-span population-based study. The study was 96 

approved by the Cambridgeshire 2 Research Ethics Committee, and all participants have given 97 

written informed consent. The data presented here belonged to Stage 2 of the study. In Stage-1, 98 

2681 participants had been home-interviewed and had gone through neuropsychological 99 

assessments and been tested for vision, balance, hearing and speeded response. Participants 100 

with poor vision (< 20/50 on Snellen test), poor hearing (threshold greater than 35 dB at 1000 Hz 101 

in both ears), past history of drug abuse, with any psychiatric illness such as bipolar disorder, 102 

schizophrenia, with neurological disease e.g. epilepsy, stroke, traumatic brain injury, or a score 103 

less than 25 in Mini-Mental State Examination were excluded from further behavioral and 104 

neuroimaging experiments. 700 participants had been screened from Stage 1 to Stage 2, of which 105 

Magnetoencephalogram (MEG) data from 650 subjects were available. 106 

 107 

Data acquisition 108 

 109 

Data used in the preparation of this work were obtained from the CamCAN repository (available 110 

at http://www.mrc-cbu.cam.ac.uk/datasets/camcan/) (Taylor et al., 2016, Shafto et al., 2015). For 111 

all the subjects, MEG data were collected using a 306-sensor (102 magnetometers and 204 112 

orthogonal planar magnetometers) VectorView MEG System by Elekta Neuromag, Helsinki, 113 

located at MRC-CBSU. Data were digitized at 1 kHz with a high pass filter of cutoff 0.03 Hz. Head 114 

position was monitored continuously using four Head Position Indicator coils. Horizontal and 115 

vertical electrooculogram were recorded using two pairs of bipolar electrodes. One pair of bipolar 116 

electrodes were used to record electrocardiogram for pulse-related artifact removal during offline 117 

analysis. The data presented here consisted only of resting state, where the subject sat still with 118 

their eyes closed for a minimum duration of 8 minutes and 40 seconds.    119 

 120 

Data preprocessing 121 

 122 

Preprocessed data was provided by Cam-CAN research consortium, where for each run temporal 123 

signal space separation was applied to remove noise from the environment, from Head Position 124 

Indicator coils, line noise and for the detection and reconstruction of the signal from noisy sensors. 125 

All the data had been transformed into a common head-position. More details about data 126 
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acquisition and preprocessing have been presented elsewhere (Taylor et al., 2017; Shafto et al., 127 

2014).  128 

 129 

Data analysis 130 

Welch spectrum 131 

 132 

Fieldtrip toolbox (Oostenveld et al.,2011) was used to read the data provided in ‘.fif’ format. For 133 

each individual, data were downsampled from 1 kHz to 250 Hz. First, we sought to investigate 134 

age-specific changes in the spectral densities of the raw MEG signals. 135 

 136 

Time series corresponding to the 102 magnetometers, resulted in a matrix 𝑋 of size  102 × 𝑇, 137 

where 𝑇corresponds to the number of time points. Power spectral density for each sensor 𝑐’s time 138 

series 𝑥!(𝑡) was estimated using Welch’s periodogram method. Each time series was divided into 139 

segments of 20 seconds without any overlap between segments. Spectrum was estimated for 140 

each segment after multiplying the time series segment with a Hanning window. Spectrums of all 141 

the segments were finally averaged. 142 

 143 

We estimated a global spectrum, representative of each subject i.e. 𝑆"(𝑓) by taking a grand 144 

average across the spectrums belonging to all magnetometers.  145 

𝑆"(𝑓) = ∑ 𝑠"(𝑐, 𝑓)!                    (1) 146 

 147 

Quantification of spatial overlap between sources of alpha and beta activity in the sensor 148 

space 149 

 150 

For each subject, the sensor map of alpha and beta activity were normalized separately. 151 

𝛼3"(𝑐) =
#!(!)&⟨#!⟩

)"(!)
                      (2) 152 

𝛽5"(𝑐) =
*!(!)&⟨*!⟩
)%(!)

                       (3) 153 

 154 

where 𝜎#(")and 𝜎*(")are the standard deviations of alpha and beta band respectively. 155 

Separation between the normalized sensor level representation 𝛼^"and 𝛽^"was indexed by the 156 

cosine angle between the two multidimensional vectors. 157 
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𝜃9(𝛼, 𝛽) = 𝑐𝑜𝑠&+ ; #,!.*.!
|#,!|0*.!0

<           (4) 158 

 159 

The angular separations across age were statistically analyzed using Spearman rank correlations 160 

and t-tests. 161 

 162 

Global coherence 163 

 164 

We calculated band-specific global coherence to measure the covariation of neural oscillations 165 

on a global level (Cimenser et al., 2008; Kumar et al.,2016). Global coherence among sensors at 166 

any frequency 𝑓 is measured as the percentage of variance explained by the first eigenvector of 167 

the cross spectral density matrix at 𝑓.  168 

 169 

In an individual subject’s data, for each sensor, the time series 𝑥(𝑡)was divided into 𝑁non-170 

overlapping windows of 5seconds duration each i.e. 𝑦(𝑡). This resulted in an average of 112 171 

(median, Interquartile range 1, range 70-220) windows for each subject. We employed 3 172 

orthogonal discrete prolate spheroidal sequences (Slepian tapers) to avoid leakage in spectral 173 

estimates into nearby frequency bands. The time-bandwidth product was taken to be 2, which 174 

resulted in a bandwidth of 0.4Hz.  175 

 176 

Before computing FFT, each data segment was detrended i.e. from each data segment 𝑦(𝑡) the 177 

best straight line fit was regressed out.  178 

𝑦3(𝑡) = 𝑦(𝑡) − 𝑦(𝑡)                                                                   (5) 179 

 180 

where 𝑦(𝑡)	is the straight line fit of 𝑦(𝑡). Each segment was multiplied with a set of 3 orthogonal 181 

Slepian tapers and fast fourier transform was applied to the tapered segments.  182 

Computing the complex FFT (for T tapers) at frequency 𝑓 for each segment 𝑛 of sensor 𝑐 resulted 183 

in a complex matrix 𝑌of dimension 𝐹 × 𝐶 × 𝑁 × 𝑇. We utilized the chronux (Bokil et al., 2010) 184 

library to perform the global coherence analysis. 185 

 186 

Cross spectral density between two sensors was estimated from 𝑌9  by using the formula 187 

