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Abstract 
 
scRNA-seq dataset integration occurs in different contexts, such as the identification of cell type-
specific differences in gene expression across conditions or species, or batch effect correction. 
We present scAlign, an unsupervised deep learning method for data integration that can 
incorporate partial, overlapping or a complete set of cell labels, and estimate per-cell differences 
in gene expression across datasets. scAlign performance is state-of-the-art and robust to cross-
dataset variation in cell type-specific expression and cell type composition. We demonstrate that 
scAlign identifies a rare cell population likely to drive malaria transmission. Our framework is 
widely applicable to integration challenges in other domains. 
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Background 
 
Single cell RNA sequencing (scRNA-seq) technologies enable the capture of high resolution 
snapshots of gene expression activity in individual cells. As the generation of scRNA-seq data 
accelerates, integrative analysis of multiple scRNA-seq datasets1–7 is becoming increasingly 
important in a number of contexts. For example, in case-control studies for which a pair of scRNA-
seq datasets are generated from biological replicate populations before and after stimulus8–11, 
functionally matched cell types across datasets must be identified and aligned in order to estimate 
cell type-specific response to stimulus. Also, when similar cell populations are sequenced using 
different technologies or laboratories, cell type-specific differences between datasets must be 
estimated and removed before a combined analysis of all data can be performed. 
 
Integrative analyses are currently challenging due to several factors. First, dataset integration can 
be viewed as mapping one dataset onto another. In the example of case-control studies, 
increased cell-type specific response to stimulus requires a more complex mapping between 
datasets. Therefore, integrative tools must  be able to freely scale up or down the flexibility of their 
mapping functions to successfully perform integration at varying complexities. Second, current 
integrative tools can be separated into two exclusive sets: those that require all cells from all 
datasets to have known cell type (supervised), and those that do not make use of any cell type 
labels (unsupervised). Thus, if only a subset of cell can be labeled with high accuracy, or if only 
one dataset is labeled (as is the case when reference annotated cell atlases are available12–17), 
this partial set of labels currently cannot be used in data integration. Third, measured 
transcriptomes even for homogeneous populations of cells occupy a continuum of cell states, for 
both technical18,19 and biological20–22 reasons. Thus, individual cells cannot be matched exactly 
across datasets. Therefore, downstream analysis of integrated datasets typically involve 
clustering cells across datasets to find matching cell types and estimating cell type-specific 
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differences across datasets. The clustering step makes it difficult to find rare cell populations that 
differ between datasets. 
 
Here we present scAlign, a deep learning-based method for scRNA-seq alignment. scAlign 
performs single cell alignment of scRNA-seq data by learning a bidirectional mapping between 
cells sequenced within individual datasets, and a low-dimensional cell state space in which cells 
group by function and type, regardless of the dataset in which it was sequenced. This bidirectional 
map enables users to generate a representation of what the same cell looks like under each 
individual dataset, and therefore simulate a matched experiment in which the exact same cell is 
sequenced simultaneously under different conditions. Compared to previous approaches, scAlign 
can scale in alignment power due to its neural network design, and it can optionally use partial, 
overlapping, or a complete set of cell type labels in one or more of the input datasets. We 
demonstrate that scAlign outperforms existing alignment methods particularly when individual cell 
types exhibit strong dataset-specific signatures such as heterogeneous responses to stimulus, 
and that our bidirectional map enables identification of changes in rare cell types that cannot be 
identified from alignment and data analysis steps performed in isolation. We further demonstrate 
the utility of scAlign in identifying changes in expression associated with sexual commitment in 
malaria, and posit that scAlign may be used to perform alignment in domains other than single 
cell genomics as well. 
 
Results 
 
The overall framework of scAlign is illustrated in Figure 1. While this paper is written in the context 
of integrating multiple datasets representing cell populations exposed to different stimuli or control 
conditions, scAlign can be readily used for any data integration context discussed above. The 
premise of integration methods is that when similar cell populations are sequenced under different 
conditions, the cells will separate first by condition, then by type (Fig. 1a). The first component of 
scAlign is the construction of a joint cell state space using scRNA-seq data from all conditions, in 
which cells do not separate by condition (Fig. 1b). This cell state space represents an 
unsupervised dimensionality reduction of scRNA-seq data from genome-wide expression 
measurements to a low dimensional manifold, using a shared deep encoder neural network 
trained across all conditions. Unlike autoencoders, which share a similar architecture to scAlign 
but use a different objective function, our low dimensional manifold is learned by training the 
neural network to simultaneously encourage overlap of cells in the state space from across 
conditions (thus performing alignment), yet also preserving the pairwise cell-cell similarity within 
each condition (and therefore minimizing distortion of gene expression). Optionally, scAlign can 
take as input a partial or full set of cell annotations in one or more conditions, which will encourage 
the alignment to cluster cells of the same type in cell state space. 
 
In the second component of scAlign, we train condition-specific deep decoder networks capable 
of projecting individual cells from the cell state space back to the gene expression space of each 
input condition, regardless of what condition the cell is originally sequenced in (Fig. 1c). We use 
these decoders to measure per-cell variation of expression across conditions, and in the case of 
integrating two conditions, this generates a paired-differential expression profile representing the 
difference in expression of the same cell state across conditions (Fig. 1d). scAlign therefore seeks 
to re-create the ideal experiment in which the exact same cell is sequenced before and after a 
stimulus in a case-control study, for example. 
 