𝑆1(𝑖, 𝑗) =
+
2
∑ ∑ 𝑐𝑜𝑛𝑗 J𝑌9(𝑓, 𝑖, 𝑛, 𝑇)K𝑌9(𝑓, 𝑗, 𝑛, 𝑇)34                  (6) 188 
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where 𝑖and 𝑗are the channel indices, 𝑓 is the frequency index 𝑛	is the segment index and T is the 189 

taper. 190 

 191 

Singular value decomposition was applied to the cross spectral density matrix 𝑆1for each 192 

frequency value 𝑓.  193 

𝑆1 = 𝑈𝑆𝑈3                                                                                  (7) 194 

Diagonals of 𝑆would be proportional to the explained variance by the orthogonal set of 195 

eigenvectors 𝑈. The values of 𝑆were normalized so that each entry denote the percentage of the 196 

net variance explained in 𝑆1. 197 

𝑆5 = 5
∑ 5&&

                                                                                   (8) 198 

The first entry of 𝑆5	is defined as the global coherence. Global coherence was computed for each 199 

frequency value 𝑓, resulting an array 𝐺 of length 𝐹. 200 

Metastability 201 

 202 

We calculated the metastability measure for all participants across all magnetometer sensors. 203 

Metastability is defined as variability of the Kuramoto Order parameter,𝑅(𝑡), which is given as, 204 

 𝑅(𝑡)𝑒78(9) = +
2
∑ 𝑒7:'(9)		2
4;+                                                       (9) 205 

Where 𝜑4is the phase of the 𝑛9<	oscillator and 𝜓	is the mean phase of the system of oscillators. 206 

In this analysis, every MEG sensor is conceptualized as a coupled oscillator, summarized by its 207 

instantaneous phase 𝜙(𝑡). At any given point of time, the phase of each oscillator is extracted 208 

and projected onto a polar coordinate system, as a unit vector (𝑒7:'(9)).	The length of the resultant 209 

vector, obtained from averaging all the unit vectors is interpreted as the Kuramoto Order 210 

parameter,	𝑅(𝑡). The temporal variability of 𝑅(𝑡) is measured by the standard deviation 𝜎S𝑅(𝑡)T, 211 

and defined as metastability (Deco et.al.,2017).  212 

 213 

As a first step, the pre-processed resting state time series was band-pass filtered so as to obtain 214 

filtered time series. Instantaneous phase of each filtered band was estimated from the filtered 215 

data for metastability calculation. The pass band for the band-pass filtering step was kept narrow 216 

so that the resulting phase is readily interpretable.  217 

 218 

As a first step, the pre-processed resting state time series was band-pass filtered so as to obtain 219 
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filtered time series. Instantaneous phase of each filtered band was estimated from the filtered 220 

data for metastability calculation. The pass band for the band-pass filtering step was kept narrow 221 

so that the resulting phase is readily interpretable. For this analysis, each time series was filtered 222 

in the following frequency bands- 2-4 Hz, 3-7 Hz, 8-12 Hz. Since valid phase estimation requires 223 

narrow pass bands, the beta band was further split into 2 sub-bands-16-20Hz and 20-25Hz and 224 

the respective metastability averaged. As mentioned earlier, the choice of frequency bands was 225 

dictated by phase considerations. An additional criterion was to chunk the frequency bands so 226 

that they map onto well-known frequency bands such as delta, theta, alpha and beta. As 227 

mentioned earlier, we restricted our analysis to below 40 Hz due to presence of HPI noise. 228 

 229 

FieldTrip toolbox (ft_preproc_bandpassfilter.m) was used to band-pass filter each signal in the 230 

appropriate frequency bands. This routine was used to implement a finite impulse response (FIR), 231 

two-pass filter that preserves phase information of the time series.  232 

 233 

Subsequently, instantaneous phase was estimated by using built-in MATLAB implementation of 234 

the Hilbert transform (hilbert.m). The resulting phase time series for each channel and participant 235 

was used to calculate band and subject specific metastability. 236 

 237 

Similar to the preceding analysis, metastability analysis was performed by 1.) treating age as a 238 

continuous variable 2.) binning participants in the following age brackets - 18-35 years (Young 239 

Adults), 36-50 years (Middle Age), 51-65 years (Middle Elderly) and 66 -88 years (Elderly). 240 

 241 

For the region-wise analysis, the brain was segmented into 5 non-overlapping regions (frontal, 242 

centro-parietal, occipital, left and right temporal). Metastability index was calculated individually 243 

for all regions separately by randomly sampling 14 sensors from each region. Metastability was 244 

tracked as a function of age by calculating the Spearman rank correlations. 245 

 246 

Statistical Analysis  247 

 248 

Continuous and categorical analysis of aging data 249 

 250 

In order to bring all aspects of age-associated neural communication we performed both 251 

continuous and categorical analysis of the aforementioned brain measures with age as an 252 
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explanatory variable. The primary goal of the continuous analysis was to capture the pattern 253 

change over lifespan (e.g., whether changes of the patterns are increasing/ decreasing). For this 254 

analysis we divided the whole cohort into bins of 5 years starting from 18 years. The bins were 255 

non-overlapping and the center of each bin was considered as the representative age value of 256 

the bin. 257 

 258 

On the other hand, in the categorical analysis decomposing the whole data into cohorts with age 259 

ranges 18-35, 36-50, 51-64 & 66-88 allowed us to get finer and accurate insights in each stage 260 

of the adult span which has been well-documented in the fMRI literature (Chan et al., 2014) as 261 

well as the results obtained here can be contextualized with previous studies. The age ranges 262 

were unequally chosen because of the limitations posed by the CAM-CAN data set where different 263 

numbers of samples in each age group are available. However, in order to keep a reasonable 264 

number of samples > 120 in each cohort we chose the bins accordingly.  265 

 266 

Regression analysis  267 

 268 

Linear regression analysis was performed by separately considering each of the 5 estimated 269 

measures (Power, Global Coherence, Metastability, PAF and Topographical segregation Index) 270 

as response variables, while keeping age as the explanatory(continuous) variable.  271 

 272 

	 𝑦 = 	𝛽=	 + 𝛽+	 ∗ 𝐴𝑔𝑒                                                        (11) 273 

 274 

Linear regression was performed using the fitlm.m matlab procedure, which yielded an omnibus 275 

F-statistic, regression coefficients and goodness of fit(𝑅?) and log-likelihood(L). The regression 276 

coefficient was taken to represent effect size. Additionally, we also considered 2nd and 3rd 277 

order polynomial fits such as- 278 

 279 

       𝑦 = 	𝛽=	 + 𝛽+	 ∗ 𝐴𝑔𝑒 + 𝛽? ∗ 𝐴𝑔𝑒?                                (12) 280 

       𝑦 = 	𝛽=	 + 𝛽+	 ∗ 𝐴𝑔𝑒 + 𝛽? ∗ 𝐴𝑔𝑒? + 𝛽@ ∗ 𝐴𝑔𝑒@            (13) 281 

 282 

 Akaike Information Criteria was used for model selection and was calculated as- 283 

							𝐴𝐼𝐶 = −2𝐿 + 2𝐾                                                       (14) 284 

Where K is the number of model parameters including the intercept. 285 

 286 
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For the analysis that report spearman correlations, Effect sizes were computed using cohen’s d  287 

𝑑 = # !"
√$%"A

#                                                                         (15) 288 

 289 

(Reported in Supplementary Material in detail) 290 

 291 

Categorical Analysis 292 

 293 

To systematically evaluate the relationship between age and brain measures Power, Coherence, 294 

metastability, PAF and Topographical segregation we used Spearman correlation analysis 295 

following what was described at Khan et al., 2018. Except for the logarithm of power, the other 296 

measures are not guaranteed to be following a Gaussian or normal distribution, hence a common 297 

non-parametric test, Spearman correlation was chosen to evaluate all correlations in this article.  298 

 299 

In brief, pairwise comparisons between groups were performed using permutation testing. In each 300 

iteration the groups were collapsed and random draws were made to form random groups. 301 

Difference of means was calculated for the random group assignments and the procedure 302 

repeated for 10000 iterations to construct a surrogate distribution. Finally, significance was 303 

estimated using the surrogate distribution. The statistics were reported in terms of p-values, effect 304 

sizes and difference of means.   305 

  306 
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Results 307 

Our analysis strategy was two-fold. First, we conducted a categorical analysis by chunking the 308 

age-continuum into discrete groups (see Table 1). We have divided the age values of total N=650 309 

subjects into four age groups: Young Adults (YA), Middle Elderly (ME), Middle Late (ML), Older 310 

Adults (OA), for which the demographic information has been provided in Table 1.  Earlier studies 311 

have done similar grouping (Chan et al 2014) and care was taken such that we have sufficient 312 

number of participants in each age group > 120. Subsequently, we considered age to be a 313 

continuous variable with bins consisting of 5 years between 18-88 and performed linear and 314 

polynomial regression to estimate age associated trends. The bins were non-overlapping and the 315 

center of each bin was considered as the representative age value of the bin. 316 

 317 

Age trajectories in MEG resting state brain dynamics 318 

 319 
We studied the effect of healthy ageing on the fundamental properties of the endogenous band-320 

limited neural oscillations such as amplitude and center frequency. Since the Head Position 321 

Indicator (HPI) coil related noise can be unreliable at higher frequencies, we concentrated our 322 

analysis between 0-40Hz which fully contains the neural oscillations in the Delta (1-3Hz), Theta 323 

(4-8Hz), Alpha (8-12Hz), and Beta (16-25Hz) frequency bands.  324 

 325 

Band limited power 326 

An omnibus ANOVA that considers age as the explanatory variable yielded significance for all 327 

measures tested (details reported in Supplementary material). Our analysis revealed that 328 

spectral power in Delta (𝛽 = 0.008, 𝑝 = 0.1), Theta (𝛽 = 0.004, 𝑝 = 0.46) and Alpha (𝛽 =329 

0.0002, 𝑝 = 0.76) bands did not vary with age (see Fig 1). In contrast, beta band power varied 330 

significantly with age (𝛽 = 0.03, 𝑝 < 0.0001). Visual inspection of Fig. 1d seemed to suggest 18-331 

22 to be an outlier group, so we additionally removed that group and compared linear and 2nd 332 

order polynomial fits for the beta band and found the 2nd order polynomial fit to be better (AIC 333 

linear = 2722, AIC quadratic = 2718). Alpha band power was estimated by averaging the 334 

estimated spectral values within 8-12 Hz. We further quantified age-effects in the beta band using 335 

a categorical approach and found significant differences in group means between YA vs ME, YA 336 

vs ML, YA vs OA and ME vs OA groups.   337 

  338 

 339 
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Peak alpha frequency (PAF) shifts with age 340 

 341 

The center frequency in the alpha band (8-12 Hz) has long been studied in the context of healthy 342 

and pathological aging (see Fig 2). Here, we sought to quantify age related variations in PAF by 343 

averaging the center frequency across the 102 sensors and correlating the global mean with age 344 

as a variable. The regression analysis confirmed age-related reduction in PAF (	𝛽 = −0.01, 𝑝 <345 

0.0001). Frequency value at which there was maximum activity in the alpha band i.e. 8-12 Hz for 346 

a subject, was taken to be the peak alpha frequency of that subject. Fig 1B is an age-spectrogram 347 

which shows variation in the power spectral density in the alpha band with age.  348 

Next, we split the age-range into discrete categories and performed permutation tests to estimate 349 

group differences across age groups. YA was found to differ significantly with ME, ML and OA 350 

whereas the ME group differed from OA in terms of the sample means (effect sizes reported in 351 

Supplementary Materials). 352 

                                                                                 353 

Topographical distribution alpha and beta band power 354 

 355 

Next, we investigated the spatial topographies of whole brain networks corresponding to age-356 

related difference along slow and fast time scales of neuronal signal using subspace analysis 357 

borrowed from linear algebra. We quantified the overlap between the two sensor topographies by 358 

the angle between their respective vector representations (See Fig 2). Larger angles indicated 359 

more separation and less topological overlap between sensor groups. The topographical 360 

separation between the sensor−wide distribution of alpha and beta power was found to increase 361 

with age (β=0.003,	𝑝 < 0.0001) (Fig 2A). Fig 2B shows the average topographical map of alpha 362 

activity at the center alpha frequency and average beta activity in 16-25 Hz for the youngest and 363 

oldest age groups. 364 

 365 

Although we observed similar patterns of difference between the oldest and youngest age groups 366 

for global alpha band power and beta band power, there seemed to be a qualitative difference in 367 

the overlap of sensors representing alpha and beta band activity. The categorical analysis 368 

revealed that sample means in YA group differed from ME, ML and OA. ME differed from ML and 369 

OA whereas ML was different from OA (effect sizes reported in Supplementary Material). 370 