Results - scAlign captures cell type specific response to stimulus 
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We first benchmarked the alignment component of scAlign using data from four publicly available 
scRNA-seq studies for which the same cell populations were sequenced under different 
conditions, and for which the cell type labels were obtained experimentally (Fig. 2). Our first 
comparison used CellBench23, a benchmark consisting of three human lung adenocarcinoma cell 
lines (HCC827, H1975, H2228) that were sequenced using different platforms (CEL-seq2, 10x 
Chromium, Drop-seq Dolomite) as well as at varying relative concentrations of either RNA content 
or numbers of cells in a mixture. While the alignment of the pure cell populations sequenced 
across platforms was trivial and did not require data integration methods (Supplementary Fig. 
1), alignment of RNA mixtures across platforms was more challenging and more clearly illustrated 
the performance advantage of scAlign (Fig. 2a). We additionally benchmarked methods using 
data generated by Kowalczyk et al.24 and Mann et al.25, each consisting of three hematopoietic 
cell types sequenced in young and old mice (LT-HSC, ST-HSC, MPP), though Mann et al. 
additionally challenged the mice with a LPS or a control condition. Similar to our results with 
CellBench, scAlign outperforms other approaches on both of these benchmarks (Fig. 2b,c). 
 
To better understand why the relative performance of the other methods was inconsistent across 
benchmarks (Fig. 2a-c), we next characterized the difficulty of each benchmark for alignment. 
For each cell type in each benchmark, we computed the differentially expressed genes (DEGs) 
across conditions. We observed considerable overlap in the DEGs for each cell type  
(Supplementary Fig. 2), suggesting these benchmarks may be less challenging to align and 
therefore more difficult to distinguish other approaches from each other. We therefore constructed 
a novel benchmark termed Johansen et al. by combining published scRNA-seq data on 
hematopoietic cells measured across different studies and stimuli. This benchmark yields 
increased cell type specific differential gene expression across the three cell types 
(Supplementary Fig. 2), which therefore makes it more challenging to align. On the Johansen et 
al. benchmark, we find that scAlign’s performance is robustly superior, while Seurat also 
outperforms the remaining methods by a large margin (Fig. 2d). 
 
scAlign simultaneously aligns scRNA-seq from multiple conditions and performs a non-linear 
dimensionality reduction on the transcriptomes. This is advantageous because dimensionality 
reduction is a first step to a number of downstream tasks, such as clustering into putative cell 
types26 and trajectory inference27–29. Dimensionality reduction of cell types generally improves 
when more data is used to compute the embedding dimensions, and so we hypothesized that 
established cell types will cluster better in scAlign’s embedding space in part due to the fact we 
are defining a single embedding space using shared data from multiple conditions. We therefore 
compared the clustering of known cell types in the scAlign embedding space to an autoencoder 
neural network that uses the same architecture and number of parameters as scAlign, but is 
trained on each condition separately (see Methods). In two of the three benchmarks we tested, 
we found that known cell types cluster more closely and are more distinct in scAlign embedding 
space compared to that of the autoencoder (Fig. 3, Supplementary Fig. 3), suggesting scAlign’s 
embedding space benefits from pooling cells from across all conditions. 
 
Most of the existing approaches tested in this paper are unsupervised, in that they do not use cell 
type labels to aid alignment, even if available. While the focus of this paper is on scAlign 
performance in this unsupervised setting, a unique feature of scAlign is that its alignment 
framework can naturally incorporate cell type labels as a separate component in the objective 
function that is maximized during training. Thus, even if only one of the conditions to align has 
labels, or if only a subset of cells can be reliably labeled, we can use that information to guide the 
alignment. Supplementary Figures 4a-d illustrate, for each of the four benchmarks from Figure 
2, that alignment performance of scAlign improves when cell type labels are available at training 
time, and exceeds other supervised methods such as MINT19. Furthermore, even when provided 
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with labels, the cell-cell similarity matrix of the supervised scAlign method is qualitatively similar 
to the cell-cell similarity matrix of cells in the original gene expression space as well as the 
unsupervised scAlign cell state space, suggesting the inferred cell state space is robust to adding 
labels during alignment (Supplementary Fig. 5). 
 
Results - scAlign is robust to large changes in cell type composition 
 
Besides cell type-specific responses to stimuli, we reasoned that the other factor that determines 
alignment difficulty is the difference in the proportion of each cell type between conditions. That 
is, cell types that are abundant in one condition but rare or absent in another may pose difficulty 
during alignment. We therefore explored the behavior of scAlign and other approaches when the 
relative proportion of cell types varies significantly between the conditions being aligned. 
  
We performed a series of experiments on the Kowalczyk et al. benchmark where we measured 
alignment performance of all methods as we removed an increasing proportion of cells from each 
cell type from the old mouse condition (Fig. 4). While scAlign had superior performance across 
all experiments and was most robust to varying cell type proportions, surprisingly, we found that 
other methods were generally robust as well. Removing even 75% of a given cell only led to a 
median drop of 11% in accuracy across the tested methods. When we repeated these 
experiments on the Mann et al. benchmark, we found most methods decreased in performance 
as we removed more cells from each type, though scAlign still outperformed all other methods 
(Supplementary Fig. 6). 
   
We next investigated the factors that underlie scAlign’s robustness to varying cell type proportion 
imbalances across conditions. scAlign optimizes an objective function that minimizes the 
difference between the pairwise cell-cell similarity matrix in gene expression space, and the 
pairwise cell-cell similarity matrix implied in the cell state space when performing random walks 
of length two (Fig. 5a). The random walk starts with a cell sequenced in one condition, then moves 
to a cell sequenced in the other condition based on proximity in cell state space. The walk then 
returns to a different cell (excluding the starting cell) in the original condition, also based on 
proximity in cell state space. For every cell in each condition, we calculated the frequency that 
such random walks (initiated from the other condition) pass through it (Fig. 5b-c). We found that 
a select few representatives for each cell type are visited much more frequently than others, and 
that even when those cells are removed from the condition, another cell is automatically selected 
as a replacement (Supplementary Fig. 7). This suggests that a given cell type in one condition 
only depends on a few cells of the same type in the other condition to align properly.  
 
In the above experiments, we have aligned conditions in which the same set of cell types are 
present in both conditions. We next explored the behavior of scAlign and other approaches when 
there are cell types unique to one of the conditions. We expect such scenarios to arise when only 
a subset of cells of a given type might respond to, or be targeted by, a stimulus (where a stimulus 
could be a targeted therapy, or even speciation30). For each of our benchmarks, we removed one 
cell type from one of the conditions (e.g. the LPS condition of the Mann benchmark, or the old 
mouse condition of the Kowalczyk benchmark), and aligned the control and stimulated conditions 
to determine the extent to which the unique population was not aligned to cells from the other 
condition. Figure 6a demonstrates that in eight out of nine cases, scAlign outperforms other 
alignment methods in terms of classification accuracy. Even in cases where the alignment 
accuracy was similar between methods, scAlign visually separates cell types in its cell state space 
more so than other approaches such as scran and Seurat (Fig. 6b). For other approaches, the 
separation of different cell types within the same condition shrinks when one cell type is removed 
(Supplementary Fig. 8).  
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Results - scAlign interpolates gene expression accurately 
 
One of the more novel features of scAlign is the ability to map each cell from the cell state space 
back into the gene expression space of each of the original conditions, regardless of which 
condition the cell was originally sequenced in. This mapping is performed through interpolation: 
for each condition, we learn a mapping from the cell state space back to gene expression space 
using cells sequenced in that condition, then apply the map to all cells sequenced in all other 
conditions. This interpolation procedure enables measurement of variation in gene expression for 
the same cell state across multiple conditions, and simulates the ideal experiment in which the 
exact same cell is sequenced before and after a stimulus is applied, and the variation in gene 
expression is subsequently measured. 
 
To measure the accuracy of scAlign interpolation, for each of the three hematopoietic benchmarks, 
we trained decoder neural networks to map cells from the cell state space back into each of the 
case and control conditions. We then measured interpolation accuracy as the accuracy of a 
classifier trained on the original gene expression profiles of cells sequenced under one condition 
(e.g. stimulated), when used to classify control cells that have been interpolated from the other 
condition (e.g. control).  Comparing this interpolation accuracy to cross-validation accuracy of 
classifying cells in their original condition using the original measured gene expression profiles, 
we see that interpolation accuracy is similar to expression accuracy (Fig. 7a), suggesting that 
cells of one type sequenced in one condition, maintain their cell identity when mapped into another 
condition. 
 
Figure 7b illustrates the cell-cell similarity matrix computed in gene expression space of 
hematopoietic cells collected in the Kowalczyk study, when including cells sequenced in the 
young mice, as well as cells that have been interpolated from the old mice into the young condition. 
We see that cells cluster largely by cell type (LT-HSC, ST-HSC, MPP) and not by their condition 
of origin. This demonstrates that the encoding and interpolation process maintains data fidelity, 
even though the encoder is trained to align data from multiple conditions and is not explicitly 
trained to minimize reconstruction error like typical autoencoders. Figures 7c,d further illustrate 
that the cell-cell similarity matrix in embedding space is faithful to the cell-cell similarity matrix in 
the original gene expression space. 
 
Results – interpolation identifies rare cell population potentially driving sexual 
commitment  
 
We next applied scAlign to identify genes associated with sexual commitment in Plasmodium 
falciparum (malaria). Briefly, the life cycle of malaria begins with a single asexually-committed cell 
and ends 48 hours later with the single cell giving rise to a new set of cells that are either all 
committed to asexual replication or differentiation into gametocytes. While the gene ap2-g is a 
known master regulator of sexual commitment, and its expression is necessary for sexual 
commitment, the events which follow ap2-g activation and lead to full sexual commitment are 
unknown. Furthermore, ap2-g expression is restricted to a minor subset of cells, making the 
identification of the precise stage of the cycle when sexual commitment occurs a challenging task. 
 
Figure 8a illustrates the cell state space of malaria cells which are either capable of ap2-g 
expression (AP2-G CTRL) or are ap2-g deficient (AP2-G OFF). As was observed in the original 
paper31, cells generally form a trajectory in the state space, corresponding to different time points 
in the malaria cell cycle. scAlign is able to maintain most gametocytes from the AP2-G CTRL 
condition as a distinct population that is not aligned to any cell population from the AP2-G OFF 
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condition, whereas other tested methods are unable to accurately isolate the gametocyte 
population (Supplementary Fig. 9).  
 
Using the interpolation component of scAlign, we projected each cell from each condition in the 
cell state space to the expression space of the AP2-G CTRL and AP2-G OFF conditions. Taking 
the difference in interpolated expression between AP2-G CTRL and AP2-G OFF, we computed a 
paired difference heatmap (Fig. 8b). From the paired difference heatmap, we observed few 
overall differences in gene expression between the two conditions, except for a rare subcluster of 
cells that lie at the interface between late-stage cells and the gametocytes that are specific to 
AP2-G CTRL (Fig. 8c). Furthermore, clustering scRNA-seq data in either condition does not 
identify this rare subpopulation as a candidate cluster of cells, highlighting the utility of scAlign for 
identifying rare subpopulations that differ between conditions. 
 