                                                             371 
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Age trajectories in band-specific global network measures: coherence and metastability 372 

 373 

Global Coherence over lifespan 374 
 375 

Presence of large-scale functional brain networks was investigated using global coherence across 376 

all MEG sensors at different frequencies for each subject (Cimenser et al,2011; Kumar et al. 377 

2016). Whole-brain coherence was summarized as the ratio of the principal eigenvalue to the sum 378 

of all eigenvalues of the inter-sensor coherence matrix (see Materials and methods).  379 

  380 

Global coherence at all the frequency values within a frequency band were averaged to generate 381 

a representative value for the corresponding frequency band in four age groups, YA, ME, ML, OA 382 

(Fig 3A). Representative global coherence in age bin was averaged for the continuous analysis 383 

and standard error was computed for each age bin (Fig 3B). Global Coherence in the delta and 384 

theta band was found to increase with age – delta (β=0.0005,	𝑝 < 0.0001), theta	(β=0.0002,	𝑝 =385 

0.009).  In contrast, global coherence in the alpha band varied inversely with age  (β=-0.0008,	𝑝 <386 

0.001) while Beta band global coherence did not display an age effect (β~0,	𝑝 = 0.86) (See Fig 387 

3B). 388 

 389 

 Metastability and aging 390 

 391 

We estimated the variability of neuronal communication states using metastability as a function 392 

of age and frequency. We observed a dichotomous pattern in metastability as a function of 393 

frequencies in all age groups - a sharp decrease with increasing frequencies till 12 Hz and a 394 

gradual increase in the metastability indices across frequencies between 12 – 40 Hz (Fig 3C). 395 

Qualitatively, we found metastability to be higher for delta, theta and beta bands as compared to 396 

the alpha band. Interestingly, in all age categories, the variation of metastability with frequencies 397 

was consistent, essentially a U-shaped profile. From the continuous analysis we could establish 398 

that band-specific metastability increased with age across all frequency bands- Delta 399 

(β=0.0004,	𝑝 < 0.0001), Theta (β=0.0004,	𝑝 < 0.0001), Alpha (β=0.0003,	𝑝 < 0.0001), Beta 400 

(β=0.0001,	𝑝 < 0.0001).   401 

      402 

Region-wise analysis of metastability reveals differential trends 403 

 404 

In order to track changes in metastability in specific brain areas we segmented the sensors in 5 405 
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groups - Frontal, Centro-Parietal, Occipital, Left Temporal and Right Temporal regions. The 406 

region-wise analysis consisted of 14 randomly sampled sensors to compute metastability in each 407 

brain region. Next, we tracked the region-wise metastability with aging. Spearman rank correlation 408 

was performed to characterize trends in band and region specific metastability and effect sizes 409 

quantified using Cohen’s d. Delta and Theta oscillations either stayed invariant or reduced as a 410 

function of age in the occipital, left temporal and right temporal regions. Beta band metastability 411 

showed the highest age correlation (using Spearman rank test) in the centro-parietal sensors 412 

while staying invariant in the occipital and temporal sensors.  The following Spearman rank 413 

coefficients and effect sizes (Cohen’s d) were obtained for delta band - frontal (𝑐 = 0.2499, 𝑑 =414 

0.249, 𝑝 < 0.001), centro-parietal (𝑐 = 0.1629, 𝑑 = 0.3302, 𝑝 < 0.001), occipital (𝑐 = −0.0686, 𝑑 =415 

−0.13, 𝑝 = 0.0805), left temporal (𝑐~0, 𝑝 = 0.92), right temporal (𝑐 = −0.1428, 𝑑 = −0.28, 𝑝 <416 

0.001). The corresponding values for alpha band were frontal(𝑐 = 0.2161, 𝑑 = 0.44, 𝑝 < 0.001), 417 

centro-parietal (𝑐 = 0.1808, 𝑑 = 0.36, 𝑝 < 0.001), occipital (𝑐 = 0.1348, 𝑑 = 0.27, 𝑝 < 0.001), left 418 

temporal (𝑐 = 0.2030, 𝑑 = 0.414, 𝑝 < 0.001), right temporal (𝑐 = 0.2070, 𝑑 = 0.42, 𝑝 < 0.001).  For 419 

theta band- frontal (𝑐 = 0.1725, 𝑑 = 0.35, 𝑝 < 0.001), centro-parietal (𝑐 = 0.2049, 𝑑 = 0.416, 𝑝 <420 

0.001), occipital (𝑐 = 0.1141, 𝑑 = −0.2, 𝑝 < 0.001), left-temporal (𝑐 = −0.04, 𝑑 = −0.08, 𝑝 <421 

0.2396), right-temporal (𝑐 = 0.0457, 𝑑 = −0.08, 𝑝 < 0.2443) were obtained. We tracked 422 

metastability in the beta band for two frequency bands (β+, β?) using similar statistical 423 

methodology. Centro-parietal sensors showed the highest age- related positive correlations (𝑐 =424 

0.2046, 0.2542, 𝑑 = 0.418, 0.51, 𝑝 < 0.001 for the two bands respectively) (Fig 4). 425 

 426 

Relationship of between global network measures and performance metrics over lifespan 427 

 428 

In order to evaluate the relationship of normative brain rhythms over lifespan we computed the 429 

correlations between global network measures and the performance metric of precision in a visual 430 

short-term working memory (VSTM, previous used by Zhang et al 2008) task available with the 431 

Cam-CAN cohort. We observed a significant correlation at 95% confidence levels between global 432 

coherence in the alpha band and precision in VSTM task after regressing out the effect of age 433 

(𝜌 = 0.09, 𝑝 = 0.0143, Fig 5). The global coherences and metastability computed in other 434 

frequency band were not significantly correlated with precision (detailed statistics reported in 435 

Supplementary Materials). 436 

  437 
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Discussion 438 

Neuronal communication is the backbone of basic human brain functions and supports a myriad 439 

of cognitive functions at various scales of nervous system organization (Mesulam 1990). While 440 

spectral estimates attempt to link neural oscillations with cognition (Henry et al. 2016, see 441 

Pesaran et al. 2018 for a nice review), very few studies are available that provide normative 442 

mapping of neuronal oscillations across healthy lifespan aging. We observed a significant age-443 

related decline in peak alpha frequency (PAF) at the sensor level as well as increase in broadband 444 

beta power in a healthy cohort consisting of 650 human participants from the CAMCAN repository 445 

(Fig 1). Out of all sensor specific spectral features such as frequency and amplitude of oscillations 446 

in narrowband and broadband, PAF and beta power varied exclusively with age in opposite ways 447 

(Fig 1). Subsequently we could track the global subspace that sculpts the alpha and beta 448 

topographies, and their corresponding overlap over lifespan. Interestingly the angular separation 449 

between the alpha and beta topographies increase with age indicative of segregation of 450 

underlying generators over lifespan (Fig 2). Integrative mechanisms operational at the macroscale 451 

of whole-brain MEG sensor-space were captured by two complementary mathematical 452 

frameworks – global coherence spectrum that parametrizes the strength of band specific 453 

synchronization in different frequencies over a set of network nodes (MEG sensors for the 454 

purpose of this paper), and metastability that captures the degree of intermittency that exists 455 

between two successive synchronization states (Fig 3). Together, the two measures along with 456 

the spectral estimates quantifies the dynamic repertoire of the state variables. We observed an 457 

emerging dichotomy with aging in pattern of global coherence across slow and fast time scales 458 

(Fig 3A, B). The global alpha coherence decreases over lifespan followed a linear relationship 459 

whereas global beta coherences are unaffected by aging. The global coherences in slower 460 

frequencies - delta and theta on the other hand, are unaffected by aging up to a critical age of 461 

around ~45-50 years (Fig 3B). Thereafter, the global coherence shows an increase with age up 462 

to ~70 years and decrease further upon reaching a peak value. While alpha global coherence 463 

could be fitted best with a linear curve, theta and delta variation over age was non-linear. 464 

Concurrently, metastability exhibited a monotonically increasing relationship over lifespan in all 465 

frequencies (best fitted by a linear curve), with a visible saturation for elderly (~70 years) (Fig 3C, 466 

D). Interestingly, while increase in metastability in alpha band was truly global, increases in 467 

metastability in other bands were region-specific (Fig 4). Furthermore, while global coherence 468 

may be reflective of task performance, metastability, which is essentially a measure of phase 469 

variability was uncorrelated with task performance (Fig 5). In summary, we present a 470 
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comprehensive account of the temporal properties of neuro-electromagnetic signals over lifespan 471 

aging that can be further interpreted in relation to recent and established findings in the literature 472 

to develop a neurodynamic explanation of several important observations in healthy aging (Fig 1-473 

5). Furthermore, we argue that our results are extremely helpful for understanding the pathological 474 

aging scenarios (e.g. Alzheimer’s and Dementia) beyond the standard model of “accelerated 475 

ageing” (Toepper 2017) 476 

The decrease in PAF, prominently observed in our study, has been reported to be a biomarker of 477 

normal and pathological aging process, especially for dementia, mild cognitive impairment, and 478 

Alzheimer’s disease (Scally et al., 2018; Dickinson et al., 2018; Osipova et al., 2005; Jeong, 479 

2004). Patients with Alzheimer’s disease show a significant decrease in PAF compared to age-480 

matched control group (Osipova et al., 2005; Jeong, 2004). Parkinson’s patients with dementia 481 

have a lower PAF compared to age-matched controls (Soikkeli et al., 1991). Interestingly, 482 

developmental changes in spontaneous electrocortical activity is associated with an increase in 483 

PAF from early to late childhood (Miskovic et al., 2015). While the mechanistic explanation of this 484 

dichotomy still remains elusive, several computational attempts have suggested a link between 485 

the thalamocortical circuitry responsible for alpha rhythmogenesis and age-related morphological 486 

differences in thalamocortical circuits to explain slowing down of PAF. In fact, PAF may carry the 487 

signature of an ending of rapid neurodevelopmental process of human beings, behaviorally 488 

observed as trait developments from adolescence to young adults. Concurrently, cognitive task 489 

relevant EEG/MEG studies have linked PAF with scores on cognitive paradigms such as working 490 

memory (Clark et. al 2004) and visual acuity (Samaha et. al 2015) suggesting a crucial role of 491 

PAF with age associated changes in attention and memory from YA to OA. Consistent with extant 492 

literature, power in the beta band was found to increase with age. Increase in the band-limited 493 

beta power in older population compared to younger population has been reported both in the 494 

context of resting state and sensory-motor tasks (Rossiter et al., 2014; Heinrichs-Graham et. al, 495 

2016), where beta oscillations have been regarded as an index of motor inhibition and volitional 496 

movement (Heinrichs-Graham et. al 2016). Subsequently, we depart from some earlier studies in 497 

key respects. Firstly, we find that band-limited power (spectral feature independent of frequency 498 

in our study) in the delta, theta and alpha bands does not vary with age. Second, the angular 499 

overlap decrease between the alpha and beta bands topographies with age reflects a segregation 500 

of function which can emerge from neuro compensatory functional mechanisms or possibly 501 

structural decline e.g., myelination degradation. Neurodegenerative pathologies like AD and 502 

Parkinson’s share many similarities with healthy aging, due to which many have speculated 503 
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whether neurodegeneration is an accelerated aging process (Toepper 2017). Remarkably, the 504 

two sets of features, PAF and band-limited beta power exhibits different age associated 505 

trajectories. While decline of PAF is best described with a linear model, the band limited beta 506 

power trend is best described by a quadratic curve across age continuum. Thus, our results throw 507 

in the possibility that while PAF decrease observed in pathological scenarios may be a non-508 

specific marker of disease, other features like beta power increase may be more relevant 509 

candidates to tag preservation of function via neuro compensatory mechanisms. 510 

A key contribution of our study is the archival of global network measures over lifespan, 511 

particularly that are relevant for the neural information processing time scales. Few recent studies 512 

using M/EEG have further emphasized that patterns of age-dependent segregation for beta and 513 

gamma mediated networks differed substantially during maturation (Miskovic et al., 2015; Khan 514 

et al., 2018). A recent study by Khan et al., 2018 further reports that beta band mediated networks 515 

become more locally efficient, i.e. tending towards clustering and more connections with adjacent 516 

regions with age, while gamma band mediated networks become more globally efficient, i.e. 517 

tending towards shorter overall path lengths and thus faster communication across larger cortical 518 

distances, with age during maturation. However, how do such large-scale and local 519 

communication organize and orchestrate across different sensors and in different bands during 520 

various stages of healthy adult lifespan remains largely unknown. In our study, we attempt to 521 

quantify the band specific normative values as features during resting state borrowing the concept 522 

from Communication Through Coherence (CTC) hypothesis. CTC operationally defines neuronal 523 