We identified the set of genes that are predicted to differ the most between cells of the two 
conditions in the rare subcluster (Fig. 8d). Notable are several genes with previously established 
roles in gametocyte maturation, including P48/4532 and Pf11-133,34. We also observed an 
enrichment of gender-biased transcripts in these genes upregulated in AP2-G CTRL, further 
suggesting some of these genes may play a role in sexual commitment. 
 
Discussion 
 
Here we have shown that scAlign outperforms other integration approaches, particularly when 
there is strong cell type-specific response to stimuli, or when there is an imbalance in cell type 
representation across conditions. scAlign will be particularly useful in the context where some cell 
type labels may be available. More specifically, the unified alignment framework of scAlign allows 
for the optional use of cell labels that may be available for one or more conditions, and furthermore 
can use labels only available for subsets of cells. Partially annotated datasets may arise frequently, 
as cell type markers are typically only available for well established cell types such as the 
hematopoietic cells. Furthermore, markers may not be unique to individual cell types and technical 
factors such as dropout may prevent truly expressed markers from being detected in the RNA. 
With the increasing number of cell atlases12–17 that are accurately labeled by domain experts and 
are now available, scAlign can take advantage of the accurate labeling of these atlases to 
annotate new datasets that lack labels.   
 
One of the principal advantages of scAlign over existing integration methods is we can identify 
rare cell types that differ in expression between conditions without the need to cluster cells. For 
typical alignment methods, once the effect of condition is removed, cells must still be clustered 
into putative cell types in order to identify which cells match across condition, and then perform 
an unpaired differential expression test within each cluster to identify condition-specific 
differences. The need to cluster cells means detection of rare cell types can be highly sensitive 
to the choice of clustering algorithm or parameters. In contrast, through interpolation, scAlign can 
generate paired differential expression heatmaps which can make evident the presence of rare 
cell populations that differ in expression across condition (Fig. 8). Additionally, on our benchmarks 
as well as the malaria dataset, we showed that scAlign can match cells of the same type even 
when the proportions of those types is imbalanced.  
 
Here we have primarily compared scAlign against unsupervised alignment methods. In our 
supervised alignment results, scAlign compared favorably against MINT19, another supervised 
method, when assuming all cells are labeled. In the context of alignment, however, we reasoned 
that if a complete set of labels are available for all cells and conditions, then addressing the task 
of alignment is less useful, because cells of the same type across conditions can be directly 
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compared via per-cell type differential expression analysis without alignment. Alternatively in 
those contexts, each matching pair of cell types across conditions can be independently aligned 
using the unsupervised scAlign to identify subpopulations of cells.  
 
The tasks of transcriptional alignment and batch correction of scRNA-seq data are intimately 
related, as one can view the biological condition of a cell as a batch whose effect should be 
removed before integrated data analysis. Compared to batch correction methods, scAlign 
leverages the flexibility of neural networks to perform alignment where cell states might exhibit 
heterogeneous responses to stimuli, yet through interpolation provides the interpretability that 
canonical batch correction methods enjoy. The design of scAlign’s neural network architecture 
and loss functions are general and not specific to scRNA-seq data. We therefore expect that 
scAlign should be applicable to any problem in which the study design consists of comparing two 
or more groups of unmatched samples, and where we expect there to be subpopulations of 
individuals within each group. 
 
As a neural network-based method, scAlign usage requires specification of the network 
architecture before training, defined by the number of layers and number of nodes per layer. In 
our results, we have shown scAlign is largely robust to the size of the architecture, in part because 
in addition to the ridge penalty we apply to the weights of the network, our objective function 
minimizes the difference between the similarity matrix in the original expression and cell state 
spaces, which also acts as a form of data driven regularization. In our experiments, typical scRNA-
seq data will require at most three layers to align. The results of this study were robust to network 
depth and width (Supplementary Fig. 10) along with choice of hyper parameters.  
 
The general design of scAlign’s neural network architecture and loss function makes it agnostic 
to the input RNA-seq data representation. Thus, the input data can either be gene-level counts, 
transformations of those gene level counts or a preliminary step of dimensionality reduction such 
as principal component scores. In our study, we first transformed data into a relatively large 
number of principal component scores before input into scAlign, as this yielded much faster run 
times with little to no performance degradation. The improvement in computation time due to PCA 
pre-processing of the input data allowed scAlign to both converge more quickly and become 
feasible on a CPU-based system, therefore making scAlign a broadly applicable deep learning 
method (Supplementary Fig. 11). 
 
In this paper, we have primarily evaluated the accuracy of scAlign in the context of comparing 
scRNA-seq data across two conditions. While comparison across two conditions is currently the 
most prevalent study design, we envision comparison across multiple conditions becoming more 
frequent in the near future, as is currently done in RNA-seq when comparing different disease 
types35, characterizing the same tissue across multiple organisms36, or integrating data from 
multiple patients for the same disease37 for example. Our neural network loss function naturally 
scales to more than two comparisons and can be achieved in two ways. Either a single reference 
condition may be established and all other conditions can be aligned against the reference, or we 
can maximize the overlap in embedding space between all pairs of conditions. 
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Figures 