communication as generation of coherent activity across neuronal assemblies. This view holds 524 

that interareal coherence presents windows of excitability where communication channels 525 

between brain regions are maximally utilized (Fries, 2005). Resting state brain activity is said to 526 

reflect the brain’s tendency to engage and disengage these channels of communication 527 

spontaneously (Deco et. al, 2011). From a dynamical systems perspective, spontaneous brain 528 

activity must exhibit metastable brain dynamics, whereby the global brain dynamic stays clear of 529 

the two extremes of constant synchronization and desynchronization and instead, periodically 530 

shuttles back and forth between coherent and incoherent regimes. More formally, global 531 

coherence indexes the average phase and amplitude correlation across sensors whereas 532 

metastability measures the variability in phase relationships of sensors across time. The 533 

complimentary, yet related nature of global coherence and metastability offers unique insights 534 

into the mechanistic underpinnings of global brain dynamics. An example of this is a recent 535 

computational study by Vasa et al. which describes how local lesioning in nodes with high 536 
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eigenvector centrality leads to a simultaneous decrease in global synchrony along with an 537 

increase in metastability (Vasa et al., 2015). For a review of the complementary nature of global 538 

coherence and metastability, see (Hellyer et al. 2015, Vasa et al. 2015, Deco et al. 2017). The 539 

global coherence decreases in alpha band (8-12 Hz) with concomitant increase of metastability 540 

over lifespan indicates the transformative role of alpha over the aging process. This would strongly 541 

suggest that alpha can be a possible mode of neural communication associated with neural 542 

compensation whereas slower frequencies like delta and theta may reflect a critical juncture in 543 

adult lifespan at certain age ranges. Interestingly the critical age ranges from where delta and 544 

theta global coherence start peaking (~45-50) is a critical phase of life in terms of performance 545 

where ability to learn new skill starts diminishing (Janacsek et al. 2012). We argue while alpha 546 

coherence decrease may be associated with neuro compensatory mechanisms, they may not 547 

have a direct bearing on performance for which delta and theta may be more informative. Studies 548 

have demonstrated that theta rhythms are crucial for information processing underlying sequence 549 

learning (Sauseng et al. 2009, Koene and Hasselmo 2009) which is clearly a relevant metric for 550 

skill learning observed by Janaccsek et al. 2012. 551 

Our earlier work has proposed that a way to implement the CTC hypothesis, that is, optimal 552 

exploration of the dynamical repertoire inherent in the brain structural connectivity, is by 553 

maximization of metastability (Deco et. al., 2016). Here, we interpret metastability as a measure 554 

of the variability of the states of phase configurations with time. Thus, metastability should 555 

decrease with the introduction of external stimulation and task conditions. In terms of dynamical 556 

systems, resting brain to exhibit maximal metastability, refining and providing evidence in favor of 557 

the synergetic hypothesis of Haken (Corning 1995) (later further explored by Tognoli and Kelso 558 

2014). We observe an age-related increase in global metastability across all frequency bands and 559 

the trend is best fitted by a linear model. This result can be contextualized from two opposing 560 

theories of healthy aging. The method of neuro-compensation argues that age-related changes 561 

in brain dynamics suggest a compensatory mechanism by which function gets restored in 562 

response to structural decline (Naik et al. 2017). In this regard, it is interesting to note that 563 

Alzheimer’s disease and traumatic brain injuries (TBI) are associated with a reduction in global 564 

metastability (Córdova-Palomera et al., 2017; Hellyer et al., 2015). Since metastability is a direct 565 

measure of the functional capacity of the brain and has been shown to confer cognitive flexibility 566 

in task-switching, information-processing and logical memory (Hellyer et al. 2015), this would 567 

argue in favor of a compensatory explanation of the global increase in metastability with aging. 568 

However, the neural noise hypothesis of aging would suggest a different interpretation. This 569 
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theory argues that age-related cognitive decline is best explained as a consequence of an 570 

increase in the noisy baseline activity of the brain (Voytek et al., 2015; Dave et al., 2018). 571 

According to this framework, global phase inconsistencies as we observe here is an obligatory 572 

change resulting from change in underlying scaffold dictated by gradual change in white and grey 573 

matter volume that shifts the baseline and result in an unspecific lifespan-associated increase in 574 

neural noise. Within this framework, changes in global metastability and coherence reflect an 575 

epiphenomenon that occurs due to an increase in neural noise. Future efforts should focus on 576 

resolving this debate. One possible direction would be to study brain signals through measures 577 

of signal complexity using source reconstructed EEG/MEG, to elucidate the role of specific brain 578 

regions in bringing about metastable patterns of activity. More direct estimates of metastable state 579 

switching from electrophysiological data could be employed to disentangle the effects of noise. 580 

Recent works in this direction have proposed ways to directly estimate metastable switching 581 

between synchrony states. For example, Vidaurre et.al. 2016 propose a Hidden Markov Model 582 

(HMM) based method to decompose electrophysiological time series into recurrent, quasi-583 

stationary phase-locked regimes. This involves fitting source reconstructed time series with 584 

multivariate autoregressive models and modelling state switches through the HMM approach. 585 

Another promising avenue would be to invoke whole brain computational models which 586 

incorporate neural plasticity mechanisms that operate at time scales that are relevant to aging 587 

(Vattikonda et al., 2016; Abeysuriya et al., 2018). This is also necessary to reconcile the region 588 

specific metastability patterns we observe across frequency bands, with alpha band metastability 589 

increase being truly global versus region-specific enhancement and decrease of metastability in 590 

other frequency bands over lifespan (Fig 4). 591 

An ongoing research direction in the neuroimaging community is to relate resting state dynamics 592 

to performance measures also sometimes referred to as behavioral phenotypes (Nomi et al 2017, 593 

Liegeois et. al 2019). While the slow time-scale of fMRI has been primarily used for this purpose 594 

to argue about cognitive flexibility from resting state functional connectivity (FC) metrics (Naik et 595 

al 2017, Nomi et al 2017, Liegos et al 2019), the variation of the global coherence and 596 

metastability from MEG presented us an opportunity to investigate the relationships between 597 

global network properties and task performance in the neural times-scale. The CAM-CAN dataset 598 

has the Verbal short-term memory task (VSTM) in which the accuracy is anti-correlated linearly 599 

with increase in age. Interestingly only the global coherence in alpha band was correlated with 600 

precision when the age effects were corrected, while the global coherence in other frequency 601 

bands are uncorrelated with VSTM performance (Fig 5). On the other hand, metastability has no 602 
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bearing on performance accuracy once the effects of ageing were considered for any frequency. 603 

Thus, except the global network captured by alpha global coherence, the others are non-specific 604 

measures of neurophysiological processing. In other words, measures like global coherence/ 605 

metastability quantifies the overall shift global information processing rather than being relevant 606 

for a specific task. 607 

An important caveat of our study was due to limitation posed by the Cam-CAN data set particularly 608 

because of the presence of harmonics of lower frequencies being present in higher frequencies, 609 

a systematic analysis of gamma band was not possible. The gamma frequencies in the resting 610 

state did not show any statistically significant differential change with ageing at least in the low 611 

gamma range (30-40 Hz), although the task data showed interesting patterns. However, such 612 

discussions remain out of scope of this paper. Another limitation is that in spite of large sample 613 

size the current analysis is restricted to the sensor level, our results are so far only indicative of 614 

activity at the neural level. Source reconstruction may provide a direct estimate of global 615 

coherence at the level of neural assemblies and help in elucidating its relationship with sensor 616 

level global coherence and metastability, the efforts toward which will be presented elsewhere in 617 

future. Caution is also required in interpreting the results due to the modest effect sizes involved 618 

in certain measures. Similarly, caution is warranted in interpreting global coherence and 619 

metastability measures. Due to the way it is constructed, global coherence may give misleading 620 

information under some circumstances. For example, it is possible to obtain spuriously high 621 

values of global coherence even when the underlying signals are independent when most of the 622 

power is concentrated in a few sensors. In this study, the almost evenly distributed scalp 623 

topographies (Fig.3) would preclude that possibility. Future work is underway to address some of 624 

these issues and limitations. The other limitation of the present study is the use of simple statistical 625 

models to explain spectral features as a function of age, but more complicated component models 626 

can be used in future (e.g., in Liegeois et al. 2019). A multidimensional analysis by estimating FC 627 

dynamics corresponding to different performance measures using big data techniques can further 628 

shape the understanding of rest and task 629 

 630 

  631 
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Table and Figure Legends 891 

 892 
Table1. Sample size and gender statistics in each representative age group 893 
  894 
Figure 1. Relation between global spectral activity and age. A. Plots of mean power spectral 895 
density for 4 non-overlapping age groups i.e. 18-35, 36-50, 51-65 and 66-88. Shaded region 896 
denote standard error of mean.  B. Variation of alpha activity with aging. Center frequency in the 897 
alpha band for each age bin has been plotted as solid circles and solid black line is the linear fit 898 
of these points (labels indicate effect sizes, significance and correlation function) C. Spectra in 899 
the delta, theta and alpha bands as a function of age. D. Beta spectra as a function of age  900 
 901 
Figure 2. Segregation of sensor level topographies with aging. A. Angular separation between 902 
alpha and beta bands(in radians) as a function of age. B. Boxplot for the distribution of angles 903 
between the sensor topographies of center alpha power and average beta power for the four age 904 
groups. Blue line denotes the median of the distribution and the notch indicates 95% confidence 905 
interval of the median. Inset:Sensor topographies of alpha power at center frequency and average 906 
beta power for the two extreme age groups. 907 
 908 
 909 
Figure 3. Differential changes in global coherence with aging. A. Plots of mean global 910 
coherency for the four age groups. Shaded region denotes s.e.m. B.  Differential variation of 911 
global coherence for frequency bands. C. Metastability for four age groups in delta, theta, alpha 912 
and beta bands. 913 
 914 
Figure 4: Region-wise increase and decrease in global metastability. A. Shows the results 915 
for the region-wise metastability analysis. Colors indicate the direction of the age-related trend as 916 
measured by the spearman rank correlation coefficients. 14 sensors were chosen at random from 917 
each of the 5 anatomical areas- frontal, centro-parietal, occipital, left and right temporal. B. Vector 918 
View magnetometer layout. 919 
 920 
Figure 5: Correlation of VSTM precision with global coherence and metastability. Center: 921 
Scatterplot of precision with age. Left: Scatterplot of band-specific global coherence with 922 
precision in VSTM task. Right: Scatterplot of band-specific global coherence with precision in 923 
VSTM task. 924 
                                                    925 
 926 

 927 

 928 

 929 
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 931 

 932 

Age group N % Female 

YA (18-35) 126 55 

ME (36-50) 159 49 

ML (51-65) 149 50 

OA (66-88) 216 46 

 933 

Table1. Sample size and gender in each representative age group  934 
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Fig. S2 represents Sensor topography of correlation between peak alpha frequency and age. Colorbar represents Spearman’s rank correlation value.
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Measure F(1,648)(p=value) beta1 R^2

POWER

Delta Power 2.61(0.1) 0.008(0.1) 0.004
Theta Power 0.546(0.46) 0.004(0.46) 0.0008
Alpha Power 0.08(0.76) 0.0002(0.76) 0.0001
Beta Power 41.3(<0.0001) 0.03(<0.0001) 0.06

COHERENCE

Global Coherence(Delta) 22(<0.0001) 0.0005(<0.0001) 0.03
Global Coherence(Theta) 6.76(<0.0001) 0.0002(<0.009) 0.01
Global Coherence(Alpha) 60(<0.0001) -0.0008(<0.0001) 0.084
Global Coherence(Beta) 0.03(0.86) ~0(0.86) ~0

METASTABILITY

Metastability(Delta) 95(<0.0001) 0.0004(<0.0001) 0.128
Metastability(Theta) 105(<0.0001) 0.0004(<0.0001) 0.139
Metastability(Alpha) 77.5(<0.0001) 0.0003(<0.0001) 0.107
Metastability(Beta) 21.6(<0.0001) 0.0001(<0.0001) 0.032

Peak Alpha Frequency 109(0.0001) -0.01(<0.0001) 0.144
Alpha-Beta topographical segregation index 65.7(<0.0001) 0.003(<0.0001) 0.09
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Supplementary Table 1.
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T1.Statistical table for power, coherence and metastability measures. F-values, beta coefficients and goodness of fit for linear regression based analysis are reported.
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Beta Power YA ME ML OA

YA <0.001, -0.48, 
-0.9679 <0.001, -0.61, -1.28 <0.001, -0.83, -1.73

ME <0.21, -0.14, -0.3 <0.0016, -0.34, -0.76

ML <0.06, -0.19, -0.4496
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Supplementary Table 2.
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T2. Tabulates the between group test for beta power. 10000 iterations were performed to generate surrogate data for each comparison. Reported values correspond to p-values, effect size, group difference in means in that order.
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PAF YA ME ML OA