 
Figure 1. Schematic of unsupervised alignment and paired differential expression with 
scAlign. (a) Input to scAlign consists of multiple scRNA-seq datasets, each representing a 
condition for example. Expression can be represented as either gene-level expression, or 
embedding coordinates from dimensionality reduction techniques such as PCA or CCA. (b) A 
deep encoding network learns a low-dimensional cell state space that simultaneously aligns cells 
from all conditions. (c) Paired decoders project cells from the cell state space back into the gene 
expression space of each condition, and can be used to interpolate the expression profile of cells 
sequenced from any condition into any other condition. (d) For a single cell sequenced under any 
condition, we can calculate its interpolated expression profile in both conditions, then take the 
difference to calculate a paired differential expression for the same cell state under different 
conditions to identify cell state-specific changes due to stimulus. 
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Figure 2. scAlign outperforms existing alignment approaches on four benchmarks.  
(a) CellBench, a benchmark consisting of mixtures of RNA from three cancer cell lines 
sequenced using multiple platforms. Plots from left to right: (1) tSNE plot of embeddings after 
alignment with scAlign. (2) tSNE plots generated using the original expression profiles. (3) Bar 
plot indicating the accuracy of a classifier trained on labeled cells from one condition and used 
to predict cell type labels in another condition. (b) Same as (a), but with the Kowalczyk et al. 
benchmark consisting of hematopoietic cells sequenced from young and old mice. (c) Same 
as (a), but with the Mann et al. benchmark consisting of hematopoietic cells sequenced from 
young and old mice, challenged with LPS. (d) Same as (a), but with the Johansen et al. 
benchmark consisting of hematopoietic cells responding to different stimuli. 
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Figure 3. Joint analysis of cells from all conditions leads to more accurate clustering of 
cell types compared to analysis of individual conditions. (a) Scatterplot illustrating the quality 
of clustering of cell types within each condition from the Mann et al. benchmark. Each point 
represents one cell type in one condition, when the embedding is computed using either the 
original expression data (‘expression’), the embedding dimensions of scAlign, or the embedding 
dimensions of an autoencoder with the same neural network architecture as scAlign. The y-axis 
represents classification accuracy, while the x-axis represents the silhouette coefficient. (b) Same 
as (a), but for Johansen et al. (c) tSNE plots visualizing the embedding space of scAlign trained 
on both conditions and (d) an autoencoder trained on a single condition.  
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Figure 4. Alignment performance is robust to imbalance in cell type representation in each 
condition. (a) Accuracy of classifiers on the Kowalczyk et al. benchmark, when removing either 
LT-HSC, ST-HSC or MPP cells from the old condition. scAlign outperforms all other methods on 
the full dataset (100%) and exhibits almost no degradation in performance as increasing numbers 
of cells are removed within each cell type. (b) Heatmap showing the pairwise similarity matrix for 
the young cells from Kowalczyk et al. when no cells have been removed. (c) Heatmap showing 
the pairwise similarity matrix for the young cells from Kowalczyk et al. after removing 75% of the 
old mouse cells from all cell types. 
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Figure 5. Random walks during scAlign training frequently visit a small number of hub 
cells. (a) Schematic of the cross domain round trip random walk prior to and after training of 
scAlign. (b) Visualization of the probability of a walk from each individual young cell (top) to 
each individual old cell (bottom) during training of scAlign on the Kowalczyk et al. benchmark. 
Edge density represents the magnitude of the probability of a given walk. (b) Same as (a), 
except the edges represent the probability of walking from individual old cells (top) to individual 
young cells (bottom) in the Kowalczyk et al. benchmark.  
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Figure 6. Alignments are robust to mismatched cell types between conditions. (a) 
Scatterplot matrix of performance of each method when both conditions have the same number 
of cell types (y-axis), compared to when one cell type has been removed (the LPS condition of 
the Mann benchmark, or the old mouse condition of the Kowalczyk benchmark) (x-axis). Each 
point is scaled in size by the silhouette coefficient for the clustering after alignment. (b) tSNE plots 
with cells colored by cell type and condition for the top performing methods. 
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Figure 7. Interpolation of gene expression patterns is accurate. (a) Scatterplot of classifiers 
trained on gene expression profiles of one condition, that are subsequently used to predict labels 
of either measured expression profiles from the same condition in a cross-validation framework 
(x-axis), or used to predict labels of cells sequenced from the other condition that were then 
interpolated into this condition (y-axis). Similarity in accuracy represented by points near the 
diagonal indicates that cell type identity encoded in the gene expression profile is maintained 
even after interpolation. (b) The pairwise cell-cell similarity matrix for all cells projected into the 
young condition, including both the old cells interpolated into the young condition (yellow) and the 
cells originally sequenced in the young condition (blue). Note that cells cluster largely by cell type 
regardless of the condition in which they were sequenced. (c) The pairwise cell-cell similarity 
matrix for all cells computed using the original expression measurements. (d) The pairwise cell-
cell similarity matrix for all cells computed using the low-dimensional coordinates within the cell 
state space learned by scAlign. Similarity between (c) and (d) indicate the scAlign embedding 
maintains global similarity patterns between cells in the original gene expression space. 
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Figure 8. Alignment of malaria cells sequenced from a conditional ap2-g knockdown line 
reveal a rare subpopulation of cells putatively involved in sexual commitment. (a) tSNE 
visualization of cells which cannot express ap2-g (OFF) and ap2-g capable cells (CTRL) after 
alignment by scAlign. Each cell is colored by its position within three cell cycle time points 
measured in hours post-infection or gametocyte (GC). (b) Heatmap of paired differential 
expression when projecting every cell from (a) into both the CTRL and OFF conditions, then taking 
the paired difference in expression profiles. Rows represent cells, ordered generally from early 
stage (top) to late stage and GC (bottom), and columns represent the 661 most varying genes. 
The heatmap identifies a region of large differential expression between late stage and GC cell 
populations, labeled as subclusters. (c) tSNE similar to (a), but subcluster cells are in bold colors. 
(d) Heatmap of paired differential expression focused on the subclusters (rows) alone, and where 
the genes selected (columns) are the subset of the original 661 from (b) that are gender-biased 
in expression. 
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Methods 
 