YA 0.02, 0.2674, -0.193 <0.001, -0.61, -1.28 <0.001, -0.83, -1.73

ME 0.21, -0.14, -0.3 0.0016, -0.34, -0.76

ML 0.06, -0.19, -0.4496
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Supplementary Table 3.
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*p-value, effect size, group difference in means
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Peak Alpha Frequency(PAF) Categorical Analysis

CBLADMIN
Typewriter
T3. Tabulates the between group test for peak alpha frequency(PAF). 10000 iterations were performed to generate surrogate data for each comparison. Reported values correspond to p-values, effect size, group difference in means in that order.
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ANG_SEP YA ME ML OA

YA 0.03 ,-0.25, -2.81 <0.001, -0.47, -5.55 <0.001, -0.77, -9.06

ME 0.03 ,-0.24, -2.7 <0.001, -0.55, -6.24

ML 0.0064, -0.289, -3.5
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Supplementary Table 4.
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Alpha-Beta Topographical segregation 
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T4. Tabulates the between group test for alpha-beta segregation measure. 10000 iterations were performed to generate surrogate data for each comparison. Reported values correspond to p-values, effect size, group difference in means in that order.
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Delta YA ME ML OA Theta YA ME ML OA

YA 0.88 ,-0.01, 0.0006 0.24, -0.15 -0.006 0.0003, -0.48, -0.02 YA 0.6 ,-0.06, 0.001 0.43,0.09,0.002 0.05, -0.25, -0.009

ME 0.21 ,-0.14, -0.006 <0.001, -0.43, -0.02 ME 0.8,0.02, 0.0009 0.01,-0.26,-0.011

ML 0.011,-0.28, -0.01 ML 0.01,-0.29,-0.01

Alpha YA ME ML OA Beta YA ME ML OA

YA 0.1 ,0.18, 0.01 <0.001, 0.63,0.03 <0.001, 0.73, 0.03 YA 0.36,0.1,0.002 0.03, 0.25, 0.005 0.78,0.031, 0.0007

ME 0.0002 ,0.43, 0.02 <0.001, 0.52, 0.02 ME 0.16,0.15,0.003 0.52,-0.06,-0.001

ML 0.4, 0.08, 0.003 ML 0.04,-0.2,-0.005
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Supplementary Table 5.

CBLADMIN
Typewriter
Global Coherence Categorical Analysis
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Typewriter
T5. Tabulates the between group test for global coherence measure. 10000 iterations were performed to generate surrogate data for each comparison. Reported values correspond to p-values, effect size, group difference in means in that order.
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Delta YA ME ML OA Theta YA ME ML OA

YA 0.007,-0.32, -0.004 <0.001, -0.66, 0.01 <0.001, -1.0, -0.01 YA <0.001 ,-0.41, -0.006 <0.001,-0.74,-0.01 <0.001, -1.15, -0.02

ME 0.002 ,-0.33, -0.006 <0.001, -0.74, -0.01 ME 0.003 ,-0.33, -0.006 <0.001, -0.73, -0.01

ML 0.0006, -0.39, -0.008 ML <0.001, -0.4, -0.009

Alpha YA ME ML OA Beta YA ME ML OA

YA 0.02 ,-0.27, -0.003<0.001, -0.62, -0.009 <0.001, -0.96, -0.01 YA 0.04 ,-0.24, -0.003 0.03, -0.26, -0.003 <0.001, -0.6, -0.009

ME 0.004 ,0.32, 0.005 <0.001, -0.67, -0.01 ME 0.82 ,-0.025, -0.0004 0.002, -0.33, -0.006

ML 0.0003, -0.38, -0.007 ML 0.006, -0.29, -0.005
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Supplementary Table 6.
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Metastability Categorical Analysis
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Typewriter
T6. Tabulates the between group test for metastability measure. 10000 iterations were performed to generate surrogate data for each comparison. Reported values correspond to p-values, effect size, group difference in means in that order.
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Typewriter
Fig S3. represents a scatter plot of Global Coherence in theta band(3-7Hz) (ICA CORRECTED) as a function of age. ECG and EOG signals were subtracted from the data using an automated ICA procedure as outlined in the main text.
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Fig.S4 represents a scatter plot of Global Coherence in alpha band(8-12Hz) (ICA CORRECTED) as a function of age. ECG and EOG signals were subtracted from the data using an automated ICA procedure as outlined in the main text.
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Fig.S5 represents a scatter plot of Global Coherence in alpha band(8-12Hz) (ICA CORRECTED) as a function of age. ECG and EOG signals were subtracted from the data using an automated ICA procedure as outlined in the main text.
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Fig.S6 represents a scatter plot of Global Coherence in beta band(16-25Hz) (ICA CORRECTED) as a function of age. ECG and EOG signals were subtracted from the data using an automated ICA procedure as outlined in the main text.
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Fig. S7 Represents a scatter plot of metastability in delta band(1-3Hz) (ICA CORRECTED) as a function of age. ECG and EOG signals were subtracted from the data using an automated ICA procedure as outlined in the main text.
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Fig. S8 represents a scatter plot of metastability in alpha band(8-12Hz) (ICA CORRECTED) as a function of age. ECG and EOG signals were subtracted from the data using an automated ICA procedure as outlined in the main text.

CBLADMIN
Typewriter

https://doi.org/10.1101/504589
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2020. ; https://doi.org/10.1101/504589doi: bioRxiv preprint 

CBLADMIN
Typewriter
S9.

CBLADMIN
Textbox
Fig. S9 represents Gender-wise comparison of randomly sampled age groups. 50 samples were drawn at random from each age-group and GC calculated. 
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Fig. S10 Gender-wise metastability in delta and alpha band. Data consisted of 328 Males and 322 Females. Bar plots represent metastability in the delta and theta bands for the 4 age groups.
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GLOBAL COHERENCE
BAND RHO P
DELTA -0.0018 0.96
THETA 0.01 0.72
ALPHA 0.09 0.01
BETA 0.08 0.06

METASTABILITY
BAND RHO P
DELTA 0.04 0.27
THETA 0.04 0.24
ALPHA 0.03 0.03
BETA 0.01 0.79
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T7.Rho and P-val for partial correlation between precision in VSTM task and frequency-specific coherence and metastability(age regressed out).
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Supplementary Table 7.
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