Methods overview. The scAlign method consists of two steps: (1) alignment, which learns a 
mapping from gene expression space of individual conditions into a common cell state space, 
and (2) interpolation, which learns a mapping from the common cell state space back to the gene 
expression space of the original conditions.  
 
scRNA-seq alignment with scAlign. We define the alignment task as identifying a low 
dimensional embedding space (termed the cell state space) in which functionally similar cells map 
to the same region of the cell state space. Viewed from the lens of perturbation studies, if 
sequencing a cell immediately before and after stimulus were possible, alignment would bring 
cells post-stimulus into the same region of cell state space as the cell before stimulus, therefore 
removing the effect of the stimulus.  
 
scAlign encodes the cell state space by extending the recent approach of learning by association 
for neural networks38,39 into a unified framework for both unsupervised and supervised 
applications. For notational simplicity, we will assume we are aligning scRNA-seq data from a pair 

of conditions, though the framework extends to multiple conditions. Let �⃗�𝑖
𝑠 and �⃗�𝑗

𝑡 be vectors of 

length 𝐺  that represent the gene expression profiles of cells 𝑖  and 𝑗  in conditions 𝑠  and 𝑡 , 

respectively. Similarly, let 𝑒𝑖
𝑠 and 𝑒𝑗

𝑡 be vectors of length 𝐾 that represent that cell state space 

embedding of cells 𝑖 and 𝑗 in conditions 𝑠 and 𝑡, respectively, where the embeddings represent 
the linear activations of the final output layer of an encoder neural network.  
 
scAlign trains an encoder neural network (parameterized by weights 𝑾) that defines the cell state 

space by optimizing the network weights used to calculate 𝑒𝑖
𝑠 and 𝑒𝑗

𝑡 to minimize the following 

objective function: 
 

𝑓 = [
1

|𝑆|
∑ cross-entropy(�⃗⃗�𝑖,∙

𝑠 , �⃗⃗�𝑖,∙
𝑠 )

𝑖

] + [
1

|𝑇|
∑ cross-entropy(�⃗⃗�𝑗,∙

𝑡 , �⃗⃗�𝑗,∙
𝑡 )

𝑗

] + 𝜆‖𝑾‖𝐹
2  

 
Where 

𝑷𝑠 = 𝑷𝑠→𝑡𝑷𝑡→𝑠 

𝑷𝑡 = 𝑷𝑡→𝑠𝑷𝑠→𝑡 

𝑄𝑖,𝑘
𝑠 =

exp(−0.5‖�⃗�𝑖
𝑠 − �⃗�𝑘

𝑠‖2/𝜎𝑖
2)

∑ exp (−0.5‖�⃗�𝑖
𝑠 − �⃗�𝑘′

𝑠 ‖
2

/𝜎𝑖
2)𝑘′≠𝑖

 

𝑄𝑗,𝑘
𝑡 =

exp (−0.5‖�⃗�𝑗
𝑡 − �⃗�𝑘

𝑡 ‖
2

/𝜎𝑗
2)

∑ exp (−0.5‖�⃗�𝑗
𝑡 − �⃗�𝑘′

𝑡 ‖
2

/𝜎𝑗
2)𝑘′≠𝑗

 

𝑃𝑖,𝑗
𝑠→𝑡 =

exp(𝑒𝑖
𝑠𝑇

𝑒𝑗
𝑡)

∑ exp(𝑒𝑖
𝑠𝑇

𝑒𝑗′
𝑡 )𝑗′

 

𝑃𝑗,𝑖
𝑡→𝑠 =

exp(𝑒𝑖
𝑠𝑇

𝑒𝑗
𝑡)

∑ exp(𝑒𝑖′
𝑠 𝑇

𝑒𝑗
𝑡)𝑖′

 

𝑒𝑖
𝑠 = encoder(𝑥𝑖

𝑠, 𝑾) 
𝑒𝑗

𝑡 = encoder(𝑥𝑗
𝑡, 𝑾) 
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The central idea of the alignment procedure of scAlign is that it optimizes the embeddings of cells 

(𝑒𝑖
𝑠 and 𝑒𝑗

𝑡) such that the scaled, pairwise cell-cell similarity matrix (or formally, a transition matrix) 

computed between cells within each condition in gene expression space (𝑸𝒔 and 𝑸𝒕) should be 

maintained within the cell state space (𝑷𝑠 and 𝑷𝑡), respectively. The novel aspect of scAlign 

compared to other dimensionality reduction methods is in how 𝑷𝑠 and 𝑷𝑡 are calculated. While 
𝑷𝑠 would canonically be calculated by transforming the dot product of the embeddings 𝑒𝑖

𝑠 as is 

done in the tSNE method40 for example, scAlign computes roundtrip random walks of length two 
that traverse the two conditions. 𝑷𝒊,𝒌

𝒔 , the transition probability of moving from cell 𝑖 to cell 𝑘 within 

condition 𝑠, is calculated as the probability of randomly walking from cell 𝑖 to cell 𝑘 in two steps: 
first from cell 𝑖 to any cell 𝑗 in the other condition 𝑡 in the first step, then from that cell 𝑗 to cell 𝑘 

(in condition 𝑠) in the second step. By forcing the random walk to first visit a cell in the other 
condition, scAlign encourages the encoder to bring cells from across the two conditions into 
similar regions of cell state space. 
 
The network weights 𝑾 are initialized by Xavier41 and optimized via the Adam algorithm42 with an 
initial learning rate of 1e-4 and a maximum of 15,000 iterations. The neural network activation 
functions of each hidden layer are ReLU and the embedding layer has a linear activation function. 
Regularization is enforced through an L2 penalty on the weights along with per-layer batch 
normalization and dropout at a rate of 30%.The scAlign framework has three tunable parameters: 

the per-cell variance parameter 𝜎𝑖
2 that controls the effective size of each cell’s neighborhood 

when defining the similarity matrix in gene expression space, the magnitude of the penalization 
term 𝜆 over 𝑾 that is fixed at 1e-4, and the size of the encoder network architecture. 
 

For the tuning parameter 𝜎𝑖
2, small values yield more local alignment, whereas larger values yield 

more global alignment. In our experiments, we train each model with a range of values for 𝜎𝑖
2. 

Typically, [5,10,30] provide robust results when training on mini-batches of less than 300 samples. 

While the per-cell variance parameter  𝜎𝑖
2  operates on the training mini-batch, we found that 

adjusting the magnitude of this parameter based on mini batch size was not necessary to achieve 
optimal results.  
 
In our experiments, we set the size of the encoder architecture by either automatically 
constructing a network based on the dimensionality of the input data in conjunction with a 
complexity parameter, or from a catalog of network architectures which are at most three layers 
deep. As with other neural networks, the size of the architecture defines the complexity and power 
of the network. Model complexity is important for alignment because the network must be powerful 
enough to align cells from conditions that yield heterogeneous responses to stimulus, but not so 
powerful that any cell in one condition can be mapped to any other cell in another condition, 
regardless of whether they are functionally related. We have found in our experiments 
(Supplementary Figs. 10) that the combination of cross-entropy loss and shrinkage applied to 
the network weights yields robustness to generously-large network architectures. Namely, by 
encouraging small weights and minimizing the differences in cell-cell similarity matrices, we avoid 
training the neural network to perform unnecessary complex transformations on the data. 
 
scRNA-seq interpolation with scAlign. The interpolation component of scAlign trains a 
condition-specific decoder to map cells from the joint cell state space back into each of the 
individual condition-specific gene expression spaces. The decoder network architecture is chosen 
to be symmetric with the encoder network trained during the alignment process, with weights 
randomly initialized and optimized again via the Adam optimizer42 with learning rate 1e-4 and 
trained for at most 30,000 iterations. 
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Principal Component Analysis and Canonical Correlation Analysis preprocessing 
transformations of scRNA-seq data. The objective function that scAlign optimizes does not 
incorporate terms specific to RNA-seq data such as a negative binomial observation model. To 
speed up the training process, we therefore tested and found that computing the principal 
component and canonical correlates of the normalized scRNA-seq data and using the resulting 
scores in place of gene expression measurements maintained alignment and interpolation 
accuracy but significantly sped up training (Supplementary Figs. 11). Note that even when the 
encoder network is given as input PC or CC dimensions instead of gene expression 
measurements, the decoder is still trained to transform cell state space coordinates into the 
original gene expression space. 
 
Using partial or complete cell type annotations with scAlign. The objective function optimized 
by scAlign can naturally incorporate partial, overlapping or complete cell type labels on the cells, 
in one or both domains. We do not need to make any assumptions about the exclusivity of these 
labels (e.g. a cell could be assigned more than one label). Suppose there are 𝐶 cell type labels 
available. Then define matrix 𝑨𝑠 such that 𝐴𝑖,𝑐

𝑠 = 1 if cell 𝑖 in condition 𝑠 has cell type label 𝑐, else 

𝐴𝑖,𝑐
𝑠 = 0. Similarly, define matrix  �̂�𝑠 containing the predicted class labels for all cells in condition 

s. The scAlign objective function then becomes: 
 

𝑓 = [
1

|𝑆|
∑ (α cross-entropy(�⃗⃗�𝑖,∙

𝑠 , �⃗⃗�𝑖,∙
𝑠 ) + 𝛽 ∑ 𝐴𝑖,𝑐

𝑠  cross-entropy (𝐴𝑖,∙
𝑠 , �̂⃗�𝑖,∙

𝑠 )

𝑐

)

𝑖

]

+ [
1

|𝑇|
∑ (α cross-entropy(�⃗⃗�𝑗,∙

𝑡 , �⃗⃗�𝑗,∙
𝑡 ) + 𝛽 ∑ 𝐴𝑗,𝑐

𝑡 cross-entropy (𝐴𝑗,∙
𝑡 , �̂⃗�𝑗,∙

𝑡 )

𝑐

)

𝑗

] + 𝜆‖𝑾‖𝐹
2 

 
The additional terms in 𝑓 encourage random walks from a cell with known label to end at another 
cell with the same known label through a classifier loss component. Additionally, the classifier 
component is incorporated into the encoding neural network by transforming the embedding layer 
activations into class specific logit scores through the addition of a single hidden layer. The 
classifier minimizes the mean cross-entropy of the predicted and actual cell labels as defined by 
the second term within each summation of  𝑓. The adaptation and classifier components 𝑓 are 

balanced by hyperparameter weights 𝛼 and 𝛽 respectively. Adjusting 𝛼 and 𝛽 allows emphasis to 
be placed individually on the pairwise cell similarity or known labels; in this work both weights 
were fixed to 1.0. 
 
Acquisition and preprocessing of Mann et al. benchmark. We obtained the gene count matrix 
for HSC data generated from Mann et al.40 from GSE100426. The provided data matrix was 
already filtered based on quality control metrics. We normalized the count matrix to TP10K and 
then removed plate specific batch effects by fitting a linear model on the scaled and centered 
using Seurat’s NormalizeData and ScaleData functions. We retained the union of the top 3,000 
variable genes between control and condition cells. 
 
Acquisition and preprocessing of Kowalczyk et al. benchmark. We obtained the gene count 
matrix for both C57BL6 and DBA mouse HSC data generated from Kowalczyk et al.40 from 
GSE59114. Only single cell data from mouse C57BL6 was used during alignment to avoid cross 
mouse batch effects. We normalized the count matrix to TP10K then scaled and centered using 
Seurat’s NormalizeData and ScaleData functions. We retained the union of the top 3,000 variable 
genes between young and old cells. 
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Acquisition and preprocessing of CellBench benchmark. We obtained the gene count matrix 
for the RNA mixture experiments in CellBench generated by Tian et al.23 from the R data file 
mRNAmix_qc.RData available on github. We normalized the count matrix to TP10K then scaled 
and centered using Seurat’s NormalizeData and ScaleData functions. We retained the union of 
the top 3,000 variable genes between mixtures profiled on CEL-seq2 and SORT-seq. 
 
Execution of other scRNA-seq alignment methods. We compared scAlign against MNN29, 
Seurat30, scMerge31 and scran29, which were run based on method specific guidelines and 
following the workflow defined by CellBench and available on github. Prior to running each method, 
scran’s decomposeVar function was used to identify the most variable genes for subsetting the 
data matrices. MNN was provided log-count data subset to the most variable genes with all 
parameters set to default. Seurat was provided the count level data which was normalized, then 
scaled and centered using the NormalizeData and ScaleData functions. Initially, 30 canonicial 
correlates were used for dimensionality reduction, then the MetageneBicorPlot function was used 
to select the optimal number of dimensions as defined by Seurat’s integrated PBMC tutorial. The 
remaining canonicial correlates were aligned using Seurat’s AlignSubspace function. scMerge 
was provided both count and log-count data along with a set of least variable genes identified by 
sorting the results of the var function in R on the normalized count matrix. The parameter 
kmeansK for the number of clusters was set based on cell type information. Scran was provided 
with log-count data subset to the most variable genes previously identified by decompseVar, and 
return_dense was set to TRUE.  
 
Construction of the Johansen et al. benchmark. We constructed the Johansen et al. 
benchmark by merging multiple count matrices from the Mann et al. and Kowalczyk et al. studies. 
The control condition was defined completely by young C57BL6 mouse cells. To construct the 
stimulated condition, we merged LT-HSCs perturbed by LPS from Mann et al., ST-HSCs from old 
C57BL6 mouse cells and MPPs from both young and old DBA mouse cells collected by Kowalczyk 
et al.  
 
Acquisition and preprocessing of malaria data. We obtained the gene count matrix for  the 
malaria data generated by Poran et al.41 from the KafsackLab github. The data was preprocessed 
using the provided scripts and subset into a control and condition condition using the provided 
AP2G-ON or AP2G-OFF labels in the metadata. 
 
Identification of differentially expressed genes. Differentially expressed (DE) genes were 
computed using the bimod, DESeq2 and MAST methods implemented in the Seurat findMarkers 
function. The intersection of DE genes with p-value less than 0.01 from these three methods was 
used to define a final set of DE genes for each cell type. The analysis was performed on the 
normalized, scaled and centered data matrices computed by Seurat’s preprocessing pipeline. 
 
Measuring accuracy of transcriptional alignment. Alignment performance for each method 
was measured through a classifier trained to label one condition (stimulated condition by default) 
using only labels from the corresponding control condition. Specifically, a K-nearest neighbors 
classifier from the R library ‘class’ was initialized with control cell embeddings after alignment, 
along with their corresponding cell type labels. The classifier was then used to predict labels for 
the stimulated cells. The predicted labels were compared against heldout labels to measure 
accuracy.  
 
Measuring accuracy of transcriptional interpolation. To measure interpolation accuracy, we 
measured the ability of a classifier trained on the gene expression data of the cells measured 
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under one condition to correctly label interpolated gene expression profiles of cells sequenced 
under the other condition (but interpolated into the current condition). A K-nearest neighbors 
classifier from the R library ‘class’ was initialized with 90% of expression data and tested on the 
remaining heldout set of 10% to define gene expression specific accuracy. The classifier was then 
used to predict the labels for cells represented by interpolated gene expression values to compute 
an interpolation specific accuracy. 10-fold cross validation was performed using this procedure 
and the average accuracy was reported. 
 
2D tSNE visualizations of embeddings for alignment methods. By default, we use the Rtsne 
implementation of tSNE, which first projects input data into 50 principal components before 
inputing into the tSNE algorithm. All methods other than Seurat and scAlign produce corrected 
expression matrices, and for these we use the default 50 PCs for Rtsne. Seurat automatically 
selects the number of dimensions to project into for each individual condition. scAlign was used 
to align scRNA-seq data into a 32-dimensional embedding space for all runs. For both Seurat and 
scAlign, the PCA step of Rtsne was skipped. 
 
List of Abbreviations 
 
scRNA-seq: Single-cell RNA sequencing 
LT-HSC: Long-term hematopoietic stem cell 
ST-HSC: Short-term hematopoietic stem cell 
MPP: Multi-potent progenitor 
DEG: differentially expressed gene 
LPS: Lipopolysaccharide 
PCA: Principal components analysis 
CCA: Canonical correlation analysis 
tSNE: t-distributed stochastic neighbor embedding 
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